Skip to content

Instantly share code, notes, and snippets.

def create_dataset(X, y, time_steps=1, step=1):
Xs, ys = [], []
for i in range(0, len(X) - time_steps, step):
v = X.iloc[i:(i + time_steps)].values
labels = y.iloc[i: i + time_steps]
Xs.append(v)
ys.append(stats.mode(labels)[0][0])
return np.array(Xs), np.array(ys).reshape(-1, 1)
scale_columns = ['x_axis', 'y_axis', 'z_axis']
scaler = RobustScaler()
scaler = scaler.fit(df_train[scale_columns])
df_train.loc[:, scale_columns] = scaler.transform(
df_train[scale_columns].to_numpy()
)
df_train = df[df['user_id'] <= 30]
df_test = df[df['user_id'] > 30]
column_names = [
'user_id',
'activity',
'timestamp',
'x_axis',
'y_axis',
'z_axis'
]
df = pd.read_csv(
os.makedirs("annotated_results", exist_ok=True)
test_image_paths = test_df.file_name.unique()
for clothing_image in test_image_paths:
file_path = f'{IMAGES_PATH}/{clothing_image}'
im = cv2.imread(file_path)
outputs = predictor(im)
v = Visualizer(
im[:, :, ::-1],
metadata=statement_metadata,
evaluator = COCOEvaluator("faces_val", cfg, False, output_dir="./output/")
val_loader = build_detection_test_loader(cfg, "faces_val")
inference_on_dataset(trainer.model, val_loader, evaluator)
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.85
predictor = DefaultPredictor(cfg)
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = CocoTrainer(cfg)
trainer.resume_or_load(resume=False)
trainer.train()
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 64
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(classes)
cfg.TEST.EVAL_PERIOD = 500
cfg.SOLVER.IMS_PER_BATCH = 4
cfg.SOLVER.BASE_LR = 0.001
cfg.SOLVER.WARMUP_ITERS = 1000
cfg.SOLVER.MAX_ITER = 1500
cfg.SOLVER.STEPS = (1000, 1500)
cfg.SOLVER.GAMMA = 0.05