sudo apt-add-repository ppa:bsundman/themes
sudo apt-get update
sudo apt-get install -y yosembiance-theme
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| letsencrypt certonly --manual | |
| # And follow the instructions |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # By CWhy | |
| # [email protected] | |
| import numpy as np | |
| import tensorflow as tf | |
| # Generate equation for mixed moments | |
| def moments_eqn(_l, order): | |
| if order == 1: | |
| return _l | |
| r = [] |
In this paper, we suggest a novel data-driven approach to active learning (AL). The key idea is to train a regressor that predicts the expected error reduction for a candidate sample in a particular learning state. By formulating the query selection procedure as a regression problem we are not restricted to working with existing AL heuristics; instead, we learn strategies based on experience from previous AL outcomes. We show that a strategy can be learnt either from simple synthetic 2D datasets or from a subset of domain-specific data. Our method yields strategies that work well on
