Created
July 7, 2015 13:55
-
-
Save darothen/ecef11a02d518796a089 to your computer and use it in GitHub Desktop.
Simple reproduction of `aggr` examples using Pandas
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Quick reproduction of examples from [`aggr` GitHub docs](https://github.com/Horb/aggr). " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Before anything, save copies of the two example datasets -" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Writing data.txt\n" | |
] | |
} | |
], | |
"source": [ | |
"%%writefile data.txt\n", | |
"Eggs,12\n", | |
"Chips,13\n", | |
"Beans,14\n", | |
"Eggs,21\n", | |
"Chips,32\n", | |
"Beans,43" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Writing data2.txt\n" | |
] | |
} | |
], | |
"source": [ | |
"%%writefile data2.txt\n", | |
"2015-05-13,Eggs,1200\n", | |
"2015-05-13,Chips,1300\n", | |
"2015-05-13,Chips,1300\n", | |
"2015-05-13,Bean,1300\n", | |
"2015-05-15,Eggs,1300\n", | |
"2015-05-15,Eggs,1300\n", | |
"2015-05-15,Eggs,1300\n", | |
"2015-05-15,Chips,1300\n", | |
"2015-05-15,Beans,1300" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"---\n", | |
"\n", | |
"## Example 1) \n", | |
"\n", | |
"Aggregate sum over common key in `data.txt`." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" 1\n", | |
"0 \n", | |
"Beans 57\n", | |
"Chips 45\n", | |
"Eggs 33\n" | |
] | |
} | |
], | |
"source": [ | |
"df = pd.read_csv('data.txt', header=None)\n", | |
"print df.groupby([0, ]).sum()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Example 2/3)\n", | |
"\n", | |
"Aggregate sum over first column, then by length of entry in second. It looks like there's an error in this example on the `aggr` github page; the output suggests there are no 5 character strings on 2015-05-13 and no 4 character strings on 2015-05-15.\n", | |
"\n", | |
"I bet the 2nd line below could be rolled into the groupby function." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" count\n", | |
"date item_len \n", | |
"2015-05-13 4 2500\n", | |
" 5 2600\n", | |
"2015-05-15 4 3900\n", | |
" 5 2600\n" | |
] | |
} | |
], | |
"source": [ | |
"df = pd.read_csv('data2.txt', header=None, names=['date', 'item', 'count'])\n", | |
"df['item_len'] = df['item'].apply(lambda x: len(x))\n", | |
"\n", | |
"print df.groupby(['date', 'item_len']).sum()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Composite keys..." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 41, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" 2\n", | |
"0 1 \n", | |
"2015-05-13 Bean 1300\n", | |
" Chips 2600\n", | |
" Eggs 1200\n", | |
"2015-05-15 Beans 1300\n", | |
" Chips 1300\n", | |
" Eggs 3900\n" | |
] | |
} | |
], | |
"source": [ | |
"df = pd.read_csv('data2.txt', header=None)\n", | |
"print df.groupby([0, 1]).sum()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.10" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment