Created
December 23, 2019 15:25
-
-
Save cordon-thiago/38aed8ebd06bfa484c177405eb9c974c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# XGBoost with imbalanced dataset" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Split dataset in Train / Test" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(338377, 9)\n", | |
"(145019, 9)\n", | |
"(338377,)\n", | |
"(145019,)\n" | |
] | |
} | |
], | |
"source": [ | |
"from sklearn.model_selection import train_test_split\n", | |
" \n", | |
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=123)\n", | |
"\n", | |
"print(X_train.shape)\n", | |
"print(X_test.shape)\n", | |
"\n", | |
"print(y_train.shape)\n", | |
"print(y_test.shape)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Extreme Gradient Boosting (XGBoost)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import xgboost as xgb\n", | |
"from sklearn import metrics" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/home/thiago/.local/lib/python3.7/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version\n", | |
" if getattr(data, 'base', None) is not None and \\\n" | |
] | |
} | |
], | |
"source": [ | |
"D_train = xgb.DMatrix(X_train, label=y_train)\n", | |
"D_test = xgb.DMatrix(X_test, label=y_test)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n", | |
" colsample_bynode=1, colsample_bytree=1, gamma=0,\n", | |
" learning_rate=0.1, max_delta_step=0, max_depth=5,\n", | |
" min_child_weight=1, missing=None, n_estimators=100, n_jobs=1,\n", | |
" nthread=None, objective='reg:logistic', random_state=123,\n", | |
" reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,\n", | |
" silent=None, subsample=1, verbosity=1)" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# XGBoost Classifier Train\n", | |
"\n", | |
"xgb_classif = xgb.XGBClassifier(\n", | |
" max_depth=5, \n", | |
" objective='reg:logistic', \n", | |
" random_state=123)\n", | |
"\n", | |
"xgb_classif.fit(X_train,y_train)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Save Model" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pickle\n", | |
"\n", | |
"pickle.dump(xgb_classif, open('models/xgb-classifier-withImbalance.sav', 'wb'))" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment