Last active
May 1, 2019 11:51
-
-
Save cs224/61d4031210c7fd1aa21f16b18141848a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"* [Susceptibility Tensor Imaging](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990786/pdf/nihms215739.pdf) by Chunlei Liu" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$B = (I - \\sigma I + \\frac{1}{3}\\chi)(H + h)$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$\n", | |
"\\vec\\nabla\\cdot \\vec B = 0;\\vec\\nabla\\cdot \\vec H = 0\n", | |
"$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$\n", | |
"\\vec\\nabla\\cdot \\vec B = \\vec\\nabla\\cdot\\left((I - \\sigma I + \\frac{1}{3}\\chi)(H + h)\\right)\n", | |
"$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$\n", | |
"=\\vec\\nabla\\cdot(I\\cdot H - \\sigma I\\cdot H + \\frac{1}{3}\\chi\\cdot H\n", | |
"+I\\cdot h - \\sigma I\\cdot h + \\frac{1}{3}\\chi\\cdot h)\n", | |
"$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Beim folgenden Schritt wurden alle Terme die $\\vec\\nabla\\cdot \\vec H$ enthalten null gesetzt. Zudem gebe ich explizit die $\\vec x$ Abhängigkeiten an, z.B. $\\chi = \\chi(\\vec x)$:" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$\n", | |
"= \\vec\\nabla\\cdot(\\frac{1}{3}\\chi(\\vec x)\\cdot\\vec H(\\vec x)) + (1-\\sigma)\\vec\\nabla\\cdot\\vec h(\\vec x) + \\vec\\nabla\\cdot(\\frac{1}{3}\\chi(\\vec x)\\cdot\\vec h(\\vec x))\n", | |
"$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Beim obigen Schritt wurden alle Terme die $\\vec\\nabla\\cdot \\vec H$ enthalten null gesetzt." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$\n", | |
"\\frac{1}{3}\\partial_i\\chi^i_jH^j+(1-\\sigma)\\partial_i h^i +\\frac{1}{3}\\partial_i\\chi^i_jh^j\n", | |
"$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Konkret ausgeschrieben für $\\partial_1\\chi^1_jH^j$ beduetet das:" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$\n", | |
"\\partial_1(\\chi^1_1 H^1 + \\chi^1_2 H^2 + \\chi^1_3 H^3) =\n", | |
"(\\partial_1\\chi^1_1) H^1 + \\chi^1_1(\\partial_1 H^1) +\n", | |
"(\\partial_1\\chi^1_2) H^2 + \\chi^1_2(\\partial_1 H^2) +\n", | |
"(\\partial_1\\chi^1_3) H^3 + \\chi^1_3(\\partial_1 H^3)\n", | |
"$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$\n", | |
"= (\\partial_1\\chi^1_1) H^1 + (\\partial_1\\chi^1_2) H^2 + (\\partial_1\\chi^1_3) H^3 +\n", | |
"\\chi^1_1(\\partial_1 H^1) + \\chi^1_2(\\partial_1 H^2) + \\chi^1_3(\\partial_1 H^3)\n", | |
"$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Für alle Komponenten bedeutet das dann:" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$\\partial_i\\chi^i_jH^j = (\\partial_i \\chi^i_j)H^j + \\chi^i_j(\\partial_i H^j)$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Indices unten sind jeweils für [kovariante](https://de.wikipedia.org/wiki/Tensor#Ko-_und_Kontravarianz_von_Vektoren) Vektoren bzw. [linearformen](https://de.wikipedia.org/wiki/Linearform). Indices oben sind jeweils für [kontravariante](https://de.wikipedia.org/wiki/Tensor#Ko-_und_Kontravarianz_von_Vektoren) Vektoren." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Durch Vergleich mit Wikipedia [Divergenz von Tensoren zweiter Stufe](https://de.wikipedia.org/wiki/Divergenz_eines_Vektorfeldes#Im_n-dimensionalen_Raum_2) lerne ich, dass der zweite Teil der Gleichung: $\\chi^i_j(\\partial_i H^j)$ [Frobenius-Skalarprodukt](https://de.wikipedia.org/wiki/Frobenius-Skalarprodukt) heißt und mit einem \"$:$\" symbolisiert wird, wobei links und rechts von dem Geteiltzeichen zwei Matrizen stehen." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Nun zurück zur eigentlichen Gleichung:" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$\n", | |
"\\frac{1}{3}\\partial_i\\chi^i_jH^j+(1-\\sigma)\\partial_i h^i +\\frac{1}{3}\\partial_i\\chi^i_jh^j=\n", | |
"\\frac{1}{3}[\\mathrm{div}(\\chi)\\cdot\\vec H+\\chi^T:\\mathrm{grad}\\vec H]+(1-\\sigma)\\mathrm{div}(\\vec h)+\n", | |
"\\frac{1}{3}[\\mathrm{div}(\\chi)\\cdot\\vec h+\\chi^T:\\mathrm{grad}\\vec h]\n", | |
"$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Wie nun aber hieraus die gleichung \\[6\\] aus [Susceptibility Tensor Imaging](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990786/pdf/nihms215739.pdf) folgen soll ist mir unklar (wie rechtfertige ich das $\\approx$ in folgender Gleichung?):" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$\n", | |
"\\frac{1}{3}[\\mathrm{div}(\\chi)\\cdot\\vec H+\\chi^T:\\mathrm{grad}\\vec H]+(1-\\sigma)\\mathrm{div}(\\vec h)+\n", | |
"\\frac{1}{3}[\\mathrm{div}(\\chi)\\cdot\\vec h+\\chi^T:\\mathrm{grad}\\vec h]\\approx\n", | |
"\\mathrm{div}(\\chi)\\cdot\\vec H + \\mathrm{div}(\\vec h) = 0\n", | |
"$$" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.8" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment