- Probabilistic Data Structures for Web Analytics and Data Mining : A great overview of the space of probabilistic data structures and how they are used in approximation algorithm implementation.
- Models and Issues in Data Stream Systems
- Philippe Flajolet’s contribution to streaming algorithms : A presentation by Jérémie Lumbroso that visits some of the hostorical perspectives and how it all began with Flajolet
- Approximate Frequency Counts over Data Streams by Gurmeet Singh Manku & Rajeev Motwani : One of the early papers on the subject.
- [Methods for Finding Frequent Items in Data Streams](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.9800&rep=rep1&t
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# more info here: http://webmining.olariu.org/the-story-of-the-oscar-predictions | |
import urllib, urllib2, re | |
import json | |
from time import time | |
# using this POS tagger: | |
# http://jasonwiener.com/2006/01/20/simple-nlp-part-of-speech-tagger-in-python/ | |
import NLPlib |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Latency Comparison Numbers (~2012) | |
---------------------------------- | |
L1 cache reference 0.5 ns | |
Branch mispredict 5 ns | |
L2 cache reference 7 ns 14x L1 cache | |
Mutex lock/unlock 25 ns | |
Main memory reference 100 ns 20x L2 cache, 200x L1 cache | |
Compress 1K bytes with Zippy 3,000 ns 3 us | |
Send 1K bytes over 1 Gbps network 10,000 ns 10 us | |
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
client.py - AsyncIO Server using StreamReader and StreamWriter | |
This will create 200 client connections to a server running server.py | |
It will handshake and run similar to this: | |
Server: HELLO | |
Client: WORLD |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
BSD License | |
""" | |
import numpy as np | |
# data I/O | |
data = open('input.txt', 'r').read() # should be simple plain text file | |
chars = list(set(data)) | |
data_size, vocab_size = len(data), len(chars) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function, division | |
import numpy as np | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
num_epochs = 100 | |
total_series_length = 50000 | |
truncated_backprop_length = 15 | |
state_size = 4 | |
num_classes = 2 |