Created
August 29, 2015 01:42
-
-
Save colltoaction/eaf4e0a133df6fcdbf71 to your computer and use it in GitHub Desktop.
Finger Exercise 2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 1) Gráfico de barras con cantidad de crímenes por hora del día. (0 a 23)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 170, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGM1JREFUeJzt3X+wZ3V93/HnCxBERZChXX7/6GRJXcdUQyKdmDTXomRN\nWiAzBtZGB+OOTbKp2KSTZLGpLJ2Oip0GiQb6QwzL1iCrjIgjJayU22TawgaLAV2RpXUju7AXXRSx\n+VFW3v3jfO7Zrze7e7/37vK933vv8zHznT3fz/d8zvmcw+G+vp/P+fFNVSFJEsARC90ASdL4MBQk\nST1DQZLUMxQkST1DQZLUMxQkST1DQWMtyZVJ/tNCt2NcJXk+yd9Z6HZo6TAUNFJJ/kmSB5I8m+SJ\nJHcmef2B5q+qD1TVu0bZRmk5MxQ0Mkl+A7gW+DfA3wbOAH4fuOgA8x85utaNtyRHLebla/EwFDQS\nSY4HrgbWVdXtVfWXVfX9qvp8Vf12m2dDkk8n2ZTkGeAdrWxT+/zsNlzyjiTfSLInya8k+fEkDyX5\ndpKPzFjvO5NsS/J0kruSnDnw2fNJfjnJo63uR+dQ99okU0meaet+1QG2ezLJB5Lc3+a9PckrBj6/\nKMlX2vrvTfJ3Bz7bkeS3kjwEPJvkQP+/vml/25DO77TlTCXZmOTlM/blO5P8OfCFVv6pJE8m+U6S\n/5Zk1cH+u2oJqipfvl7wF7AaeA444iDzbAD+H3BRe/9i4CpgU3t/NvA8cD1wNPAm4K+BzwAnAacC\nU8A/aPNfDGwHfpjuC9C/BP77wPqeB+4AXk7Xa3kK+JnZ6gI/AzwAvLy9/2Hg5ANs0ySwE1gFvAT4\n9MD2nAt8D7gAOBL4zbbOo9rnO4D/BZwGHHOA5R9sG97Zlnc28FLgNuDmGfvyJuDY6eUD72jzvoiu\nV/fgQh87vkb7WvAG+FoeL+AXgSdnmWcDMLmfspmhcMrA598CfmHg/aeBK9r0fwHeOfDZEcD/Bc5o\n758HfmLg81uB35ql7pnAG4CvAedzkJBr9e4F3j/w/pV0QXYE8K+ATw58lhYg06H2deAdsyz/YNtw\nD/ArA5+dSxe6Rwzsy7MPsuwT2jzHLfTx42t0L4ePNCp7gJMOMgQybecQy5oamP7L/bx/WZs+C7iu\nDat8u7UBum/e03YPTP/FEHVPrap7gY/SnQ+ZSvIfkhx3kPY+PjD9Dbpv4ScBp7T3AFT3l/jxGe0b\nrHsgB9qGU4A/n7Huo4AV+1t+kiOSfDDJY2347utAtbZqmTAUNCr/k+4b8s8fZJ5qr5ll8/UN4J9W\n1SsGXi+tqvsOtW5VfaSqfoxuWOhcuqGfAzlzxvRzwDeBJ+jCB+jOAdANAe0amP9Qtv8Juh7B4Lr3\n8oMhOrj8X6Q76X9BVR0PnEPXe8khtEGLjKGgkaiqZ4D3Ab+f5OIkL0nyoiRvTnJNm21/f3zm8wdp\nus6/B947fbI0yfFJfmGWerPWTfJjSc5P8iK6b+Z/BXz/IMt8W5JXJnkJ8K+BT7VewaeAn0vyD9uy\n/kVb1v+YxzbvbxtuAX69nVR+GfB+uuGq5w9Q92V0wf10kpe2+bXMGAoamar6XeA3gN+hOyH6DWAd\n3YliOHBPoWa8n3VVbX23A9cAn2zDIQ/TnSQ+0LJqyLovB/4j8DTdyeBvAf/2IG3ZRHdC90m6E+RX\ntHV8DXgb8BG6nsPPAf+4qvYOsY2zbgPw8bbuPwb+D12AvfsgdW+mG27aBXyZrnfnD64sM+m+sMwy\nU3IC8DHgVXQHyS/RXdVwK133dwdwaVV9p81/Jd2VD9+nO+l3dys/j+5/jhcDd1bVe1r5MXQH5I/S\njd1eVlWDY6HSopTkXroT5R9f6LZIwxi2p3Ad3R/xVwI/AjwCrAe2VNW5dFc5rAdo3e3L6MZaVwPX\nt7FSgBuAtVW1EliZZHUrXwvsaeXX0n1Dk5YKx+S1aMwaCu2mo5+a/qZTVXvb+PBFwMY220bgkjZ9\nMXBLVT1XVTuAx4Dzk5xCd2nb1jbfzQN1Bpd1G91129JS4RCMFo1hbm0/B/hmkj8A/h7wReCfAyuq\navoqhin2XeZ2KjB4dcdOukvsnuMHLzfcxb5L706jXRpXVXvbnZ8nVtXTc98kaXxU1RsWug3SXAwz\nfHQU3Vj/9VX1o3Q38KwfnKFdSeG3IUla5IbpKewEdlbVn7b3nwauBHYnObmqdrehoafa57vorrWe\ndnpbxq42PbN8us6ZwBPtwVzHz+wlJDF0JGkeqmro81qz9hSqajfweJJzW9Ebga8AnwMub2WXA7e3\n6TuANUmOTnIOsBLY2pbz3XZ9d4C3A58dqDO9rLfQnbjeX1t8VXHVVVcteBvG5eW+cF+4Lw7+mqth\nH5f7buATSY4G/jfdJalHApuTrKVdktr+cG9LshnYRnf35Lra17J17HsA151VdVcrvxHYlGQ73SWp\na+a8JZKkQzZUKFTVnwE/vp+P3niA+d/Pfu6GrKovAq/eT/lf00JFkrRwvKN5EZqYmFjoJowN98U+\n7ot93BfzN9QdzeMgSS2WtkrSuEhCHc4TzZKk5cNQkCT1DAVJUs9QkCT1DAVJUs9QkCT1DAVJUs9Q\nkCT1DAVJUs9QkCT1DAVJUs9QkCT1hv09BUk6JN1vaw3PB2AuDENB0ggN+4d+bgGiw8fhI0lSz1CQ\nJPUMBUlSz1CQJPU80SxpzuZyJZFXES0uhoKkeRrmj71XES02Dh9JknqGgiSpZyhIknqGgiSp54lm\naUhecaPlwFCQ5sQrbrS0DTV8lGRHkoeSPJhkays7McmWJI8muTvJCQPzX5lke5JHklw4UH5ekofb\nZ9cNlB+T5NZWfl+Ssw7nRkqShjPsOYUCJqrqtVX1ula2HthSVecC97T3JFkFXAasAlYD12dfv/sG\nYG1VrQRWJlndytcCe1r5tcA1h7hdkqR5mMuJ5pl94ouAjW16I3BJm74YuKWqnquqHcBjwPlJTgGO\nq6qtbb6bB+oMLus24II5tEuSdJjMpafwhSQPJHlXK1tRVVNtegpY0aZPBXYO1N0JnLaf8l2tnPbv\n4wBVtRd4JsmJc9kQSdKhG/ZE8+ur6skkfwvYkuSRwQ+rqpJ4uYW0yPhraJppqFCoqifbv99M8hng\ndcBUkpOrancbGnqqzb4LOGOg+ul0PYRdbXpm+XSdM4EnkhwFHF9VT89sx4YNG/rpiYkJJiYmhmm+\npIPy19CWksnJSSYnJ+ddP7Mlf5KXAEdW1bNJXgrcDVwNvJHu5PA1SdYDJ1TV+nai+Q/pguM04AvA\nD7XexP3AFcBW4PPA71XVXUnWAa+uql9Nsga4pKrWzGhH+S1FC6n7Vj3cJamL5VgdfptgcLvmsy/m\nuy4dmiRU1dCJPkxPYQXwmdbNPAr4RFXdneQBYHOStcAO4FKAqtqWZDOwDdgLrBv4a74OuAk4Friz\nqu5q5TcCm5JsB/YAPxAIkpYnh7dGb9aewriwp6CFZk9h9D0FexeHbq49BZ99JEnqGQqSpJ6hIEnq\n+UA8aYnwKa46HAwFaUnxKa46NA4fSZJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ63qcgSYdg\nqd00aChI0iFbOjcNOnwkSeotqp7CUuumSdK4WVSh4G/JShqGXyDnb5GFgrT0+ROUh8vSGecfJUNB\nGkv2irUwDAVJwh7aNENBknr20AwF6QXkt08tNoaC9ILz26cWD29ekyT17ClI0oiN87CioSBJC2I8\nhxUdPpIk9QwFSVLPUJAk9YYKhSRHJnkwyefa+xOTbEnyaJK7k5wwMO+VSbYneSTJhQPl5yV5uH12\n3UD5MUlubeX3JTnrcG6gJGl4w/YU3gNsY9+ZkfXAlqo6F7invSfJKuAyYBWwGrg++06z3wCsraqV\nwMokq1v5WmBPK78WuObQNkmSNF+zhkKS04GfBT7GvtPgFwEb2/RG4JI2fTFwS1U9V1U7gMeA85Oc\nAhxXVVvbfDcP1Blc1m3ABfPeGknSIRmmp3At8JvA8wNlK6pqqk1PASva9KnAzoH5dgKn7ad8Vyun\n/fs4QFXtBZ5JcuIctkGSdJgc9D6FJP8IeKqqHkwysb95qqqSjOjOig0D0xPtJUmaNjk5yeTk5Lzr\nz3bz2k8AFyX5WeDFwMuTbAKmkpxcVbvb0NBTbf5dwBkD9U+n6yHsatMzy6frnAk8keQo4Piqenr/\nzdkw5GZJ0vI0MTHBxMRE//7qq6+eU/2DDh9V1Xur6oyqOgdYA/zXqno7cAdweZvtcuD2Nn0HsCbJ\n0UnOAVYCW6tqN/DdJOe3E89vBz47UGd6WW+hO3EtSVoAc33MxfQw0QeBzUnWAjuASwGqaluSzXRX\nKu0F1tW+h3asA24CjgXurKq7WvmNwKYk24E9dOEjSVoAWSzPb+/OWwz/rJDFsl1aPLpO7nC/+zt9\n/A1fZ1+9+dQZZftGua5xb9+o1zUfSaiqoR+g5B3NkqSeT0nVsjPOjy2WFpqhoGVqPB9bLC00Q0GL\nmt/6pcPLUNAS4Ld+6XDxRLMkqWcoSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqed9ChoL3oQmjQdD\nQWPEm9CkhebwkSSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSp530KOuy8EU1avAwFvUC8EU1a\njBw+kiT1DAVJUs9QkCT1DAVJUs9QkCT1DhoKSV6c5P4kX0qyLckHWvmJSbYkeTTJ3UlOGKhzZZLt\nSR5JcuFA+XlJHm6fXTdQfkySW1v5fUnOeiE2VJI0u4OGQlX9FfCGqnoN8CPAG5L8JLAe2FJV5wL3\ntPckWQVcBqwCVgPXZ99F6zcAa6tqJbAyyepWvhbY08qvBa45nBsoSRrerMNHVfUXbfJo4Ejg28BF\nwMZWvhG4pE1fDNxSVc9V1Q7gMeD8JKcAx1XV1jbfzQN1Bpd1G3DBvLdGknRIZg2FJEck+RIwBdxb\nVV8BVlTVVJtlCljRpk8Fdg5U3wmctp/yXa2c9u/jAFW1F3gmyYnz2xxJ0qGY9Y7mqnoeeE2S44E/\nSvKGGZ9XkhE9p2DDwPREe0mSpk1OTjI5OTnv+kM/5qKqnknyeeA8YCrJyVW1uw0NPdVm2wWcMVDt\ndLoewq42PbN8us6ZwBNJjgKOr6qn99+KDcM2V5KWpYmJCSYmJvr3V1999Zzqz3b10UnTVxYlORZ4\nE/AgcAdweZvtcuD2Nn0HsCbJ0UnOAVYCW6tqN/DdJOe3E89vBz47UGd6WW+hO3EtSVoAs/UUTgE2\nJjmCLkA2VdU9SR4ENidZC+wALgWoqm1JNgPbgL3Autr3CMx1wE3AscCdVXVXK78R2JRkO7AHWHO4\nNk6SNDdZLI8t7s5bDP/kzcWyXUtR1xmc23+r+dQZ33Ut7faNcl3j3r5Rr2s+klBVQz+O2DuaJUk9\nQ0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEm9oR+Itxjt+32f4XgXtKTlbkmHQmf4\nW8klablz+EiS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMU\nJEk9Q0GS1FsGT0mdu7k8ctvHbUtaSgyFAxrmj/3Sf9y2ASktL4aChmBASsuF5xQkSb1ZQyHJGUnu\nTfKVJF9OckUrPzHJliSPJrk7yQkDda5Msj3JI0kuHCg/L8nD7bPrBsqPSXJrK78vyVmHe0MlSbMb\npqfwHPDrVfUq4O8Dv5bklcB6YEtVnQvc096TZBVwGbAKWA1cn30D0zcAa6tqJbAyyepWvhbY08qv\nBa45LFsnSZqTWUOhqnZX1Zfa9PeArwKnARcBG9tsG4FL2vTFwC1V9VxV7QAeA85PcgpwXFVtbfPd\nPFBncFm3ARccykZJkuZnTucUkpwNvBa4H1hRVVPtoylgRZs+Fdg5UG0nXYjMLN/Vymn/Pg5QVXuB\nZ5KcOJe2SZIO3dBXHyV5Gd23+PdU1bODlypWVSUZwfWIGwamJ9pLkjRtcnKSycnJedcfKhSSvIgu\nEDZV1e2teCrJyVW1uw0NPdXKdwFnDFQ/na6HsKtNzyyfrnMm8ESSo4Djq+rpv9mSDcM0V5KWrYmJ\nCSYmJvr3V1999ZzqD3P1UYAbgW1V9eGBj+4ALm/TlwO3D5SvSXJ0knOAlcDWqtoNfDfJ+W2Zbwc+\nu59lvYXuxLUkacSG6Sm8Hngb8FCSB1vZlcAHgc1J1gI7gEsBqmpbks3ANmAvsK723eq6DrgJOBa4\ns6ruauU3ApuSbAf2AGsOcbskSfOQxfJogu6cxbBtDVXVHtEwtzptXUPWy5J/tMN89sV89vsL/99q\nlOta2u0b5brGvX2jXtd8JKGqhn7kgHc0S5J6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIk\nqWcoSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqTfMbzRrCN3P6w1v\nqf+Mp6TFyVA4rIb/zVVJGkcOH0mSevYUlgmHtyQNw1BYVhzeknRwDh9JknqGgiSpZyhIknqGgiSp\nZyhIknqzhkKSjyeZSvLwQNmJSbYkeTTJ3UlOGPjsyiTbkzyS5MKB8vOSPNw+u26g/Jgkt7by+5Kc\ndTg3UJI0vGF6Cn8ArJ5Rth7YUlXnAve09yRZBVwGrGp1rs++C+RvANZW1UpgZZLpZa4F9rTya4Fr\nDmF7JEmHYNZQqKo/Ab49o/giYGOb3ghc0qYvBm6pqueqagfwGHB+klOA46pqa5vv5oE6g8u6Dbhg\nHtshSToM5ntOYUVVTbXpKWBFmz4V2Dkw307gtP2U72rltH8fB6iqvcAzSU6cZ7skSYfgkE80V/c8\nBJ+JIElLwHwfczGV5OSq2t2Ghp5q5buAMwbmO52uh7CrTc8sn65zJvBEkqOA46vq6f2vdsPA9ER7\nLV4+j0jS4TY5Ocnk5OS862eYPzRJzgY+V1Wvbu8/RHdy+Jok64ETqmp9O9H8h8Dr6IaFvgD8UFVV\nkvuBK4CtwOeB36uqu5KsA15dVb+aZA1wSVWt2U8bai7P7qmq9kd3bnXauoasN586h96++Viq+2I8\n17W02zfKdY17+0a9rvlIQlUN/Q101p5CkluAnwZOSvI48D7gg8DmJGuBHcClAFW1LclmYBuwF1hX\n+7ZmHXATcCxwZ1Xd1cpvBDYl2Q7sAf5GIEiSRmOonsI4sKdgT2HxrGtpt2+U6xr39o16XfMx156C\ndzRLknr+nsIi5AlqSS8UQ2HR8gdzJB1+Dh9JknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqG\ngiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSp\nZyhIknqGgiSpZyhIknqGgiSpZyhIknpjEwpJVid5JMn2JL+90O2RpOVoLEIhyZHAR4HVwCrgrUle\nubCtkqTlZyxCAXgd8FhV7aiq54BPAhcvcJskadkZl1A4DXh84P3OViZJGqFxCYVa6AZIkuCohW5A\nsws4Y+D9GXS9hRky9AKT6XnnU2f4evOp84P1Xtj2jXJd496+Ua5r6bdvlOsa9/aNel0vrFQt/Jf0\nJEcBXwMuAJ4AtgJvraqvLmjDJGmZGYueQlXtTfLPgD8CjgRuNBAkafTGoqcgSRoP43Ki+YC8qe0H\nJdmR5KEkDybZutDtGZUkH08yleThgbITk2xJ8miSu5OcsJBtHJUD7IsNSXa24+LBJKsXso2jkuSM\nJPcm+UqSLye5opUvu2PjIPtiTsfGWPcU2k1tXwPeSHcy+k9Z5ucaknwdOK+qnl7otoxSkp8Cvgfc\nXFWvbmUfAr5VVR9qXxheUVXrF7Kdo3CAfXEV8GxV/e6CNm7EkpwMnFxVX0ryMuCLwCXAL7HMjo2D\n7ItLmcOxMe49BW9q27/RXYowJqrqT4Bvzyi+CNjYpjfS/Q+w5B1gX8DyPC52V9WX2vT3gK/S3eO0\n7I6Ng+wLmMOxMe6h4E1tf1MBX0jyQJJ3LXRjFtiKqppq01PAioVszBh4d5I/S3LjchgumSnJ2cBr\ngftZ5sfGwL64rxUNfWyMeyiM79jWwnl9Vb0WeDPwa20oYdmrbhx0OR8vNwDnAK8BngT+3cI2Z7Ta\ncMltwHuq6tnBz5bbsdH2xafp9sX3mOOxMe6hMORNbctHVT3Z/v0m8Bm6IbblaqqNo5LkFOCpBW7P\ngqmqp6oBPsYyOi6SvIguEDZV1e2teFkeGwP74j9P74u5HhvjHgoPACuTnJ3kaOAy4I4FbtOCSfKS\nJMe16ZcCFwIPH7zWknYHcHmbvhy4/SDzLmntD9+0n2eZHBfpbvW9EdhWVR8e+GjZHRsH2hdzPTbG\n+uojgCRvBj7MvpvaPrDATVowSc6h6x1Ad+PhJ5bL/khyC/DTwEl0Y8TvAz4LbAbOBHYAl1bVdxaq\njaOyn31xFTBBNzxQwNeBXx4YU1+ykvwk8MfAQ+wbIrqS7qkIy+rYOMC+eC/wVuZwbIx9KEiSRmfc\nh48kSSNkKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSev8fNJJacGHLC1IAAAAASUVORK5C\nYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7ff1bdcf8c10>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"<oculto>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 2) Para cada hora del día (0 a 23) indicar las tres categorías con mayor cantidad de crímenes. (Puntos Extras: Hacer una visualización efectiva para esto)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 148, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"0:\tOTHER OFFENSES: 7375\n", | |
"\tLARCENY/THEFT: 7019\n", | |
"\tNON-CRIMINAL: 4305\n", | |
"1:\tLARCENY/THEFT: 4304\n", | |
"\tASSAULT: 3789\n", | |
"\tOTHER OFFENSES: 3630\n", | |
"2:\tASSAULT: 3454\n", | |
"\tOTHER OFFENSES: 3057\n", | |
"\tLARCENY/THEFT: 2957\n", | |
"3:\tOTHER OFFENSES: 2003\n", | |
"\tLARCENY/THEFT: 1786\n", | |
"\tASSAULT: 1738\n", | |
"4:\tOTHER OFFENSES: 1516\n", | |
"\tLARCENY/THEFT: 1098\n", | |
"\tASSAULT: 1052\n", | |
"5:\tOTHER OFFENSES: 1166\n", | |
"\tLARCENY/THEFT: 1130\n", | |
"\tNON-CRIMINAL: 861\n", | |
"6:\tLARCENY/THEFT: 1806\n", | |
"\tOTHER OFFENSES: 1692\n", | |
"\tNON-CRIMINAL: 1541\n", | |
"7:\tOTHER OFFENSES: 3459\n", | |
"\tLARCENY/THEFT: 2930\n", | |
"\tNON-CRIMINAL: 2758\n", | |
"8:\tOTHER OFFENSES: 5264\n", | |
"\tLARCENY/THEFT: 4952\n", | |
"\tNON-CRIMINAL: 3886\n", | |
"9:\tOTHER OFFENSES: 6010\n", | |
"\tLARCENY/THEFT: 5650\n", | |
"\tNON-CRIMINAL: 4545\n", | |
"10:\tLARCENY/THEFT: 6924\n", | |
"\tOTHER OFFENSES: 5857\n", | |
"\tNON-CRIMINAL: 5003\n", | |
"11:\tLARCENY/THEFT: 7688\n", | |
"\tOTHER OFFENSES: 5800\n", | |
"\tNON-CRIMINAL: 4931\n", | |
"12:\tLARCENY/THEFT: 10160\n", | |
"\tOTHER OFFENSES: 7702\n", | |
"\tNON-CRIMINAL: 6761\n", | |
"13:\tLARCENY/THEFT: 8999\n", | |
"\tOTHER OFFENSES: 6378\n", | |
"\tNON-CRIMINAL: 5329\n", | |
"14:\tLARCENY/THEFT: 9229\n", | |
"\tOTHER OFFENSES: 6375\n", | |
"\tNON-CRIMINAL: 5284\n", | |
"15:\tLARCENY/THEFT: 10164\n", | |
"\tOTHER OFFENSES: 6720\n", | |
"\tNON-CRIMINAL: 5595\n", | |
"16:\tLARCENY/THEFT: 10564\n", | |
"\tOTHER OFFENSES: 7559\n", | |
"\tNON-CRIMINAL: 5602\n", | |
"17:\tLARCENY/THEFT: 11753\n", | |
"\tOTHER OFFENSES: 7719\n", | |
"\tNON-CRIMINAL: 5088\n", | |
"18:\tLARCENY/THEFT: 13875\n", | |
"\tOTHER OFFENSES: 6959\n", | |
"\tNON-CRIMINAL: 4876\n", | |
"19:\tLARCENY/THEFT: 12912\n", | |
"\tOTHER OFFENSES: 6132\n", | |
"\tNON-CRIMINAL: 4256\n", | |
"20:\tLARCENY/THEFT: 10984\n", | |
"\tOTHER OFFENSES: 5335\n", | |
"\tVEHICLE THEFT: 4018\n", | |
"21:\tLARCENY/THEFT: 9600\n", | |
"\tOTHER OFFENSES: 5470\n", | |
"\tASSAULT: 3978\n", | |
"22:\tLARCENY/THEFT: 9507\n", | |
"\tOTHER OFFENSES: 6574\n", | |
"\tVEHICLE THEFT: 4145\n", | |
"23:\tLARCENY/THEFT: 8909\n", | |
"\tOTHER OFFENSES: 6430\n", | |
"\tASSAULT: 3644\n" | |
] | |
} | |
], | |
"source": [ | |
"<oculto>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 3) Categorías ordenadas por diferencia de crímenes entre día y noche (día: 7 a 19, noche 19 a 7). Es decir primero la categoría con mayor diferencia." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 150, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Diferencias entre categorías:\n", | |
"LARCENY/THEFT: 30876\n", | |
"NON-CRIMINAL: 27012\n", | |
"OTHER OFFENSES: 25422\n", | |
"DRUG/NARCOTIC: 18047\n", | |
"WARRANTS: 10782\n", | |
"MISSING PERSON: 10307\n", | |
"BURGLARY: 8067\n", | |
"SUSPICIOUS OCC: 7836\n", | |
"ASSAULT: 5934\n", | |
"FRAUD: 5101\n", | |
"FORGERY/COUNTERFEITING: 4603\n", | |
"PROSTITUTION: 4044\n", | |
"ROBBERY: 3882\n", | |
"VANDALISM: 3577\n", | |
"TRESPASS: 1880\n", | |
"DRIVING UNDER THE INFLUENCE: 1526\n", | |
"RECOVERED VEHICLE: 1026\n", | |
"SECONDARY CODES: 997\n", | |
"DRUNKENNESS: 960\n", | |
"VEHICLE THEFT: 861\n", | |
"STOLEN PROPERTY: 798\n", | |
"WEAPON LAWS: 713\n", | |
"RUNAWAY: 662\n", | |
"ARSON: 475\n", | |
"EMBEZZLEMENT: 452\n", | |
"SEX OFFENSES FORCIBLE: 422\n", | |
"LIQUOR LAWS: 387\n", | |
"LOITERING: 263\n", | |
"BAD CHECKS: 214\n", | |
"DISORDERLY CONDUCT: 178\n", | |
"FAMILY OFFENSES: 177\n", | |
"SUICIDE: 122\n", | |
"GAMBLING: 76\n", | |
"EXTORTION: 70\n", | |
"SEX OFFENSES NON FORCIBLE: 30\n", | |
"BRIBERY: 29\n", | |
"KIDNAPPING: 21\n", | |
"PORNOGRAPHY/OBSCENE MAT: 10\n", | |
"TREA: 0\n" | |
] | |
} | |
], | |
"source": [ | |
"<oculto>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 4) Distrito que tiene mayor diferencia entre la categoría con mayor cantidad de crímenes y la categoría con menor cantidad de crímenes en proporción al total del distrito." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 196, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Distrito: CENTRAL 0.293224900538\n", | |
"Min cat: TREA 1\n", | |
"Max cat: LARCENY/THEFT 25060\n", | |
"Total: 85460\n" | |
] | |
} | |
], | |
"source": [ | |
"<oculto>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 5) Distrito con menor diferencia entre la categoría mayor y la menor, proporcional a la cantidad de crímenes de cada distrito" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 197, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Distrito: MISSION 0.161198585582\n", | |
"Min cat: TREA 1\n", | |
"Max cat: OTHER OFFENSES 19330\n", | |
"Total: 119908\n" | |
] | |
} | |
], | |
"source": [ | |
"<oculto>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 6) ¿Qué conclusiones podemos sacar?\n", | |
"\n", | |
"\n", | |
"1) El punto 2 no tiene mucho sentido, porque las mayores categorías en general también lo son por hora.\n", | |
"\n", | |
"2) Fue muy buen consejo usar un set de datos reducido primero\n", | |
"\n", | |
"3) Fue muy útil usar la función `cache()`\n", | |
"\n", | |
"4) Hacer algunos gráficos es imposible, y mejor se lo pasamos a Excel\n", | |
"\n", | |
"5) Dar clases hasta las 7 no es una buena estrategia para ganar un FE\n", | |
"\n", | |
"6) Hacer un FE durante IA no es mala estrategia" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.10" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment