Skip to content

Instantly share code, notes, and snippets.

View creotiv's full-sized avatar

Andrey Nikishaev creotiv

View GitHub Profile
@creotiv
creotiv / main.py
Created October 17, 2021 15:07
Lego Mindstorm EV3 R2D2
#!/usr/bin/env pybricks-micropython
"""
Example LEGO® MINDSTORMS® EV3 Robot Educator Driving Base Program
-----------------------------------------------------------------
This program requires LEGO® EV3 MicroPython v2.0.
Download: https://education.lego.com/en-us/support/mindstorms-ev3/python-for-ev3
Building instructions can be found at:
from fastapi import FastAPI, BackgroundTasks, Request
import uvicorn
import requests
import asyncio
import logging
import sys
from models import *
from blockchain.db import DB
from blockchain.blockchain import Blockchain
from .blocks import Block, Tx, Input, Output
from .verifiers import TxVerifier, BlockOutOfChain, BlockVerifier, BlockVerificationFailed
import logging
logger = logging.getLogger('Blockchain')
class Blockchain:
__slots__ = 'max_nonce', 'chain', 'unconfirmed_transactions', 'db', 'wallet', 'on_new_block', 'on_prev_block', 'current_block_transactions', 'fork_blocks'
import rsa
import binascii
from .wallet import Address
class TxVerifier:
def __init__(self, db):
self.db = db
def verify(self, inputs, outputs):
import time
from hashlib import sha256
from merkletools import MerkleTools
from .wallet import Address
class Input:
__slots__ = 'prev_tx_hash', 'output_index', 'signature', '_hash', 'address', 'index', 'amount'
import rsa
import binascii
class Address:
def __init__(self, addr):
if isinstance(addr, rsa.PublicKey):
self.addr = addr
else:
if isinstance(addr,str):
from sklearn.datasets import make_blobs
from collections import defaultdict
# Generate sample data
n_samples = 4000
n_components = 4
X, y_true = make_blobs(n_samples=n_samples,
centers=n_components,
cluster_std=0.99,
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
# Load the diabetes dataset
diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True)
# Use only one feature
diabetes_X = diabetes_X
import torch
import torch.nn as nn
import torch.nn.functional as F
class Conv2d(nn.Module):
def __init__(self, inch, outch, kernel, padding=0, stride=1):
super(Conv2d, self).__init__()
# setting our kernels with random normal
@creotiv
creotiv / linkedin.js
Created March 17, 2021 14:17
select all messages
var a = document.querySelectorAll('.msg-selectable-entity');for (var i=0;i<=a.length;i++){a[i].click();};