Skip to content

Instantly share code, notes, and snippets.

@colltoaction
Created August 28, 2015 04:23
Show Gist options
  • Save colltoaction/e62bdefb4d3a2ff8d85d to your computer and use it in GitHub Desktop.
Save colltoaction/e62bdefb4d3a2ff8d85d to your computer and use it in GitHub Desktop.
Generating location means by district for kaggle.com/c/sf-crime using pyspark
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Generating the means by district"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We start by setting up the environment so it uses Python 2"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import os\n",
"os.environ['PYSPARK_PYTHON'] = 'python2'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We create the spark context and sql context"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pyspark\n",
"from pyspark import HiveContext, SparkContext\n",
"\n",
"sc = SparkContext('local[*]')\n",
"sqlCtx = HiveContext(sc)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We create the dataframe that uses the pyspark_csv module to parse a CSV file"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pyspark_csv as pycsv\n",
"\n",
"plaintext_rdd = sc.textFile('../data/train.csv')\n",
"data = pycsv.csvToDataFrame(sqlCtx, plaintext_rdd)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We finally run the MapReduce processes to obtain the means by district"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"PdDistrict,X,Y\n",
"CENTRAL,-122.409507348,37.7987397043\n",
"SOUTHERN,-122.405185063,37.7825727891\n",
"PARK,-122.445368775,37.7724177678\n",
"RICHMOND,-122.469782266,37.7882938998\n",
"TARAVAL,-122.477213993,37.740736043\n",
"BAYVIEW,-122.393359168,37.7425158149\n",
"INGLESIDE,-122.428733579,37.7291949667\n",
"MISSION,-122.419392917,37.7603962752\n",
"TENDERLOIN,-122.412152411,37.7933765424\n",
"NORTHERN,-122.426427669,37.7923298653\n"
]
}
],
"source": [
"lines = data.map(lambda line: (line.PdDistrict, (float(line.X), 1, float(line.Y), 1))) \\\n",
" .reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1], x[2] + y[2], x[3] + y[3])) \\\n",
" .map(lambda x: (x[0], (x[1][0] / x[1][1], x[1][2] / x[1][3]))) \\\n",
" .map(lambda x: x[0] + \",\" + str(x[1][0]) + \",\" + str(x[1][1])) \\\n",
" .collect()\n",
"print \"\\n\".join(['PdDistrict,X,Y'] + lines)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment