Skip to content

Instantly share code, notes, and snippets.

@d1mach
Created November 2, 2016 13:16
Show Gist options
  • Save d1mach/6bbe5c5351f32c5ac74e4dfa8e42b356 to your computer and use it in GitHub Desktop.
Save d1mach/6bbe5c5351f32c5ac74e4dfa8e42b356 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from mpl_toolkits.basemap import Basemap\n",
"from matplotlib.colors import LinearSegmentedColormap\n",
"from osgeo import gdal,osr\n",
"from os import mkdir,path\n",
"import datetime\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"lat_min = 48.5\n",
"lat_max = 55.5\n",
"lon_min = 83.0\n",
"lon_max = 95.5\n",
"m = Basemap(projection='merc', \n",
" llcrnrlon=lon_min,\n",
" llcrnrlat=lat_min,\n",
" urcrnrlon=lon_max,\n",
" urcrnrlat=lat_max,\n",
" lon_0=lon_min, \n",
" ellps='WGS84',\n",
" fix_aspect=True,\n",
" resolution='h')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"block_xmin = 89\n",
"block_xmax = 91\n",
"block_ymin = 50.5\n",
"block_ymax = 52.5"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from numpy import random\n",
"npixels = 100000\n",
"lat_range = lat_max - lat_min\n",
"lats = lat_range * random.random(npixels) + lat_min\n",
"lon_range = lon_max - lon_min\n",
"lons = lon_range * random.random(npixels) + lon_min\n",
"values = np.zeros(npixels)\n",
"for p in range(npixels):\n",
" if block_ymin < lats[p] < block_ymax \\\n",
" and block_xmin < lons[p] < block_xmax:\n",
" values[p] = 1.0 "
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from scipy import interpolate\n",
"nx = ny = 1000\n",
"mapx = np.linspace(lon_min,lon_max,nx)\n",
"mapy = np.linspace(lat_min,lat_max,ny)\n",
"mapgridx,mapgridy = np.meshgrid(mapx,mapy)\n",
"mapdata = interpolate.griddata(list(zip(lons,lats)),\n",
" values,(mapgridx,mapgridy),method='nearest')"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x7f04b89f5f28>"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUwAAAEYCAYAAAA3cc++AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHWdJREFUeJzt3Xu4VXWdx/H3F1C5pmAZON6QmRgtSg2YizqSJpmSohCK\nmJcpssHNgS05o+M4qI+OmaljolaEmoaSUqQ2jYp5yWBGMbyg2XgBvKSWFy4HTYbc3/ljL+x4Ope1\ni+9a+zfP5/U851nn7L3WOV9Ov718n7X3OZm7IyIi3etR9gAiIqnQCVNEJCedMEVEctIJU0QkJ50w\nRURy6lX2AH8MM9NT+yISwt2ts/uSPGEC/HZTOufMPYcP48e338VuQ4eWPUouS5cs4awzT+cn995f\n9ii5zahM4yMjPsrUk79U9ii5fXD7bXlm9YsMGDCg7FFyue3WW7j+umu5aeGiskfJbcrkSUyYOImj\nJkzMtX+frTo9VwJgKb4O08w8pRPmO++8Q48ePTDr+n+MZuHu1Go1evbsWfYoudVqNQB69EjnKpPW\nRbxGv8d9trIuCzOd1ZWwEXt+iOdWry57jNz+a+lSxh40puwxGlJtqTBv7rfKHqMhO+4wiA0bNpQ9\nRm4/uu1WJh+dr9SaxfHHTWbRD76/xT6fCrMAKol4Ksx4Ka4LFWaCVJjxVJjxVJgqzEKoJOKpMOOl\nuC5UmAlSYcZTYcZTYaowC6GSiKfCjJfiulBhJkiFGU+FGU+FqcIshEoingozXorrQoWZIBVmPBVm\nPBWmCrMQKol4Ksx4Ka4LFWaCVJjxVJjxVJgqzEKoJOKpMOOluC5UmAlSYcZTYcZTYaowC6GSiKfC\njJfiulBhJkiFGU+FGU+FqcIshEoingozXorrQoWZIBVmPBVmPBWmCrMQKol4Ksx4Ka4LFWaCVJjx\nVJjxVJgqzEKoJOKpMOOluC5UmAlSYcZTYcZTYaowC6GSiKfCjJfiulBhJkiFGU+FGU+FqcIshEoi\nngozXorrQoWZIBVmPBVmPBWmCrMQKol4Ksx4Ka4LFWaCVJjxVJjxVJgqzEKoJOKpMOOluC5UmAlS\nYcZTYcZTYaowC6GSiKfCjJfiulBhJkiFGU+FGU+FqcIshEoingozXorropTCNLPVZvaomT1sZg+2\nu2+WmdXMbFAjx5rZUDN7wMzuMrNts9vONrM3zez9bfZrzTNjM1NhxlNhxlNh5ixMM1sJfNzd17S7\nfSfg28Dw7P43Gjj2ImAOsDuwh7tfaWazgZOAG939jGy/9e7+vnbHqjADpVgSKsx4Ka6Lsq5hWif7\nXgqc9kce+zugf/a2qc3t1wBHm9l2OWdreirMeCrMeCrM/CdMBxab2TIzmwpgZocDL7j7ikaPzVyR\nvX0emN/m9lbgamBm9nGHZ/tarcbXLrowie2Jf/8Fdt5ll9LnyLtdsuR+bl98d+lzNLK9+N+/zpq1\na0qfo5HtrH88nb59+5Y+R97tL3/5JPNvvKn0ORrZXnvdfJ599pnc+3cn7wlzX3ffBzgUmGZm+wP/\nDMxus09nGdv22FPMbD8Ad3/R3ce4+3h3f6vdMZcDx5tZ/66GWrd2bRLbS772VZ5bvbr0OfJun3zi\nCQ45+MDS52hke+qM6dx/332lz9HI9vxzz2HDhg2lz5F3u/yhZUw55rOlz9HI9sTPHcuyBx9o6Liu\nNPwseXad8R2gArxF/US5E/ArYLS7/6abY1vd/ZLu7jez86jX5pm6hlmsFK9V1Wq6hhktxXVR+DVM\nM+u7ufTMrB8wFnjQ3Qe7++7uPhR4Edi7/cmyk2MfzzV5/froyUCvnPs3LV3DjKdrmPF0DTNHYZrZ\nUGAR9WuRvYD57v6VdvusBEa6+xtmNgSY6+7j8hzb7vO8p0DN7GJghrv3arefCjNQiiWhwoyX4roo\nvDDdfZW77+Xue7v7iI5OeFlpvpG9/7K7j8t7bLvPc07bH9fdfVb7k2WKVJjxVJjxVJj6TZ9CqCTi\nqTDjpbgu9LvkCVJhxlNhxlNhqjALoZKIp8KMl+K6UGEmSIUZT4UZT4WpwiyESiKeCjNeiutChZkg\nFWY8FWY8FaYKsxAqiXgqzHgprgsVZoJUmPFUmPFUmCrMQqgk4qkw46W4LlSYCVJhxlNhxlNhqjAL\noZKIp8KMl+K6UGEmSIUZT4UZT4WpwiyESiKeCjNeiutChZkgFWY8FWY8FaYKsxAqiXgqzHgprgsV\nZoJUmPFUmPFUmCrMQqgk4qkw46W4LlSYCVJhxlNhxlNhqjALoZKIp8KMl+K6UGEmSIUZT4UZT4Wp\nwiyESiKeCjNeiutChZkgFWY8FWY8FaYKsxAqiXgqzHgprgsVZoJUmPFUmPFUmCrMQqgk4qkw46W4\nLlSYCVJhxlNhxlNhqjALoZKIp8KMl+K6UGEmSIUZT4UZT4WpwiyESiKeCjNeiutChZkgFWY8FWY8\nFaYKsxAqiXgqzHgprgsVZoJUmPFUmPFUmCrMQqgk4qkw46W4LlSYCVJhxlNhxlNhqjALoZKIp8KM\nl+K6UGEmSIUZT4UZT4WpwiyESiKeCjNeiutChZkgFWY8FWY8FaYKsxAqiXgqzHgprgsVZoJUmPFU\nmPFUmCrMQqgk4qkw46W4LlSYCVJhxlNhxlNhqjALoZKIp8KMl+K6UGEmSIUZT4UZT4WpwiyESiKe\nCjNeiutChZkgFWY8FWY8FaYKsxAqiXgqzHgprgsVZoJUmPFUmPFUmCrMQqgk4qkw46W4LlSYCVJh\nxlNhxlNhqjALoZKIp8KMl+K6UGEmSIUZT4UZT4WpwiyESiKeCjNeiutChZkgFWY8FWY8FaYKsxAq\niXgqzHgprgsVZoJUmPFUmPFUmCrMQqgk4qkw46W4LlSYCVJhxlNhxlNhqjALoZKIp8KMl+K6UGEm\nSIUZT4UZT4WpwiyESiKeCjNeiutChZkgFWY8FWY8FaYKsxAqiXgqzHgprgsVZoJUmPGKKMzTL164\nRT+fCjOeChMVZrQUS2JzYe50wCxeuv9SBo6qvOf+7bfrx+tr32TNsjkMP+QM7pg3i/Ov+hEL73iI\nNcvmMHBU5d3tQ9//V0ZOOJdtB/Rh9d0X8c0F9/LFow9g0OjprFk2h8+2XMnNX58GwHlX3cb1P1zK\nW2//L799exOvPfD1d7/mdT9cyueO+BsGjZ5Ozx49OPLgfVh4x0PssP0Axn9yH7654B7WLLtC6yLQ\nli5MnTALsOfwYfz49rvYbejQskfJZemSJZx15un85N77yx4ltxmVaVz9H7+g1/s/UvYo9Ou7DW++\ntbHb/d5+bC6/ee01BgwYUMBUf7rbbr2F66+7lpsWLip7lNymTJ7EhImTOGpCvjLeIidMM1sNrANq\nwCZ3H21mXwU+A2wEngVOcvf1eY7Nbh8KLABagQnuvs7MzgZOA3Z199ey/VrdfUC7z5nUCVOFGa9W\nqzFo9PRkvscA7jUVZrCyrmHWgDHuvvfmEx5wJ/Bhd98LeBo4o4FjAaYBk4DzgSnZbQ68Csxqs186\nZ8ZO6BpmvGpLhYumjih7jIZsXDFP1zCDlXIN08xWASPd/fVO7h9PvRI/l/dYM7sA+C6wOzDY3eea\n2ezs7hOAfdx9rZmtd/f3tTtWhRkoxZLYfA1z+79qKXmS/FSY8coqTAcWm9kyM5vawf1/D/xng8de\nkb19Hpjf5vZW4GpgZvZxh8PXajVmtlSS2O64wyBWrVxZ+hx5t5MnTWTsQWNKn6OR7czpp3DIwQfi\n7mx68adJbDc+9k3Wr1/fFN+/PNsjDz+MyZMmlD5HI9vjpxzDEeM+nXv/7uQ9Ye7r7vsAhwKnmNl+\nm+8wszOpX5u8oZFj3f1Fdx/j7uPd/a12x1wOHG9m/bsaao899kxie/a557PrbruVPkfe7ZhPHMjt\ni+8ufY5Gtpdcdjn/83pfAKz3wCS2PXfcl/79+zfF9y/P9pBPH8b8BTeXPkcj22uvv4FDD/tMQ8d1\npeFnybMfm1vd/RIzOxGYChzo7t0+Ldj22Byf+zzqtXlm6j+S61nyeDMq07h16fOs7blb2aPkpmfJ\n4xX+LLmZ9QV6uPsGM+tH/cmec6jX6cXA33VxbbPDY939zk72b3vC3B5YRv36Zt92+yV1wtQ1zHi1\nWo2PH3UOq3/V4VJsSrqGGa+Ma5gfBH5mZg8D/w3clp3wLgf6U78+udzMrgQwsyFm9qNuju1WdhJe\nBGydZ/9mpmfJ41VbKhw5sk/ZYzREz5LH02/6oMKMlmJJ6HWY8VJcF/pd8gSpMONVWyq88/oTZY/R\nEBVmPBUmKsxoKZaEXocZL8V1ocJMkAozXrWlwm77fKbsMRqiwoynwkSFGS3FkqjVagzedyabflcr\ne5TcVJjxVJgJUmHGq7ZU+O0rj5U9RkNUmPFUmKgwo6VYEnqWPF6K60KFmSAVZrxqS4WtNzxV9hgN\nUWHGU2GiwoyWYknUajW+seAezrw0nV/bc6+x+JrTGDUijV+ZTXFdqDATpMKMV22psFXr02WP0ZCN\nK+bxl7u9v+wxclNhqjALocKMl+rrMG++7BQO3vfDZY+SS4rrQoWZIBVmvGpLhW2HHVj2GA3ZuGIe\nf/3RXcoeIzcVpgqzECrMeHqWPF6K60KFmSAVZjz9Lnk8FaYKsxAqzHj6e5jxUlwXKswEqTDjVVsq\nTPv0kLLHaIgKM54KExVmtBRLItVnyS/88iROPmZM2aPkkuK6UGEmSIUZr9pSYdjIw8seoyEbV8zj\n2MM+XvYYuakwVZiFUGHG0zXMeCmuCxVmglSY8aotFdY+//Oyx2jIxhXzuPw7t5c9Rm4qTBVmIVSY\n8VItTF3DjKXCTJAKM16qz5Lf+bNHyh4jNxWmCrMQKsx4tVqN86+6jUuuXVz2KLm517jlqhkcMGp4\n2aPkkuK6UGEmSIUZr9pSYXCvl8seoyEbV8xjn7/csewxclNhqjALocKMl+o1TD1LHkuFmSAVZrxq\nS4VnHr2v7DEaot/0iafCRIUZLcWSqNVqHHzSRSz/xQtlj5KbCjOeCjNBKsx41ZYKK1fcX/YYDdm4\nYh6tra1lj5GbClOFWQgVZjxdw4yX4rpQYSZIhRlP1zDjqTBVmIVQYcbTX1yPl+K6UGEmSIUZr9pS\n4aKpI8oeoyEbV8zjF089V/YYuakwVZiFUGHGS/XvYaowY6kwE6TCjFdtqTBv7rfKHqMhuoYZT4WJ\nCjNaiiVRq9W47odLqF7wvbJHyU2FGU+FmSAVZrxqS4Xps84qe4yGqDDjqTBRYUZLsSRqtRrVf7uR\n6275r7JHyU2FGU+FmSAVZrxqS4WBtXSecQYVZhFUmKgwo6VYEvpNn3gprgsVZoJUmPFS/YvrKsxY\nKkxUmNFSLAkVZrwU14UKM0EqzHjVlgrHHzCo7DEaosKMp8JEhRktxZJI9Td9LvzyZzn5mE+UPUou\nKa4LFWaCVJjxqi0Vho08vOwxGrJxxTw2vv3bssfITYWpwiyECjOermHGS3FdqDATpMKMV22p8OKT\nS8seoyG6hhlPhYkKM1qKJaHCjJfiulBhJkiFGa/aUmHt8z8ve4yGqDDjqTBRYUZLsSRSfZZchRlL\nhZkgFWY8/T3MeCpMFWYhVJjxarUaHxl3Fi+/uq7sUXJTYcZTYSZIhRmv2lLhhSeXlD1GQ1SY8VSY\nqDCjpVgStVqN7f9qOpDG9xhUmEVQYSZIhRmv2lLh/BP3LHuMhqgw46kwUWFGS7EkarUaI8adxUsJ\nXcN89Jaz2XnI9loXgVSYCVJhxqu2VHjrlUfLHqMhw4f+mQozmAoTFWa0FEuiVqsxaPT0ZL7HoGuY\nRVBhJkiFGa/aUqHv28+WPUZDdA0zngoTFWa0FEtCv+kTL8V1ocJMkAozXrWlwrbDDix7jIaoMOOp\nMFFhRkuxJPTXiuKluC5UmAlSYcartlT49TMPlD1GQ1SY8VSYqDCjpVgSjT5L3mebrejde2vWrHuz\nw/vXLJvDwFGV99z2d6M+xE+XPfXux6NGDGXZilXdfq0Lv/xZFt7x0Hv2HbbLDjzz3Cv6//QJtqUL\nM9cJ08xWA+uAGrDJ3Ueb2UDge8CuwGpgkrv/wauGOzo2u30osABoBSa4+zozOxs4DdjV3V/L9mt1\n9wHtPmdSJ8w9hw/jx7ffxW5Dh5Y9Si5LlyzhrDNP5yf33l/2KLnNqEzjIyM+ytSTv9Th/cdUv8GC\nS//wvr2OmM3WW/fiwZvPAmDgqAprls159/4XX1nDToMHsv+xF3D/DWfwwitvsPPgQex8wCxeuO9i\nFt7+EBMPGcml195J9cSx7HfsBWx482369+vNxE+NZOYJBwO8e1xbfbbZht+89hoDBrxneTet2269\nheuvu5abFi4qe5TcpkyexISJkzhqQr4y3lInzJXAx919TZvbLgRed/evmtk/AQPd/fQ8x2a3XwTM\nAXYH9nD3K81sNnAScKO7n5Htt97d39fu2KROmCrMeJufJe/RI52rTFoX8cq6hmkd7HsE8J3s/e8A\n4xs4FuB3QP/sbVOb268Bjjaz7XLO1vR0DTNein8Pc8cdBukaZrAtfQ0z7wnTgcVmtszMvpDd9kF3\n/zWAu78C7JDj2Kltbr8ie/s8ML/N7a3A1cDM7OMOz/buzptvvpnE9r+XPcwuu+5a+hx5tx/92Me4\n4657Sp+jke0ll13OMcdOKX2ORrZPr3qBfv36lT5H3u0nDjyIGxbcXPocjWy/c/0NjP3UIbn37/5M\n6N7tGzAk234AeBjYH3ij3T6v5zj2EWC/Lr7ObOBUYFtgJfX6bO1gP9/w9u+8f//+SWzNzB9/8unS\n58i77dOnj//N3+5b+hyNbL/wxS/5NttsU/ocjWwBf/nVNaXPkXfbu3dvH3f4EaXP0cj2yAkTvXfv\n3rn3r58SOz8XNvwseXadcQPwBWCMu//azAYD97j7HjmObXX3S7q738zOo16bZ7quYRbKPb1rVbqG\nGS/FdVH4NUwz62tm/bP3+wFjgRXArcCJ2W4nALfkPPbxXJPDpcDJQK+c+zctXcOMp2uY8XQNM8ez\n5NnLfxZRvxbZC5jv7l8xs0HATcDOwHPUX1a01syGAHPdfVxnx3bxtd5ToGZ2MTDD3Xu120+FGSjF\nklBhxktxXRRemO6+yt33cve93X3E5hOeu7/h7p909+HuPtbd12a3v+zu47o6touvdU7bH9fdfVb7\nk2WKVJjxVJjxVJj6TZ9CqCTiqTDjpbgu9LvkCVJhxlNhxlNhqjALoZKIp8KMl+K6UGEmSIUZT4UZ\nT4WpwiyESiKeCjNeiutChZkgFWY8FWY8FaYKsxAqiXgqzHgprgsVZoJUmPFUmPFUmCrMQqgk4qkw\n46W4LlSYCVJhxlNhxlNhqjALoZKIp8KMl+K6UGEmSIUZT4UZT4WpwiyESiKeCjNeiutChZkgFWY8\nFWY8FaYKsxAqiXgqzHgprgsVZoJUmPFUmPFUmCrMQqgk4qkw46W4LlSYCVJhxlNhxlNhqjALoZKI\np8KMl+K6UGEmSIUZT4UZT4WpwiyESiKeCjNeiutChZkgFWY8FWY8FaYKsxAqiXgqzHgprgsVZoJU\nmPFUmPFUmCrMQqgk4qkw46W4LlSYCVJhxlNhxlNhqjALoZKIp8KMl+K6UGEmSIUZT4UZT4WpwiyE\nSiKeCjNeiutChZkgFWY8FWY8FaYKsxAqiXgqzHgprgsVZoJUmPFUmPFUmCrMQqgk4qkw46W4LlSY\nCVJhxlNhxlNhqjALoZKIp8KMl+K6UGEmSIUZT4UZT4WpwiyESiKeCjNeiutChZkgFWY8FWY8FaYK\nsxAqiXgqzHgprgsVZoJUmPFUmPFUmCrMQqgk4qkw46W4LlSYCVJhxlNhxlNhqjALoZKIp8KMl+K6\nUGEmSIUZT4UZT4WpwiyESiKeCjNeiutChZkgFWY8FWY8FaYKsxAqiXgqzHgprgsVZoJUmPFUmPFU\nmCrMQqgk4qkw46W4LlSYCVJhxlNhxlNhqjALoZKIp8KMl+K6UGEmSIUZT4UZT4WpwiyESiKeCjNe\niutChZkgFWY8FWY8FaYKsxAqiXgqzHgprgsVZoJUmPFUmPFUmCrMQqgk4qkw46W4LlSYCVJhxlNh\nxlNhqjALoZKIp8KMl+K6UGEmSIUZT4UZT4XZQGGaWQ/g58AL7n64me0FXAX0BjYB09z9oQ6OWw2s\nA2rAJncfnd0+FFgAtAIT3H2dmZ0NnAbs6u6vZfu1uvuAdp9ThRkoxZJQYcZLcV2UWZgzgCfafHwh\nMNvd9wZmAxd1clwNGOPue28+WWamAZOA84Ep2W0OvArMarNfOmfGTqgw46kw46kwcxamme0EXEP9\n5HZqVpj/CVzt7jeb2WTgMHc/roNjVwEj3f31drdfAHwX2B0Y7O5zzWx2dvcJwD7uvtbM1rv7+9od\nq8IMlGJJqDDjpbguyirMS6n/qNz2LFUFvmZmzwNfBc7o5FgHFpvZMjOb2ub2K7K3zwPz29zeClwN\nzMw+7nD4Wq3GV/7tvCS2Ow/5AKtWrix9jrzbU/7hi4w9aEzpczSynTn9FCZNGF/6HI1st9+2H+vX\nry99jrzbk044jsmTJpQ+RyPb46ccwwnHTc69f7fcvcs34DBgTvb+GODW7P3LgPHZ+xOBxZ0cPyTb\nfgB4BNivi681GzgV2BZYCfQHWjvYz/WmN73pLeKtq/NhL7q3L3C4mR0K9AEGmNn1wDh3n0H9Kyw0\ns3kdHezuL2fbV81sETAa+FlXXzB7AugG4JTsH9H+/jR+hhGR/1e6/ZHc3f/Z3Xdx992BY4C73f1z\nwEtmdgCAmR0EPNX+WDPra2b9s/f7AWOBx3POdilwMuQ6qYuIhPtTTkZfBC4zs57A29nHmNkQYK67\njwM+CCwyM8++1nx3vzPPJ3f317MinfEnzCgisuV0dw2zyDfqTyQ9DjxG/YmgbYBzgUeBh4HbqT+j\nvnn/ednth2Yf7wq8BSzPbl8OHFfwvLOBF7OvvRw4pFnm7WLmBW3mXQUsb/KZtwY+BizN1sYtQP9m\nmZn6f+RXZG8t2W0Ts3/DO9RfAUKzzNvFzE372Oti5tDHX9g/5o/4x+9I/YmerbOPvwcc3+6BMB24\nKnv/w9k3pyfwvTbfgMdKnPeEbKZTO9i/1Hm7+h632+drwL80+cwnAA+SPYEInAic2wwzZ1//Mer/\nIeoJ3En9pXPDgb8A7qbNCbPsebuZuSkfe13MPCz68ddsL1rrCfQzs15AX+Ald2/7yt5+1F8ID/X/\nUvejXhttnxgq8gmh9vP+qosZmmFe6OB73O7+ScCN2fvNOHMf6t/nv3D3zU8e3gVMyN4ve+Y9gAfc\nfaO7vwP8FDjK3f/H3Z/uYI6y54XOZ27mx16HM3cxxxaZuWlOmO7+EnAx8Dz1B8Rad78LwMzOy17v\neSzwr9n+vwS2Au4DrmzzqYaZ2XIzezjb7lv0vEDFzB4xs2+b2XbNMG+OmTGz/YFX3P3ZJp55XTbz\nE2Z2eLbbJGCnJpn5cWB/MxtoZn2BQ4GdO9u5CebtcuZmfOx1MfNO1E+GcY+/ohI6R2JvB/wEGES9\nKBYBx7bb55+As7v4HEX+6NXhvNRfb7r5N6jOA+Y1w7x5vsfZQqp28zmaYmbgQ8AdwDLgLODVJpr5\nJOAh4F7qv5xxSZv77qHdNcyy5+1u5uz+pnnsdTVz9OOvaQoT+CSw0t3f8Hpi/wD423b73MDvf/Qq\nW4fzuvurnv2vAcwFRpU24R/q9HucvdrhKOrXCJtJZ9/np9z9U+4+ivqTVs+WOmUb7n6Nu4909zHA\nWjp4yV2zyTFzMz32gI5njn78NdMJ83ngr82st9V/8fMg4Ekz+/M2+4wHnuzm8xR1HaWzeQe32eco\nun/daZHXfTqcObvvYOBJr/8I3J3SZzazD8C7f0XrX4BvdPN5Cpu5zWy7AEdSP9k0Okuh14k7mrmJ\nH3v1L9bxzKGPv6Z5Ubi7P2hmC6k/vb+J+lP83wJuNLMPUb/g/BzwpW4+1e5mtpz6N8Kp/4GQOQXO\nOy/703c1YDX1F9+XPm8nMz+czQxwNL9/sqc7zTDzP5jZ5t8E+4G7X9ssMwPfN7NB/P7PHq43s/HA\n5cD7gR+Z2SPu/ukmmbezma9uxsdeNzPPiXz8JfkX10VEytBMP5KLiDQ1nTBFRHLSCVNEJCedMEVE\nctIJU0QkJ50wRURy0glTRCSn/wO3B1PlnjnnMQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f04b8a00470>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(5, 5))\n",
"m.drawparallels(np.arange(lat_min, lat_max + 0.25, 2.0),\n",
" labels=[True,False,True,False])\n",
"m.drawmeridians(np.arange(lon_min, lon_max + 0.25, 2.0), \n",
" labels=[True,True,False,True])\n",
"cm = LinearSegmentedColormap.from_list('blue_red', ['b','r'])\n",
"m.imshow(mapdata,cmap='Blues')"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x7f04b8956f60>"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUwAAAEYCAYAAAA3cc++AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVPXZ//H3d1naLkhVwZ8NjBo1iF1jA0XBQhSBoAYV\niGIBpOjjo0YNalBjf4xKjIjYUGIjlhgjKjY0VlBUNCKiWIMI0nSBnfv5YwayrFvO5vE+Z76/6/O6\nrr0OO3PO7M34ncN7Z2bXYGaIiEj9SrIeQEQkFjphiogkpBOmiEhCOmGKiCSkE6aISEKlWQ/wnwgh\n6KV9EXFhZqG266I8YQJ8tzqec+b2227FY48/yZadOmU9SiIvzpjBBeedw1PPPJ/1KImNGjGMn3XZ\nkaGnnJr1KIlt3K4Vc+d/SsuWLbMeJZFHHn6IO++4jXvvn5r1KIkNPHYA/foPoG+//on2b9641nMl\nACHG92GGECymE2ZlZSUlJSWEUPd/jGJhZuRyORo1apT1KInlcjkASkrieZZJ68JfQ+/j5o1DnYUZ\nz+qKWJftt+Hj+fOzHiOxl158kZ49umc9RoOMGTmCiRNuznqMBtlko7YsX7486zESe/SRhzn26GSl\nVixOOO5Ypj74wI92eyrMFKgk/Kkw/cW4LlSYEVJh+lNh+lNhqjBToZLwp8L0F+O6UGFGSIXpT4Xp\nT4WpwkyFSsKfCtNfjOtChRkhFaY/FaY/FaYKMxUqCX8qTH8xrgsVZoRUmP5UmP5UmCrMVKgk/Kkw\n/cW4LlSYEVJh+lNh+lNhqjBToZLwp8L0F+O6UGFGSIXpT4XpT4WpwkyFSsKfCtNfjOtChRkhFaY/\nFaY/FaYKMxUqCX8qTH8xrgsVZoRUmP5UmP5UmCrMVKgk/Kkw/cW4LlSYEVJh+lNh+lNhqjBToZLw\np8L0F+O6UGFGSIXpT4XpT4WpwkyFSsKfCtNfjOtChRkhFaY/FaY/FaYKMxUqCX8qTH8xrgsVZoRU\nmP5UmP5UmCrMVKgk/Kkw/cW4LlSYEVJh+lNh+lNhqjBToZLwp8L0F+O6UGFGSIXpT4XpT4WpwkyF\nSsKfCtNfjOtChRkhFaY/FaY/FaYKMxUqCX8qTH8xrotMCjOEMD+E8GYIYWYI4ZVq150ZQsiFENo2\n5NgQQqcQwsshhCdDCK0Kl10YQlgRQmhfZb9lSWYsZipMfypMfyrMhIUZQpgH7Gpmi6tdvilwC7Bt\n4fpvGnDslcANQGdgOzMbH0IYCwwB7jGzcwv7LTWzDaodq8J0FGNJqDD9xbgusnoOM9Sy77XAWf/h\nsWuAFoWP1VUunwQcHUJonXC2oqfC9KfC9KfCTH7CNGBaCOHVEMJQgBDCEcACM5vd0GMLbix8nAhM\nrnL5MuBWYHTh8xrP9rlcjquuvDyK7eBfn8Rmm2+e+RxJtzNmPM/j057OfI6GbK/+nz+weMnizOdo\nyPbM/z6HsrKyzOdIun3vvTlMvufezOdoyPa2Oybz4YdzE+9fn6QnzH3MbBfgMGBYCGE/4DfA2Cr7\n1JaxVY8dHkLYF8DMPjWz7mbWx8xWVjvmeuCEEEKLuob6dsmSKLbXXHUFH8+fn/kcSbdz3nmHQw4+\nMPM5GrI9Y9TpPP/ss5nP0ZDtJRdfxPLlyzOfI+n2jddeZeAxv8x8joZsBx//K1595eUGHVeXBr9K\nXniesRIYAawkf6LcFPgM2MPM/lXPscvM7Jr6rg8hjCNfm+fpOcx0xfhcVS6n5zC9xbguUn8OM4RQ\ntrb0QgjlQE/gFTPrYGadzawT8Cmwc/WTZS3Hvp1o8vzzo6cApQn3L1p6DtOfnsP0p+cwExRmCKET\nMJX8c5GlwGQz+321feYBu5nZNyGEjsAEM+ud5Nhqt7NegYYQrgZGmVlptf1UmI5iLAkVpr8Y10Xq\nhWlmH5nZTma2s5l1qemEVyjNbwp//sLMeic9ttrtXFT123UzO7P6yTJGKkx/Kkx/Kkz9pE8qVBL+\nVJj+YlwX+lnyCKkw/akw/akwVZipUEn4U2H6i3FdqDAjpML0p8L0p8JUYaZCJeFPhekvxnWhwoyQ\nCtOfCtOfClOFmQqVhD8Vpr8Y14UKM0IqTH8qTH8qTBVmKlQS/lSY/mJcFyrMCKkw/akw/akwVZip\nUEn4U2H6i3FdqDAjpML0p8L0p8JUYaZCJeFPhekvxnWhwoyQCtOfCtOfClOFmQqVhD8Vpr8Y14UK\nM0IqTH8qTH8qTBVmKlQS/lSY/mJcFyrMCKkw/akw/akwVZipUEn4U2H6i3FdqDAjpML0p8L0p8JU\nYaZCJeFPhekvxnWhwoyQCtOfCtOfClOFmQqVhD8Vpr8Y14UKM0IqTH8qTH8qTBVmKlQS/lSY/mJc\nFyrMCKkw/akw/akwVZipUEn4U2H6i3FdqDAjpML0p8L0p8JUYaZCJeFPhekvxnWhwoyQCtOfCtOf\nClOFmQqVhD8Vpr8Y14UKM0IqTH8qTH8qTBVmKlQS/lSY/mJcFyrMCKkw/akw/akwVZipUEn4U2H6\ni3FdqDAjpML0p8L0p8JUYaZCJeFPhekvxnWhwoyQCtOfCtOfClOFmQqVhD8Vpr8Y14UKM0IqTH8q\nTH8qTBVmKlQS/lSY/mJcFyrMCKkw/akw/akwVZipUEn4U2H6i3FdqDAjpML0p8L0p8JUYaZCJeFP\nhekvxnWhwoyQCtOfCtOfClOFmQqVhD8Vpr8Y14UKM0IqTH8qTH8qTBVmKlQS/lSY/mJcFyrMCKkw\n/akw/akwVZipUEn4U2H6i3FdqDAjpML0p8L0p8JUYaZCJeFPhekvxnWhwoyQCtOfCtOfClOFmQqV\nhD8Vpr8Y14UKM0IqTH8qTH8qTBVmKlQS/lSY/mJcFyrMCKkw/akw/akwVZipUEn4U2H6i3FdqDAj\npML0p8L0p8JUYaZCJeFPhekvxnWhwoyQCtOfCtOfClOFmQqVhD8Vpr8Y14UKM0IqTH8qTH8qTBVm\nKlQS/lSY/mJcFyrMCKkw/akw/akwExZmCGE+8C2QA1ab2R4hhCuAXwAVwIfAEDNbmuTYwuWdgCnA\nMqCfmX0bQrgQOAvYwsy+Luy3zMxaVrtNFaajGEtChekvxnWRVWHmgO5mtvPaEx7wBLCDme0EfACc\n24BjAYYBA4BLgIGFywxYCJxZZb94zoy1UGH6q68wkz715PEU1WdfLa7xchWmv6wK8yNgNzNbVMv1\nfchX4vFJjw0hXAbcBXQGOpjZhBDC2MLVg4BdzGxJCGGpmW1Q7VgVpqMYS6Kuwly1eg1NGpcmuh0z\nW++/09xPvuLMy6ZwbO+9OGjv7WnXukWD/zueduGdvDRzLqvXVPK7UX3o23M3QOsiDT92YWJm9X4A\n84A3gFeBoTVc/zDwq4YcC2wKPAP8BSgrXDYWOAM4H7iwcNmyGm7TVlRU2imnDY9iu8EGG9g7783N\nfI6k2yP79LW999k38zkash168qm23/7d1n2+ZMUqO+W04fbJV99at159azzupJNPtWdem2unnDqs\nxuuHnHSKtdlztDVq38Wadh1mpRt2sRN/e3uD5nptzqfWrMNO1rTrMGvUvouV7TLCuvXsa/M+X2xN\nmjSxL79eUhT3X5Jtr0MOtV8ccWTmczRk27dffzu4Z6/E++dPibWfC5N+S76Pme0CHAYMDyHsu/aK\nEMJ55J+bvLshx5rZp2bW3cz6mNnKasdcD5wQQmhR11Dbbbd9FNsLL76ELbbcMvM5km67H3Agj097\nOvM5GrK95rrr6dO3H+988BmfLMqx/WHn89Trn7PHL8fxj3cX8dRLc9bb/8EnXue2x96l/8jxzHh3\nEZMeeIEm5e3XXf/xZ18z76vVrPx+FaFZGwBo2oa7HnqZBYty6/ZbsfJ75i+s5J0PPlvv9o8afj0v\nvbuInkOuYk1p/huk0KwNlZU5Zrz7NV16X0DPvicSGjUuivsvyfaQQw9n8pT7Mp+jIdvb7rybww7/\nRYOOq0uD31ZU+LZ5mZldE0IYDAwFDjSzioYcm+C2x5F/Qei82L8l337brXjs8SfZslOnrEdJ5MUZ\nM7jgvHN46pnnsx4lsVEjhvGzLjsy5cWlvPHuJzXu0+egnTniwJ35+POv+f2fHqNi9Zr1rm9Z3owJ\nvxtMyxbN6H/6jXxXsbrG22nerAkP/GEYOTN+d+MjvPzWPAAO77Yjl53Zn806tmXUuLu546EXazy+\nWdPGPH3Hf9N9958yd/6ntGzZssb9is0jDz/EnXfcxr33T816lMQGHjuAfv0H0Ldfsude6/uWvN4T\nZgihDCgxs+UhhHLyL/ZcRP4Fo6uB/et4brPGY83siVr2r3rCbEf+2/gOZlZWbb+oTph6rspfLpdj\nybKV7NznIpYu/y7TWZo2KaVi1Zpar993l6155E+jtC5SkMWr5BsDL4QQZgL/AB4pnPCuB1oA00II\nb4QQxgOEEDqGEB6t59h6FU7CU4EmSfYvZnqV3NfqNZUMOHogex70q8xPlkCdJ0uApSvyM+pVcn/6\nSR9UmN5iK4l/vPkhh5yYf5Ynhvt4o3YtmfXQxTQpLdG6cKaf9ImQCtPXB/O/Ys2nz1G56J2sR0mk\ndctyFi1eSkcVpjsVJipMb7GVxMhxk7njL/kXWGK5j0tLS7Bcjp9ssTE3jj2eXXfYMuuR6hXbugAV\nZpRUmH6+WvQtdz38UlSFCbBmTY4Vsybw3twFjL97etbjJKLCVGGmQoXpZ86HX7D3MZes+5HGWO5j\ngEYlMHpwL/r02JmfbbNp1uPUK6Z1sZYKM0IqTD+dN2vPph3aRFeYAKveuZVRx3WP4mQJKkxQYaZC\nhelr0ZLlDLvwdv7+wrvR3McAZjkO774Tky77deKfdc9SbOsCVJhRUmH6ate6BS2Xz4yuMCtmT+Sv\nT7/GxPvi+IkqFaYKMxUqTH/TX57DUcNviOY+hnxhQmDM4J6MHXFk1uPUK8Z1ocKMkArT17tzP+fo\nY46LpjDLm+d/eK1i9kTKmwb69dot44mSUWGqMFOhwvR1xGl/4LlX3wfiepX84J9vxyVn9GPrLTtk\nPUoisa0LUGFGSYXp68whveCLF6IpzLUeu+W/6NCuPOsxElNhqjBTocL09/FnCznv2gf567Ozsx4l\nMbMcg47ah+vOG1j/zkUgxnWhwoyQCtPfNZeNpdvWRtMI3p6zVsXsiUx5ZAZfff2D/3dgUVJhqjBT\nocL0t/b/6XPgoCt5870FGU+TTOfN2nPPNaeyjZ7DdKPCjJAK09+YkSO4ZcKfovlHCWD+01fTUc9h\nulJhosL0FmNJrC3M3173F268++mMp0nmyUlnsssOW2pdOFJhRkiF6WvZiu/Zv0dvehz5ax566vWs\nx0nsgL12YOnSOJ6/BBUmqDBTocL0s3pNJXsNGMeHn/wLiOt9mGY5DthzO6beeHrWoyQS07pYS4UZ\nIRWmnw8/+RfzFiyM8rcVVcyeSAl1//9/iokKU4WZChWmn68XL2PrnudG+fswzXKMOO4gxo3um/Uo\nicS0LtZSYUZIhemnfZuWjBl0cLSFecMdj7Pyu4qsR0lEhanCTIUK09+SpSt4dfZHfLvsO4ZecHvW\n4yRilmPsiCMZM7hX1qMkEuO6UGFGSIXpr+dhfel73IhoTpaQL8xBR+6Z9RiJqTBVmKlQYfqqWLWG\nR6fP4qwr7mXx0pVZj5OYWY6PnrqSNq3iePN6bOsCVJhRUmH6atqklOceuZXDd2qc9SgNUjF7Iief\nfwvfV6zOepREVJgqzFSoMP3lcjn+Of9Lfn70pVmPktja37je4+fb8cD1I7Iep14xrgsVZoRUmH7W\n/oM/ZuQIxl16ZcbTNEzF7Ils3KYZl54RR7WpMFWYqVBh+nn/oy94/rUP+GD+l0y47zliWs7HHL47\nV519DOXNm2Y9SiIxrYu1VJgRUmH62bBNSy7906PcePXvWL3wbdpsUJb1SIls2LYld115Krk1q7Ie\nJTEVpgozFSpMX2+9v4Czrvgzq1avYdzo/pz4m1v5alHx/lKLbTt14K83j6Z1y+aEECgpiaNbYlsX\noMKMkgrT172PvcqMv97Oa88/Tp9hfyjqkyXAyQO60a51CzbZqC0rVqzIepzEVJgqzFSoMP2YGR33\nHbPurTkx3MfjRvdl+MADtS5SoMKMkArTTwiB1huURfWz5FOnvc6nXy5mk43asmzZsqzHSUyFqcJM\nhUrC10NPzWTQ2bcAcRTmjttsyl/Gn84GLZoBgZKSEMXcsa0LUGFGSYXp64gDd6L1ypnRFGa/XrvS\nplU5m2zUlpUrV5DLxfGPvwpThZkKFaa/me9+zOhL7+at9z/LepR6nTmkF+cP+4XWRQpUmBFSYfqb\nNP73vP3yk1mPkchNU6Yz440P2GSjtixfvjzrcRJTYaowU6GS8GVmXD3xccbfMz2q31bUv9cu/Oni\nwXofpiMVZoRUmL4MuOm6S1g475WsR2mQB28YpfdhOlNhosL0FmNJnHPVvdw05dlo7uMAHLT3dgzu\nuy+Hdeua9TiJxLguVJgRUmH6qszlmPHY7ZRXzMt6lMQMeOSmMxh4xnhefjOOuVWYKsxUqDD95XI5\nvvz6W44afgP/nP9V1uMksvb3YV486ihGHn9Q1uPUK8Z1ocKMkArT3/Bhp3HAL4ZEc7KE/O/DJLea\nrttumvUoiagwVZipUGH6m/TA84y5bEo09zHAVpu358whh3Bs772yHiWRGNeFCjNCKkx/9076n2h+\n0gdgzx07s+CZa+ndbYesR0lMhanCTIUK09eCL77h4hv/wn2Pvx7NfXzAnj/lvutO07pwpsKMkArT\n1y33P8c9t1wbVWHOeGMuG7drrZ/0cabCRIXpLbaSyOVyfPrVYkaPm8z0V/6Z9TiJNS4todvu2zJu\nTD+27dQh63HqFdu6ABVmlFSYvl6aNY+ue/Rg2mMPUlISxz9Ke+zYmZVv3sxBe20TxckSVJigwkyF\nCtNXj0FX8vo784E4fh8mwHOTz2H7rTpqXThTYUZIhelr9ZrKqH7jOsDQ82+jo35bkTsVJipMb7GV\nxMNPz+Kk825l1erKaO5jgBZljflw2hU0adI461ESiW1dgAozSipMX/MW/IuVH02PqjABFr08noqK\n77MeIzEVpgozFSpMXxUVq5n0wPM8PuNtno3oVfKhv9yPy88aoHXhSIUZIRWmr6ZNGzP94Ym8NP3R\nrEdpkOt/ewKffhbPz76rMFWYqVBh+svlcrz53gJ6DL6KWNa0WY5zT+nN2UMPy3qURGJcFyrMCKkw\n/Y0ZOYLXnv8b7du0yHqUxCpmT+SPk5/IeozEVJgqzFSoMP2t/X2YXY8Yy5rKXNbjJGKW4/rzB3J8\nn32yHiWRGNeFCjNCKkx/I0cM45fHnx7NyRKg5IM76NNjx6zHSEyFqcJMhQrTXy6X4+vFy9jlqItY\n8d2qrMep1+5dOvG3CaO1LpypMCOkwvQ3ZuQIHrr/Hjpu1DrrURIpCUH/X/IUqDBRYXqLsSRyuRyV\nlTl6nXgNM+d8kvU4iUy6dAhHHrSL1oWjTAozhDA/hPBmCGFmCOGVwmVtQghPhBDeDyH8PYTQKumx\nhcs7hRBeDiE8ufbYEMKFIYQVIYT2VfZbluhvWsRUmP7GjBzBbbfeQptW5VmPktiQft1UmM4yKcwQ\nwjxgVzNbXOWyy4FFZnZFCOFsoI2ZnZPk2MLlVwI3AJ2B7cxsfAhhLDAEuMfMzi3st9TMNqh2rArT\nUYwlkcvlmDXnE3oMvirrURJpUdaU+U9foXXhLKvnMEMN+x4J3F748+1AnwYcC7AGaFH4WF3l8knA\n0SGEOJ6MSkCF6W/MyBE8eO/kH1y+7y4/4dD9u9C41O9B3qxpY1qUNa3xuqZNSumyzf9b77LSRiWc\nfdKheg4zBT92YSY9YRowLYTwagjhpMJlG5vZVwBm9iWwUYJjh1a5/MbCx4lA1ZW+DLgVGF34vMaz\nvZmxYsWKKLb/eHUmm2+xReZzJN3u2LUrf39yeuZzJNlWVlayfPlyrrnuek49+UQ279gWq1yNmdFj\nz5/w8E2jmHDxcdz/h2GUUImZrbt+7bZVi8YcuNdP2bJjqxqvr2kbgEtGHsGEcYOY/fBvmXrj6YTc\nmvX2Ky3JcdeVQ5n93vz1Lj/2sF0ZflwPPvhoAeXl5UVxPybZHnBgD+6ecl/mczRke/udd9Oz1yGJ\n96//TGhW7wfQsbDdEJgJ7Ad8U22fRQmOnQXsW8fXGQucAbQC5pGvz2U17GfLv19jLVq0iGIbQrC3\n53yQ+RxJt82bN7ef771P5nMk3TZtVmbdevaxktJSW7hkpZWVldtLb83/wX6ljZva1bdNs9ImzezI\n4eMtNGpiWx96vpWX/3u/X4652ShpbE27nmaUNLarb59mJaVN1n2+dttx//9a7/bfnvvletc37Xqa\nNS8rtxdmzvvB5U2aNrfl368xwL5YuDjz+y/ptlmzZtb7iCMzn6Mh26P69bdmzZol3j9/Sqz9XNjg\nV8kLzzMuB04CupvZVyGEDsB0M9suwbHLzOya+q4PIYwjX5vnmZ7DTJVZfM9V5XL5N6yXlNT+TdOc\nD79gu606rvv8pinTqahYw6hBB6+77JPPF9H1yLEA9O25KxMvGULFqtXs2vcicjn4YuESGpc24o7L\nT+KQ/busO87MOOaMm3jihfyvmNt1hy34682jyRn85pr7ue3BGQC02aCM5yafw6Yd2mpdpODHfg6z\n3hNmCKEMKDGz5SGEcuAJ4CKgB/nKvLy2F31qO9bMavwB2monzHbAq0AHMyurtl9UJ8ztt92Kxx5/\nki07dcp6lERenDGDC847h6eeeT7rURIbNWIYP+uyI0NPOXW9y82MEALzFiykrFkTOmz47zdzvP/R\nl3z9zTL22XXr9fZ/adaHlJQE9tyx87oH2uf/WkK71uW8N+9L2rduwSYbt/7Bg3DNmkoefeZNVq2u\npPcBXSlr1mTdbT4yfRYLv1nOoft3YZPCe0U3bteKufM/pWXLli73yY/tkYcf4s47buPe+6dmPUpi\nA48dQL/+A+jbL9lzrz/GCbMTMJX8c5GlwGQz+30IoS1wL7AZ8DEwwMyWhBA6AhPMrHdtx9bxtdYr\n0BDC1cAoMyuttl9UJ0yVhL8khVlstC78pf4quZl9ZGY7mdnOZtZl7QnPzL4xs4PMbFsz62lmSwqX\nf2Fmves6to6vdVHVb9fN7MzqJ8sY6VVyf2NGjmDihJuzHqNB9Cq5P/2kDypMbzGWhArTX4zrQj9L\nHiEVpj8Vpj8VpgozFSoJfypMfzGuCxVmhFSY/lSY/lSYKsxUqCT8qTD9xbguVJgRUmH6U2H6U2Gq\nMFOhkvCnwvQX47pQYUZIhelPhelPhanCTIVKwp8K01+M60KFGSEVpj8Vpj8VpgozFSoJfypMfzGu\nCxVmhFSY/lSY/lSYKsxUqCT8qTD9xbguVJgRUmH6U2H6U2GqMFOhkvCnwvQX47pQYUZIhelPhelP\nhanCTIVKwp8K01+M60KFGSEVpj8Vpj8VpgozFSoJfypMfzGuCxVmhFSY/lSY/lSYKsxUqCT8qTD9\nxbguVJgRUmH6U2H6U2GqMFOhkvCnwvQX47pQYUZIhelPhelPhanCTIVKwp8K01+M60KFGSEVpj8V\npj8VpgozFSoJfypMfzGuCxVmhFSY/lSY/lSYKsxUqCT8qTD9xbguVJgRUmH6U2H6U2GqMFOhkvCn\nwvQX47pQYUZIhelPhelPhanCTIVKwp8K01+M60KFGSEVpj8Vpj8VpgozFSoJfypMfzGuCxVmhFSY\n/lSY/lSYKsxUqCT8qTD9xbguVJgRUmH6U2H6U2GqMFOhkvCnwvQX47pQYUZIhelPhelPhanCTIVK\nwp8K01+M60KFGSEVpj8Vpj8VpgozFSoJfypMfzGuCxVmhFSY/lSY/lSYKsxUqCT8qTD9xbguVJgR\nUmH6U2H6U2GqMFOhkvCnwvQX47pQYUZIhelPhelPhanCTIVKwp8K01+M60KFGSEVpj8Vpj8Vpgoz\nFSoJfypMfzGuCxVmhFSY/lSY/lSYKsxUqCT8qTD9xbguVJgRUmH6U2H6U2GqMFOhkvCnwvQX47pQ\nYUZIhelPhelPhanCTIVKwp8K01+M60KFGSEVpj8Vpj8VpgozFSoJfypMfzGuCxVmhFSY/lSY/lSY\nDSjMEEIJ8DqwwMyOCCHsBPwRaAasBoaZ2Ws1HDcf+BbIAavNbI/C5Z2AKcAyoJ+ZfRtCuBA4C9jC\nzL4u7LfMzFpWu00VpqMYS0KF6S/GdZFlYY4C3qny+eXAWDPbGRgLXFnLcTmgu5ntvPZkWTAMGABc\nAgwsXGbAQuDMKvvFc2ashQrTnwrTnwozYWGGEDYFJpE/uZ1RKMy/Abea2X0hhGOBw83suBqO/QjY\nzcwWVbv8MuAuoDPQwcwmhBDGFq4eBOxiZktCCEvNbINqx6owHcVYEipMfzGui6wK81ry3ypXPUuN\nAa4KIXwCXAGcW8uxBkwLIbwaQhha5fIbCx8nApOrXL4MuBUYXfi8xuFzuRy/v3RcFNvNOm7IR/Pm\nZT5H0u3w006mZ4/umc/RkO3o04czoF+fzOdoyLZdq3KWLl2a+RxJt0MGHcexA/plPkdDticMPIZB\nxx2beP96mVmdH8DhwA2FP3cHHi78+TqgT+HP/YFptRzfsbDdEJgF7FvH1xoLnAG0AuYBLYBlNexn\n+tCHPvTh8VHX+bCU+u0DHBFCOAxoDrQMIdwJ9DazUeS/wv0hhIk1HWxmXxS2C0MIU4E9gBfq+oKF\nF4DuBoYX/hLVr4/jexgR+f9Kvd+Sm9lvzGxzM+sMHAM8bWbHA5+HELoBhBB6AP+sfmwIoSyE0KLw\n53KgJ/B2wtmuBU6BRCd1ERF3/5eT0cnAdSGERsD3hc8JIXQEJphZb2BjYGoIwQpfa7KZPZHkxs1s\nUaFIR/0fZhQR+fHU9xxmmh/kX0h6G3iL/AtBTYGLgTeBmcDj5F9RX7v/xMLlhxU+3wJYCbxRuPwN\n4LiU5x0LfFr42m8AhxTLvHXMPKXKvB8BbxT5zE2ArsCLhbXxENCiWGYm/4/87MLHyMJl/Qt/h0ry\n7wChWOYe0nFtAAADW0lEQVStY+aifezVMbPr48/tL/Mf/OU3If9CT5PC538GTqj2QDgd+GPhzzsU\n7pxGwJ+r3AFvZTjvoMJMZ9Swf6bz1nUfV9vnKuD8Ip95EPAKhRcQgcHAxcUwc+Hrv0X+H6JGwBPk\n3zq3LbA18DRVTphZz1vPzEX52Ktj5q28H3/F9qa1RkB5CKEUKAM+N7Oq7+wtJ/9GeMj/S11Ovjaq\nvjCU5gtC1ef9rI4ZimFeqOE+rnb9AOCewp+Lcebm5O/nrc1s7YuHTwL9Cn/OeubtgJfNrMLMKoHn\ngL5m9r6ZfVDDHFnPC7XPXMyPvRpnrmOOH2XmojlhmtnnwNXAJ+QfEEvM7EmAEMK4wvs9fwX8trD/\ne0Bj4FlgfJWb2iqE8EYIYWZhu0/a8wIjQgizQgi3hBBaF8O8CWYmhLAf8KWZfVjEM39bmPmdEMIR\nhd0GAJsWycxvA/uFENqEEMqAw4DNatu5COatc+ZifOzVMfOm5E+Gfo+/tBI6QWK3Bp4C2pIviqnA\nr6rtczZwYR23kea3XjXOS/79pmt/gmocMLEY5k1yHxcW0ph6bqMoZga2Af4OvApcACwsopmHAK8B\nz5D/4Yxrqlw3nWrPYWY9b30zF64vmsdeXTN7P/6KpjCBg4B5ZvaN5RP7QWDvavvczb+/9cpajfOa\n2UIr/NcAJgC7ZzbhD9V6Hxfe7dCX/HOExaS2+/mfZtbLzHYn/6LVh5lOWYWZTTKz3cysO7CEGt5y\nV2wSzFxMjz2g5pm9H3/FdML8BNgrhNAs5H/wswcwJ4Twkyr79AHm1HM7aT2PUtu8Hars05f633ea\n5vM+Nc5cuO5gYI7lvwWuT+YzhxA2hHW/Ret84KZ6bie1mavMtjlwFPmTTUNnSfV54ppmLuLHXv6L\n1Tyz6+OvaN4UbmavhBDuJ//y/mryL/HfDNwTQtiG/BPOHwOn1nNTnUMIb5C/I4z8Lwi5IcV5JxZ+\n9V0OmE/+zfeZz1vLzDMLMwMczb9f7KlPMcx8Wghh7U+CPWhmtxXLzMADIYS2/PvXHi4NIfQBrgfa\nA4+GEGaZ2aFFMm9tM99ajI+9ema+wfPxF+VvXBcRyUIxfUsuIlLUdMIUEUlIJ0wRkYR0whQRSUgn\nTBGRhHTCFBFJSCdMEZGE/hfULxGSQEdZogAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f04b8d793c8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(5, 5))\n",
"m.drawparallels(np.arange(lat_min, lat_max + 0.25, 2.0),\n",
" labels=[True,False,True,False])\n",
"m.drawmeridians(np.arange(lon_min, lon_max + 0.25, 2.0), \n",
" labels=[True,True,False,True])\n",
"m.scatter(lons,lats,c=values,latlon=True,edgecolors='none',cmap='Blues')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment