Skip to content

Instantly share code, notes, and snippets.

VGG_ILSVRC_19_layers_train_val.prototxt
name: "VGG_ILSVRC_19_layers"
layers {
name: "data"
type: DATA
include {
phase: TRAIN
}
transform_param {
crop_size: 224
@darkseed
darkseed / mr_compute_gist.py
Created October 18, 2015 20:05 — forked from Yangqing/mr_compute_gist.py
The mapreduce code to extract gist features from ImageNet images. To be used together with mincepie.
from mincepie import mapreducer, launcher
import gflags
import glob
import leargist
import numpy as np
import os
from PIL import Image
import uuid
# constant value
class BloomFilter(val size: Int, val expectedElements: Int){
require(size > 0)
require(expectedElements > 0)
val bitArray = new BitArray(size)
val k = Math.ceil((bitArray.size / expectedElements) * Math.log(2.0)).toInt
val expectedFalsePositiveProbability = Math.pow(1 - Math.exp(-k * 1.0 * expectedElements / bitArray.size), k)
def add(hash: Int) {
def add(i: Int, seed: Int) {
/*
Copyright 2012 Twitter, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
@darkseed
darkseed / pearson.scala
Last active September 18, 2015 09:42 — forked from tbertelsen/pearson.scala
Calculating pearson for Breeze vectors
import breeze.linalg._
import breeze.stats._
import scala.math.sqrt
/**
* Effecient for sparse vectors. Scales in O(activeSize)
*/
// Must take SparseVector, for implicits to be linked correctly
def pearson(a: SparseVector[Double], b: SparseVector[Double]): Double = {
@darkseed
darkseed / combinations.scala
Last active September 18, 2015 09:36 — forked from kaja47/combinations.scala
Fast array combinations
// genrate all combinations of integers in range from 0 to `len`-1
// fast as fuck
def combIdxs(len: Int, k: Int): Iterator[Array[Int]] = {
val arr = Array.range(0, k)
arr(k-1) -= 1
val end = k-1
Iterator.continually {
arr(end) += 1
if (arr(end) >= len) {
@darkseed
darkseed / gist:e9e77731b9750e1416c8
Last active September 18, 2015 09:36 — forked from kaja47/gist:554f62c61f21b0420720
minhash vs. HyperLogLog
// min-hash
val fs: Vector[Int => Int] // hash funkce
items map { it => fs map { f => f(it) } } fold (vectorPairwise(min), initialValue = Vector.fill(infinity))
// HyperLogLog
@darkseed
darkseed / svd-img.scala
Last active September 18, 2015 09:35 — forked from kaja47/svd-img.scala
Visualization of truncated SVD
import breeze._
import breeze.linalg._
import breeze.numerics._
import java.awt.image.BufferedImage
import javax.imageio.ImageIO
val f = ???
val img = javax.imageio.ImageIO.read(new File(f))
val gray = new BufferedImage(img.getWidth, img.getHeight, BufferedImage.TYPE_BYTE_GRAY)
val g = gray.createGraphics()
@darkseed
darkseed / csfdsim.scala
Last active September 18, 2015 09:30 — forked from kaja47/csfdsim.scala
How to compute similar movies from CSFD data in 10 minutes and find love of your life
import breeze.linalg._
import breeze.stats
import breeze.numerics._
val dataFile = new File(???)
val userItems: Array[SparseVector[Double]] = loaderUserItemsWithRatings(dataFile, """[ ,:]""".r)
val itemUsers: Array[SparseVector[Double]] = transpose(userItems) map { vec => normalize(vec, 2) }
// weights
val N = DenseVector.fill[Double](itemIndex.size)(userIndex.size) // vector where total numbers of users is repeated
@darkseed
darkseed / gist:612194e0e9e74745fc79
Last active September 18, 2015 09:20 — forked from yu-iskw/gist:4e0d3a2f999effbcf640
A weighted Euclidean distance function implementation
package breeze.linalg.functions
import breeze.generic.UFunc
import breeze.linalg.{SparseVector, DenseVector}
import breeze.numerics.sqrt
/**
* A weighted Euclidean distance function implementation
*/
object weightedEuclideanDistance extends UFunc {