Skip to content

Instantly share code, notes, and snippets.

@csgeeek
Created August 3, 2022 18:49
Show Gist options
  • Save csgeeek/cc343a9b0bb41e8dcdc4f3641df0be6f to your computer and use it in GitHub Desktop.
Save csgeeek/cc343a9b0bb41e8dcdc4f3641df0be6f to your computer and use it in GitHub Desktop.
tf-prac.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "tf-prac.ipynb",
"provenance": [],
"authorship_tag": "ABX9TyMmAqCgNoL4uFv6/BOFPNut",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/Yaswanth820/cc343a9b0bb41e8dcdc4f3641df0be6f/tf-prac.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "JCLHseqR8Dk3",
"outputId": "961ec4fb-2e36-49f1-bdf1-c9a2b2863290"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"2.8.2\n"
]
}
],
"source": [
"import tensorflow as tf\n",
"import numpy as np\n",
"print(tf.__version__)"
]
},
{
"cell_type": "code",
"source": [
"fashion_mnist = tf.keras.datasets.fashion_mnist\n",
"(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "2BUtn7Hf82xB",
"outputId": "ed65cc77-6bf5-483d-c645-65e48acef856"
},
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz\n",
"32768/29515 [=================================] - 0s 0us/step\n",
"40960/29515 [=========================================] - 0s 0us/step\n",
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz\n",
"26427392/26421880 [==============================] - 0s 0us/step\n",
"26435584/26421880 [==============================] - 0s 0us/step\n",
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz\n",
"16384/5148 [===============================================================================================] - 0s 0us/step\n",
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz\n",
"4423680/4422102 [==============================] - 0s 0us/step\n",
"4431872/4422102 [==============================] - 0s 0us/step\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']\n",
"x_train.shape"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LLx8IFxL9IxH",
"outputId": "3a0cefc7-632a-4084-b55b-320c597702b9"
},
"execution_count": 3,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(60000, 28, 28)"
]
},
"metadata": {},
"execution_count": 3
}
]
},
{
"cell_type": "code",
"source": [
"model = tf.keras.Sequential([\n",
" tf.keras.layers.Flatten(input_shape=(28, 28)),\n",
" tf.keras.layers.Dense(128, activation='relu'),\n",
" tf.keras.layers.Dense(10)\n",
"])"
],
"metadata": {
"id": "LYl_cJmE9nff"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"source": [
"model.compile(\n",
" optimizer='adam',\n",
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" metrics=['accuracy']\n",
")"
],
"metadata": {
"id": "BnsGDGvi-HIV"
},
"execution_count": 6,
"outputs": []
},
{
"cell_type": "code",
"source": [
"model.fit(x_train, y_train, epochs=10)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "5onfochE-owh",
"outputId": "950b7f0a-ef17-4ac7-f9f1-0716056d49ea"
},
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 1/10\n",
"1875/1875 [==============================] - 5s 2ms/step - loss: 3.3322 - accuracy: 0.7030\n",
"Epoch 2/10\n",
"1875/1875 [==============================] - 5s 2ms/step - loss: 0.6537 - accuracy: 0.7706\n",
"Epoch 3/10\n",
"1875/1875 [==============================] - 4s 2ms/step - loss: 0.5677 - accuracy: 0.7989\n",
"Epoch 4/10\n",
"1875/1875 [==============================] - 5s 2ms/step - loss: 0.5170 - accuracy: 0.8206\n",
"Epoch 5/10\n",
"1875/1875 [==============================] - 5s 2ms/step - loss: 0.4889 - accuracy: 0.8331\n",
"Epoch 6/10\n",
"1875/1875 [==============================] - 5s 2ms/step - loss: 0.4769 - accuracy: 0.8378\n",
"Epoch 7/10\n",
"1875/1875 [==============================] - 4s 2ms/step - loss: 0.4714 - accuracy: 0.8399\n",
"Epoch 8/10\n",
"1875/1875 [==============================] - 5s 2ms/step - loss: 0.4599 - accuracy: 0.8425\n",
"Epoch 9/10\n",
"1875/1875 [==============================] - 5s 2ms/step - loss: 0.4582 - accuracy: 0.8450\n",
"Epoch 10/10\n",
"1875/1875 [==============================] - 5s 2ms/step - loss: 0.4464 - accuracy: 0.8470\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<keras.callbacks.History at 0x7f0195aa1790>"
]
},
"metadata": {},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"source": [
"probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])\n",
"predictions = probability_model.predict(x_test)\n",
"predictions[0]"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "QC_R-Bg9_Hby",
"outputId": "82f38fa7-2f2a-4cf8-c531-dff5066cc742"
},
"execution_count": 8,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([3.7452521e-14, 1.1022565e-07, 1.3565481e-38, 3.2323789e-11,\n",
" 6.0320506e-34, 2.8959396e-03, 2.4874879e-17, 5.2263577e-02,\n",
" 2.8615256e-13, 9.4484031e-01], dtype=float32)"
]
},
"metadata": {},
"execution_count": 8
}
]
}
]
}
@csgeeek
Copy link
Author

csgeeek commented Aug 4, 2022

🚀

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment