Created
February 14, 2024 04:14
-
-
Save computational-sediment-hyd/9a4d90a69455d0f1a17e3176715738fe to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Simplified method for predicting the potential for riverbed change" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 導入\n", | |
"\n", | |
" - 摩擦速度や無次元掃流力を用いることが多い。これらは、河床土砂の動きやすさを示すものであり、河床変動を生じやすさを直接示すものではない。\n", | |
" - 流れの計算のみ簡易予測\n", | |
" - ALB等面的河床地形情報の取得により流れの計算精度は向上、一方で、河床変動は粒度分布のデータの不足等により・・・精度が低い。" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 基礎式の導出\n", | |
"\n", | |
"平面二次元流(デカルト座標系)における掃流砂による単位時間あたりの河床変動高は、河床の連続式(質量保存則)より次式で示される。\n", | |
"\n", | |
"$$\n", | |
"\\begin{align}\n", | |
" \\dfrac{\\partial z_b}{\\partial t} &= -\\dfrac{1}{1-\\lambda} \\left(\\dfrac{\\partial q_b}{\\partial x} + \\dfrac{\\partial q_b}{\\partial y} \\right) \n", | |
"\\end{align}\n", | |
"$$\n", | |
"\n", | |
"単一粒径場を想定すると、流砂量の一般形は次式で示される。\n", | |
"\n", | |
"$$\n", | |
"\\begin{align}\n", | |
" \\dfrac{q_b}{\\sqrt{\\rho g d^3}} &= \\alpha \\left(\\dfrac{u_*^2}{\\rho g d}\\right)^{\\beta}\n", | |
"\\end{align}\n", | |
"$$\n", | |
"\n", | |
"ここに、$\\alpha、\\beta$は各種流砂量式で設定される係数である。$\\beta$は、国内でよく使用される芦田・道上式、MPM式では$3/2$である。よって、\n", | |
"\n", | |
"$$\n", | |
"\\begin{align}\n", | |
" q_b = \\dfrac{\\alpha u_*^3}{\\rho g }\n", | |
"\\end{align}\n", | |
"$$\n", | |
"\n", | |
"である。\n", | |
"\n", | |
"流砂量式を河床の連続式に代入し整理すると、次式が導出される。\n", | |
"\n", | |
"$$\n", | |
"\\begin{align}\n", | |
" \\dfrac{\\partial z_b}{\\partial t} &= -\\dfrac{\\alpha}{(1-\\lambda)\\rho g} \\left(\\dfrac{\\partial u_{*x}^3}{\\partial x} + \\dfrac{\\partial u_{*y}^3}{\\partial y} \\right) \n", | |
"\\end{align}\n", | |
"$$\n", | |
"\n", | |
"$\\alpha,\\lambda,\\rho,g$は定数であるため、下式の比例関係が示される。ここで、右辺を河床変動ポテンシャルと定義する。\n", | |
"\n", | |
"$$\n", | |
"\\begin{align}\n", | |
"\\dfrac{\\partial z_b}{\\partial t} \\propto -\\dfrac{\\partial u_{*x}^3}{\\partial x} -\\dfrac{\\partial u_{*y}^3}{\\partial y}\n", | |
"\\end{align}\n", | |
"$$\n", | |
"\n", | |
"又はこっちの方がいいかな?\n", | |
"$$\n", | |
"\\begin{align}\n", | |
"\\dfrac{\\partial z_b}{\\partial t} = a \\left(- \\dfrac{\\partial u_{*x}^3}{\\partial x} -\\dfrac{\\partial u_{*y}^3}{\\partial y}\\right)\n", | |
"\\end{align}\n", | |
"$$\n", | |
"\n", | |
"ここに、$a$は正の実数" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 一般座標系の展開\n", | |
"\n", | |
"\n", | |
"本検討では一般座標系の平面二次元計算を行うため、上式は次のとおりになる。\n", | |
"\n", | |
"$$\n", | |
"\\begin{align}\n", | |
"(1-\\lambda)\\dfrac{\\partial}{\\partial t }\\left(\\dfrac{z_b}{J}\\right) &= -\\left[ \\dfrac{\\partial}{\\partial \\xi}\\left( \\dfrac{ q_{b\\xi}}{J} \\right) + \\dfrac{\\partial}{\\partial \\eta}\\left( \\dfrac{ q_{b\\eta}}{J} \\right) \\right] \\\\\n", | |
"J &= \\dfrac{1}{ \\dfrac{\\partial x }{\\partial \\xi} \\dfrac{\\partial y }{\\partial \\eta} + \\dfrac{\\partial x }{\\partial \\eta} \\dfrac{\\partial y }{\\partial \\xi}} \\\\\n", | |
"q_{b\\xi} &= \\dfrac{\\partial \\xi }{\\partial x} q_{bx} + \\dfrac{\\partial \\xi }{\\partial y} q_{by} \\\\\n", | |
"q_{b\\eta} &= \\dfrac{\\partial \\eta }{\\partial x} q_{bx} + \\dfrac{\\partial \\eta }{\\partial y} q_{by}\n", | |
"\\end{align}\n", | |
"$$\n", | |
"\n", | |
"$$\n", | |
"\\begin{align}\n", | |
"\\dfrac{\\partial z_b}{\\partial t} &\\propto -\\dfrac{\\partial u_{*\\xi}^3}{\\partial \\xi} -\\dfrac{\\partial u_{*\\eta}^3}{\\partial \\eta} \\\\\n", | |
"u_{*\\xi} &= \\dfrac{\\partial \\xi }{\\partial x} u_{*x} + \\dfrac{\\partial \\xi }{\\partial y} u_{*y} \\\\\n", | |
"u_{*\\eta} &= \\dfrac{\\partial \\eta }{\\partial x} u_{*x} + \\dfrac{\\partial \\eta }{\\partial y} u_{*y}\n", | |
"\\end{align}\n", | |
"$$\n" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.10.12" | |
}, | |
"toc": { | |
"base_numbering": 1, | |
"nav_menu": {}, | |
"number_sections": true, | |
"sideBar": true, | |
"skip_h1_title": false, | |
"title_cell": "Table of Contents", | |
"title_sidebar": "Contents", | |
"toc_cell": false, | |
"toc_position": {}, | |
"toc_section_display": true, | |
"toc_window_display": false | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment