Original transcript: http://allisonrandal.com/2012/04/15/open-source-enlightenment/
這幾年來,我慢慢覺得,我們參與開源社群,就像是在一條道路上並肩而行:這不僅讓我們成為更好的程式設計者,也讓我們通過與人合作,而成為更好的人。
您可以將它想成一條修行之道,讓身而為人的我們能夠不斷成長。接下來,我想談談我對開源世界的個人觀點,希望能與您分享。
首先,人是一切開源專案的核心。程式碼是很重要,但最核心的永遠是人。
# 30 minutes Lisp in Ruby | |
# Hong Minhee <http://dahlia.kr/> | |
# | |
# This Lisp implementation does not provide a s-expression reader. | |
# Instead, it uses Ruby syntax like following code: | |
# | |
# [:def, :factorial, | |
# [:lambda, [:n], | |
# [:if, [:"=", :n, 1], | |
# 1, |
Original transcript: http://allisonrandal.com/2012/04/15/open-source-enlightenment/
這幾年來,我慢慢覺得,我們參與開源社群,就像是在一條道路上並肩而行:這不僅讓我們成為更好的程式設計者,也讓我們通過與人合作,而成為更好的人。
您可以將它想成一條修行之道,讓身而為人的我們能夠不斷成長。接下來,我想談談我對開源世界的個人觀點,希望能與您分享。
首先,人是一切開源專案的核心。程式碼是很重要,但最核心的永遠是人。
(by @andrestaltz)
If you prefer to watch video tutorials with live-coding, then check out this series I recorded with the same contents as in this article: Egghead.io - Introduction to Reactive Programming.
Steps 1: Just to verify that you have all requirement satisfied, needed by rapids. | |
* check the gpu card (>=Pascal arch) | |
!nvidia-smi | |
* check cuda version installed (>=9.2) | |
!nvcc -V | |
*check the python and pip version (python==3.6) | |
!python -V; pip -V |
BEFORE INSTALLING THE CUML, PLEASE MAKE SURE YOU HAVE FOLLOWED THE ABOVE STEPS FOR CUDF. CUDF SHOULD BE WORKING... | |
Step 1: Install the cuml and its depandencies. | |
!apt install libopenblas-base libomp-dev | |
!pip install cuml-cuda100 | |
# import cuml at this point, will give libcuml.so not found error. # | |
NOTE: Step2 is optional and is just for information, you can fast forward to Step3 directly to work quickely. |
#!/usr/bin/python3 | |
# usage: schemachecker.py urls... | |
# requires: python 3, beautiful soup 4, requests library | |
from bs4 import BeautifulSoup | |
import requests | |
import sys | |
def checkUrl(url): | |
r = requests.get(url, headers={'user-agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:10.0) Gecko/20100101 Firefox/10.0'}) |
K8s has metrics server to provide cpu and memory usage of pods. Default 60 seconds, can be changed using --metric-resolution
flag. Official are not recommending setting values below 15s, as this is the resolution of metrics calculated by Kubelet.(ref1, ref2)
So I create this tool to watch cpu and memory and log peak usage of pods.
// instal node 17
bash <(curl -sL https://gist.githubusercontent.com/grieve54706/acd9c1a411adab38c4f61f2b1497769f/raw/d42e76f3f8a3aaadf3055094df8c7dab3c688e2f/upgrade-node.sh)