In train.py:
run.tag('run_type', value='training')
In later step:
#Retrieve associated run, workspace and experiment
run = Run.get_context()
In train.py:
run.tag('run_type', value='training')
In later step:
#Retrieve associated run, workspace and experiment
run = Run.get_context()
In train.py:
run.tag('run_type', value='training')
In later step:
#Retrieve associated run, workspace and experiment
run = Run.get_context()
import os | |
import pandas as pd | |
from azureml.core import Workspace, Dataset | |
# Connect to Workspace and reference Dataset | |
ws = Workspace.from_config() | |
dataset = ws.datasets["german-credit-train-tutorial"] | |
# Create mountcontext and mount the dataset | |
mount_ctx = dataset.mount() |
# Get the HyperDriveStep of the pipeline by name (make sure only 1 exists) | |
hd_step_run = HyperDriveStepRun(step_run=pipeline_run.find_step_run('hd_step01')[0]) | |
# Get RunID for best run (we're lazy) | |
best_run_id = hd_step_run.get_best_run_by_primary_metric().id | |
# Get all hyperparameters that where tried | |
hyperparameters = hd_step_run.get_hyperparameters() | |
# Get all metrics for the runs |
Steps:
Feed Read
permission (details)trigger:
name: conda-env | |
dependencies: | |
- pip | |
- pip: | |
- --index-url https://xxxxx | |
- --extra-index-url https://xxxxxx | |
- xxxxxx==x.x.x | |
- -e git+https://github.com/xxxxxxxxxxx | |
- -e ./xxxxxxx |
from azureml.core import Workspace, Model | |
from azureml.core.model import InferenceConfig | |
from azureml.core.environment import Environment | |
from azureml.core.conda_dependencies import CondaDependencies | |
ws = Workspace.from_config() | |
env = Environment("inference-env") | |
env.docker.enabled = True | |
# Replace with your conda enviroment file |
{ | |
"mode": "All", | |
"policyRule": { | |
"if": { | |
"allOf": [ | |
{ | |
"field": "type", | |
"equals": "Microsoft.MachineLearningServices/workspaces/computes" | |
}, | |
{ |
import requests, json | |
key = "xxxxx" # Paste your API key here | |
url = "https://api.bing.microsoft.com/v7.0/search" | |
search_term = "Azure Cognitive Services" | |
headers = {"Ocp-Apim-Subscription-Key" : key} | |
params = {"q": search_term, "textDecorations": True, "textFormat": "HTML"} |
import requests | |
import io | |
import time | |
n = 50 | |
# Enter your resource details here | |
url = "https://xxxxxxx.cognitiveservices.azure.com/vision/v3.2/read/analyze?language=en&pages=1&readingOrder=natural" | |
key = "xxxxxxx" |