Skip to content

Instantly share code, notes, and snippets.

View danielrosehill's full-sized avatar

Daniel Rosehill danielrosehill

View GitHub Profile
@danielrosehill
danielrosehill / ffmpeg-vaapi-compression.md
Created December 4, 2025 15:04
FFmpeg GPU-accelerated video compression using VA-API (AMD RX 7700 XT on Ubuntu 25.04)

FFmpeg GPU-Accelerated Video Compression (VA-API / AMD)

Compress video using hardware-accelerated H.264 encoding on AMD GPUs via VA-API.

Tested on: AMD Radeon RX 7700 XT (Navi 32, gfx1101) / Ubuntu 25.04

Basic Compression Command

ffmpeg -vaapi_device /dev/dri/renderD128 \
@danielrosehill
danielrosehill / fix-amd-opencl-ubuntu.md
Created December 4, 2025 14:50
Fix OpenCL/GPU acceleration for AMD Radeon on Ubuntu (ROCm)

Fixing OpenCL/GPU Acceleration for AMD Radeon on Ubuntu

Problem

Video editors (Kdenlive, DaVinci Resolve, etc.) had broken GPU acceleration on Ubuntu 25.04 with AMD Radeon RX 7700 XT.

Running clinfo showed:

Number of platforms: 0
@danielrosehill
danielrosehill / kdenlive-vaapi-amd-crash.md
Created December 4, 2025 12:09
Kdenlive 25.08.3 VAAPI AMD crash on RX 7700 XT/7800 XT (Navi 32)

Kdenlive 25.08.3 VAAPI AMD Crash Report

Environment

  • OS: Ubuntu 25.04
  • Desktop: KDE Plasma (Wayland)
  • Kdenlive: 25.08.3 (Flatpak from Flathub, stable branch)
  • GPU: AMD Radeon RX 7700 XT (Navi 32, gfx1101)
  • Kernel: 6.14.0-15-generic
  • Mesa: 25.2.3-1ubuntu1
@danielrosehill
danielrosehill / mcp-router-claude-code-setup.md
Created December 2, 2025 12:53
Adding MCP Router to Claude Code CLI

Adding MCP Router to Claude Code CLI

MCP Router allows you to manage MCP servers across multiple AI applications from a single interface.

Installation Command

claude mcp add mcp-router --scope user -e "MCPR_TOKEN=your_token_here" -- npx -y @mcp_router/cli@latest connect
@danielrosehill
danielrosehill / README.md
Created November 29, 2025 12:22
Snapcast Multi-Room Audio Setup with Music Assistant and Home Assistant

Snapcast Multi-Room Audio Setup with Music Assistant and Home Assistant

This guide documents setting up Snapcast for multi-room audio with Music Assistant integration on a home network.

Architecture

  • Snapserver: Docker container on Ubuntu VM (10.0.0.4)
  • Snapclients: Raspberry Pi devices with USB speakers
  • Control: Home Assistant (10.0.0.3) with Music Assistant integration
@danielrosehill
danielrosehill / README.md
Created November 27, 2025 13:28
F13 Key Not Recognized on KDE Wayland - Troubleshooting and Fix Attempt

F13 Key Not Recognized on KDE Plasma (Wayland) - Troubleshooting Notes

Problem

F13 key (sent via input-remapper from a macropad) was not being recognized by KDE for keyboard shortcuts, while F14-F18 worked fine.

Environment

  • OS: Ubuntu 25.04
  • Desktop: KDE Plasma on Wayland
@danielrosehill
danielrosehill / README.md
Created November 27, 2025 13:21
Extended F-Keys (F13-F35) - Linux Kernel, XKB, and Qt Support Reference

Extended Function Keys (F13-F35) on Linux

A reference guide for mapping keys beyond F12 on Linux systems.

Summary

Layer F-Key Range Notes
Linux Kernel F1-F24 Native evdev keycodes
XKB (X11/Wayland) F1-F24 Mapped via evdev keycodes
@danielrosehill
danielrosehill / README.md
Last active November 27, 2025 13:09
CH57x 6-Button Macropad Setup Guide (Linux) - Romoral/AliExpress

CH57x 6-Button Macropad Setup Guide (Linux)

Macropad

Product Details

Field Value
Product Name Mechanical Hotswap Macropad Custom Keyboard USB Bluetooth RGB Photoshop Gaming Programming Macro Knob Keypad
Seller Romoral
@danielrosehill
danielrosehill / README.md
Last active November 27, 2025 13:02
Whisper ACFT Model Size Reference for FUTO Voice Input (And My Performance Notes) - Whisper CPP

Whisper GGML Model Sizes for FUTO Voice Input

Reference for choosing Whisper model sizes when using custom fine-tuned models with FUTO Voice Input on Android.

Model Size Comparison (GGML f16)

Model Parameters Approx GGML Size
Tiny 39M ~75 MB
Base 74M ~142 MB
@danielrosehill
danielrosehill / README.md
Created November 25, 2025 16:16
Choosing Epochs for ASR (Automatic Speech Recognition) Fine-Tuning - Whisper, Wav2Vec2, and Similar Models

Choosing Epochs for ASR Fine-Tuning

A practical guide to selecting the right number of training epochs when fine-tuning speech recognition models like Whisper, Wav2Vec2, HuBERT, and similar ASR architectures.

What's Different About ASR Fine-Tuning?

ASR models have unique characteristics that affect epoch selection:

  1. Pre-trained on massive audio data - Whisper was trained on 680,000 hours of audio
  2. Audio samples vary in length - 2 seconds to 30 seconds per sample