Skip to content

Instantly share code, notes, and snippets.

@davebshow
Created November 9, 2014 16:16
Show Gist options
  • Save davebshow/4ac3b8eba4e6b62a2890 to your computer and use it in GitHub Desktop.
Save davebshow/4ac3b8eba4e6b62a2890 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "cypher_ipy"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": "%load_ext cypher",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": "%matplotlib inline",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": "%cypher MATCH (n) OPTIONAL MATCH (n)-[r]-() DELETE n,r",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 3,
"text": "[]"
}
],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": "%cypher \"create(v:Person {name: 'versae'})\"\n%cypher \"create(g:Person {name: 'gabi'})\"\n%cypher \"create(d:Person {name: 'davebshow'})\"\n%cypher match (n) return id(n) as id, n.name",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "3 rows affected.\n"
},
{
"html": "<table>\n <tr>\n <th>id</th>\n <th>n.name</th>\n </tr>\n <tr>\n <td>27</td>\n <td>versae</td>\n </tr>\n <tr>\n <td>28</td>\n <td>gabi</td>\n </tr>\n <tr>\n <td>29</td>\n <td>davebshow</td>\n </tr>\n</table>",
"metadata": {},
"output_type": "pyout",
"prompt_number": 4,
"text": "[[27, u'versae'], [28, u'gabi'], [29, u'davebshow']]"
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": "results = %cypher match (n) return id(n) as id, n.name as name\nresults.dataframe()",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "3 rows affected.\n"
},
{
"html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>id</th>\n <th>name</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td> 27</td>\n <td> versae</td>\n </tr>\n <tr>\n <th>1</th>\n <td> 28</td>\n <td> gabi</td>\n </tr>\n <tr>\n <th>2</th>\n <td> 29</td>\n <td> davebshow</td>\n </tr>\n </tbody>\n</table>\n<p>3 rows \u00d7 2 columns</p>\n</div>",
"metadata": {},
"output_type": "pyout",
"prompt_number": 5,
"text": " id name\n0 27 versae\n1 28 gabi\n2 29 davebshow\n\n[3 rows x 2 columns]"
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": "results.plot()",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 6,
"text": "[<matplotlib.lines.Line2D at 0x393a2d0>]"
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEICAYAAABBBrPDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFmlJREFUeJzt3X9s1Hfhx/HXfVtMht2CZJN2LVqkwK7typ0FuukwRco6\nNmzKSgQUGVoqkuGsGYkQTVacQbcsWygw4v4QoyxY2CwYkTqb9Qbrhp3SmGhnJELD0dIxY9jaTaE/\n3t8/2Op1d23vrp+7+3w+93wkl9Dr5328+8mHe/d5n88dHmOMEQAA4/i/VE8AAGBvLBQAgAmxUAAA\nJsRCAQCYEAsFAGBCLBQAgAmxUABTUFxcrFOnToXdHwgENHv27BTMCLBeZqonADjZX//611RPAUg4\nigIAMCEWCmAK8vPz9fLLL+s///mPNm3apJkzZ6qoqEhvvPFGqqcGWIaXnoAp8Hg8MsZo165dunDh\ngs6fP6+BgQHdd9998ng8qZ4eYAmKArDA0aNH9f3vf18zZsxQXl6evvOd74iPUYNbsFAAFujt7R1z\nldOnPvWpFM4GsBYLBWCBnJwcXbx4cfTr0D8DTsdCAVjgy1/+sn784x/r6tWrunTpkvbu3ZvqKQGW\nYaEApsjj8eixxx7Tpz/9ac2ZM0f33XefNm7cyMlsuIaH/7gIADARy4siGAxq2bJlKioqUnFxsRob\nGyVJf/nLX3T33XerpKREVVVV6u/vjzi+paVFd9xxh+bNm6cnnnjC6ukBAGJkeVH09fWpr69PPp9P\nAwMDKi0t1bFjx7Rx40Y9/fTTWrp0qQ4ePKgLFy7ohz/84Zixw8PDWrBggVpbW5Wbm6vFixfr8OHD\n8nq9Vk4RABADy4siOztbPp9PkpSVlSWv16uenh6dO3dOS5culSRVVFToxRdfDBvb0dGhgoIC5efn\na9q0aVq3bp2OHz9u9RQBADFI6Mns7u5udXZ2qqysTEVFRaNP+kePHlUwGAzbvqenZ8y16Hl5eerp\n6UnkFAEAk0jYR3gMDAxozZo12rNnj26++Wb97Gc/0yOPPKLHH39cVVVV+tjHPhY2JtqrRLiaBADi\nE8/ZhoQUxeDgoGpqarRhwwZVV1dLkhYsWKDf//73+tOf/qR169Zp7ty5YeNyc3PHlEYwGFReXl7E\nv8MYw82i22OPPZbyObjlxr5kf9rl9s9/GpWXG919t9Hf/37jvnhZvlAYY1RbW6vCwkLV19eP3v/2\n229LkkZGRvSjH/1IW7duDRu7aNEinTt3Tt3d3bp+/bqamppUVVVl9RQBwLVGRqT9+6WyMmnVKun0\naWnBgqk9puUvPbW3t+vQoUMqKSmR3++XJO3evVvnzp3T/v37JUk1NTXatGmTpBufkVNXV6cTJ04o\nMzNT+/btU2VlpYaHh1VbW8sVTwAQpfPnpdpa6do16dVXp75AfMiRb7j78KOdYY1AIKDy8vJUT8MV\n2JfWYn9GZ2REOnBAamiQduyQ6uuljIzw7eJ97mShAAAHC62Igwcnroh4nzv5rCcAcKBEnIsYD//D\nHQA4TKLORYyHogAAh0hmRYSiKADAAZJdEaEoCgCwsVRVRCiKAgBsKpUVEYqiAACbsUNFhKIoAMBG\n7FIRoSgKALABu1VEKIoCAFLMjhURiqIAgBSxc0WEoigAIAXsXhGhKAoASCKnVEQoigIAksRJFRGK\nogCABHNiRYSiKAAggZxaEaEoCgBIAKdXRCiKAgAs5oaKCEVRAIBF3FQRoSgKALCA2yoiFEUBAFPg\n1ooIRVEAQJzcXBGhKAoAiFE6VEQoigIAYpAuFRGKogCAKKRbRYSiKABgEulYEaEoCgAYRzpXRCiK\nAgAiSPeKCEVRAEAIKiIcRQEAH6AiIqMoAKQ9KmJiFAWAtEZFTI6iAJCWqIjoURQA0g4VERuKAkDa\noCLiQ1EASAtURPwoCgCuRkVMHUUBwLWoCGtQFABch4qwFkUBwFWoCOtRFABcgYpIHIoCgONREYlF\nUQBwLCoiOSgKAI5ERSQPRQHAUaiI5KMoADgGFZEalhdFMBjUsmXLVFRUpOLiYjU2NkqSOjo6tGTJ\nEvn9fi1evFhvvPFGxPH5+fkqKSmR3+/XkiVLrJ4eAAeiIlLLY4wxVj5gX1+f+vr65PP5NDAwoNLS\nUh07dkxbt27Vzp07VVlZqZMnT+rJJ59UW1tb2Pg5c+boz3/+s2bOnDn+pD0eWTxtADYVWhEHD7JA\nTEW8z52WF0V2drZ8Pp8kKSsrS16vVz09PcrJydE777wjSbp69apyc3PHfQwWAQBUhH0k9BxFd3e3\nOjs7ddddd2nevHm65557tH37do2MjOj111+POMbj8aiiokIZGRnasmWL6urqIm7X0NAw+ufy8nKV\nl5cn4CcAkAqci7BGIBBQIBCY+gOZBOnv7zelpaWmubnZGGPM8uXLza9//WtjjDFHjhwxFRUVEcf1\n9vYaY4y5cuWKWbhwoTl16lTYNgmcNoAUGh42Zt8+Y2691ZinnjJmaCjVM3KXeJ87LT9HIUmDg4Na\ntWqVVq5cqfr6eknSLbfconfffffDxUkzZswYfSlqPLt27VJWVpYeffTRMfdzjgJwH85FJJ5tzlEY\nY1RbW6vCwsLRRUKSCgoK9Morr0iSXn75Zc2fPz9s7Pvvv6/+/n5J0nvvvaeXXnpJd955p9VTBGAj\nnIuwP8uL4tVXX9UXvvAFlZSUyOPxSJJ2796t2267TQ8//LCuXbumm266Sc8++6z8fr96e3tVV1en\nEydO6Pz583rwwQclSUNDQ/rqV7+qnTt3hk+aogBcgYpIrnifOxPy0lOisVAAzjYyIh04IDU0SDt2\nSPX1UkZGqmflfvE+d/LObABJxRVNzsNnPQFICs5FOBdFASDhqAhnoygAJAwV4Q4UBYCEoCLcg6IA\nYCkqwn0oCgCWoSLciaIAMGVUhLtRFACmhIpwP4oCQFyoiPRBUQCIGRWRXigKAFGjItITRQEgKlRE\n+qIoAEyIigBFAWBcVAQkigJABFQEQlEUAMagIvBRFAUASVQExkdRAKAiMCGKAkhjVASiQVEAaYqK\nQLQoCiDNUBGIFUUBpBEqAvGgKIA0QEVgKigKwOWoCEwVRQG4FBUBq1AUgAtREbASRQG4CBWBRKAo\nAJegIpAoFAXgcFQEEo2iAByMikAyUBSAA1ERSCaKAnAYKgLJRlEADkFFIFUoCsABqAikEkUB2BgV\nATugKACboiJgFxQFYDNUBOyGogBshIqAHVEUgA1QEbAzigJIMSoCdkdRAClCRcApKAogBagIOAlF\nASQRFQEnoiiAJKEi4FQUBZBgVAScjqIAEoiKgBuMu1C8+OKL8ng8MsbI4/GEff/BBx+MOC4YDGrj\nxo26cuWKPB6PvvnNb+qRRx5RR0eHtm3bpsHBQWVmZurZZ5/V4sWLw8a3tLSovr5ew8PD2rx5s773\nve9N4ccDUmNkRDpwQGpokHbskOrrpYyMVM8KiI/HGGMifWPTpk3yeDy6cuWKXnvtNX3xi1+UJLW1\ntelzn/ucfvvb30Z8wL6+PvX19cnn82lgYEClpaU6duyYtm7dqp07d6qyslInT57Uk08+qba2tjFj\nh4eHtWDBArW2tio3N1eLFy/W4cOH5fV6x076gwUMsKPQijh4kIqAfcT73DluUfz85z+XJK1YsUJd\nXV3KycmRJF2+fFkPPfTQuA+YnZ2t7OxsSVJWVpa8Xq96enqUk5Ojd955R5J09epV5ebmho3t6OhQ\nQUGB8vPzJUnr1q3T8ePHwxYKwI6oCLjVpOcogsHg6BO/JM2aNUsXL16M6sG7u7vV2dmpu+66S/Pm\nzdM999yj7du3a2RkRK+//nrY9j09PZo9e/bo13l5efrjH/8Y8bEbGhpG/1xeXq7y8vKo5gQkwocV\n8d//ci4C9hEIBBQIBKb8OJMuFBUVFaqsrNRXvvIVGWPU1NSkFStWTPrAAwMDWrNmjfbs2aOsrCxV\nV1ersbFRq1ev1tGjR/WNb3xDf/jDH8aMiXQuZDyhCwWQKlQE7Oyjv0Tv2rUrrseZdKHYu3evmpub\nderUKXk8Hm3ZskWrV6+ecMzg4KBqamq0YcMGVVdXS7rxslJra6skac2aNdq8eXPYuNzcXAWDwdGv\ng8Gg8vLyYvqBgGThiiakDWOxkZER87Wvfc3U19ePud/v95tAIGCMMaa1tdUsWrQobOzg4KD5zGc+\nYy5cuGCuXbtmFi5caLq6usK2S8C0gagNDxuzb58xt95qzFNPGTM0lOoZAdGJ97lz3KL4/Oc/r/b2\ndmVlZYW9JOTxePTuu+9GHNfe3q5Dhw6ppKREfr9fkrR7924999xzevjhh3Xt2jXddNNNeu655yRJ\nvb29qqur04kTJ5SZmal9+/apsrJSw8PDqq2t5UQ2bIWKQDoa9/JYO+PyWCQb5yLgBpZfHgvgBioC\n6Y7PegLGwWc0ATdQFEAEVATwPxQFEIKKAMJRFMAHqAggMooCaY+KACZGUSCtURHA5CgKpCUqAoge\nRYG0Q0UAsaEokDaoCCA+FAXSAhUBxI+igKtREcDUURRwLSoCsAZFAdehIgBrURRwFSoCsB5FAVeg\nIoDEoSjgeFQEkFgUBRyLigCSg6KAI1ERQPJQFHAUKgJIPooCjkFFAKlBUcD2qAggtSgK2BoVAaQe\nRQFboiIA+6AoYDtUBGAvFAVsg4oA7ImigC1QEYB9URRIKSoCsD+KAilDRQDOQFEg6agIwFkoCiQV\nFQE4D0WBpKAiAOeiKJBwVATgbBQFEoaKANyBokBCUBGAe1AUsBQVAbgPRQHLUBGAO1EUmDIqAnA3\nigJTQkUA7kdRIC5UBJA+KArEjIoA0gtFgahREUB6oigQFSoCSF8UBSZERQCgKDAuKgKARFEgAioC\nQCiKAmNQEQA+yvKiCAaDWrZsmYqKilRcXKzGxkZJ0tq1a+X3++X3+zVnzhz5/f6I4/Pz81VSUiK/\n368lS5ZYPT2Mg4oAMB7Li2LatGl65pln5PP5NDAwoNLSUq1YsUJNTU2j22zfvl0zZsyION7j8SgQ\nCGjmzJlWTw3joCIATMTyosjOzpbP55MkZWVlyev1qre3d/T7xhgdOXJE69evH/cxjDFWTwsRUBEA\nopHQcxTd3d3q7OxUWVnZ6H2nT5/WrFmzNHfu3IhjPB6PKioqlJGRoS1btqiuri7idg0NDaN/Li8v\nV3l5uZVTdz0qAnC/QCCgQCAw5cfxmAT9+j4wMKDy8nL94Ac/UHV19ej9W7du1fz58/Xd73434rjL\nly8rJydHb7/9tlasWKG9e/dq6dKlYyft8VAdcRoZkQ4ckBoapB07pPp6KSMj1bMCkAzxPncmpCgG\nBwdVU1OjDRs2jFkkhoaG1NzcrLNnz447NicnR5J02223afXq1ero6AhbKBAfKgJAPCw/R2GMUW1t\nrQoLC1VfXz/me62trfJ6vbr99tsjjn3//ffV398vSXrvvff00ksv6c4777R6immHcxEApsLyhaK9\nvV2HDh1SW1vb6OWwLS0tkqSmpqawk9i9vb164IEHJEl9fX1aunSpfD6fysrKtGrVKt17771WTzGt\nnD8vLV8uPf/8jYp49FFeagIQm4Sdo0gkzlFMjnMRAD7KVucokFqciwBgJT7ryUU4FwEgESgKl6Ai\nACQKReFwVASARKMoHIyKAJAMFIUDUREAkomicBgqAkCyURQOQUUASBWKwgGoCACpRFHYGBUBwA4o\nCpuiIgDYBUVhM1QEALuhKGyEigBgRxSFDVARAOyMokgxKgKA3VEUKUJFAHAKiiIFqAgATkJRJBEV\nAcCJKIokoSIAOBVFkWBUBACnoygSiIoA4AYURQJQEQDchKKwGBUBwG0oCotQEQDciqKwABUBwM0o\niimgIgCkA4oiTlQEgHRBUcSIigCQbiiKGFARANIRRREFKgJAOqMoJkFFAEh3FMU4qAgAuIGiiICK\nAID/oShCUBEAEI6i+AAVAQCRpX1RUBEAMLG0LgoqAgAml5ZFQUUAQPTSriioCACITdoUBRUBAPFJ\ni6KgIgAgfq4uCioCAKbOtUVBRQCANVxXFFQEAFjLVUVBRQCA9VxRFFQEACSO5QtFMBjUsmXLVFRU\npOLiYjU2NkqS1q5dK7/fL7/frzlz5sjv90cc39LSojvuuEPz5s3TE088Menfd/68tHy59PzzNyri\n0UeljAxLfyTXCwQCqZ6Ca7AvrcX+tAfLF4pp06bpmWee0d/+9jedOXNG+/fv15tvvqmmpiZ1dnaq\ns7NTNTU1qqmpCRs7PDysbdu2qaWlRV1dXTp8+LDefPPNiH8PFWEd/jFah31pLfanPVh+jiI7O1vZ\n2dmSpKysLHm9XvX29srr9UqSjDE6cuSI2trawsZ2dHSooKBA+fn5kqR169bp+PHjo2NDLV/OuQgA\nSIaEnqPo7u5WZ2enysrKRu87ffq0Zs2apblz54Zt39PTo9mzZ49+nZeXp56enoiPTUUAQJKYBOnv\n7zelpaWmubl5zP3f+ta3zNNPPx1xzAsvvGA2b948+vUvf/lLs23btrDtJHHjxo0btzhu8UjI5bGD\ng4OqqanRhg0bVF1dPXr/0NCQmpubdfbs2YjjcnNzFQwGR78OBoPKy8sL2+7GWgEASAbLX3oyxqi2\ntlaFhYWqr68f873W1lZ5vV7dfvvtEccuWrRI586dU3d3t65fv66mpiZVVVVZPUUAQAwsXyja29t1\n6NAhtbW1jV4O29LSIklqamrS+vXrx2zf29urBx54QJKUmZmpffv2qbKyUoWFhVq7dm3EE9kAgCSK\n6wWrJDl58qRZsGCBKSgoMD/5yU8ibvPtb3/bFBQUmJKSEnP27Nkkz9BZJtufbW1t5pZbbjE+n8/4\nfD7z+OOPp2CW9vf1r3/dfPKTnzTFxcXjbsNxGb3J9ifHZWwuXrxoysvLTWFhoSkqKjJ79uyJuF0s\nx6htF4qhoSEzd+5cc+HCBXP9+nWzcOFC09XVNWabEydOmJUrVxpjjDlz5owpKytLxVQdIZr92dbW\nZr70pS+laIbOcerUKXP27Nlxn9g4LmMz2f7kuIzN5cuXTWdnpzHmxkVF8+fPn/Jzp20/wiP0PRXT\npk0bfU9FqN/85jd66KGHJEllZWW6evWq3nrrrVRM1/ai2Z8SFwpEY+nSpfrEJz4x7vc5LmMz2f6U\nOC5jkZ2dLZ/PJ2nse9lCxXqM2nahiOY9FZG2uXTpUtLm6CTR7E+Px6PXXntNCxcu1P3336+urq5k\nT9MVOC6txXEZv0jvZZNiP0Zt++mxHo8nqu0++ptGtOPSTTT75bOf/ayCwaCmT5+ukydPqrq6Wv/4\nxz+SMDv34bi0DsdlfAYGBrRmzRrt2bNHWVlZYd+P5Ri1bVFE856Kj25z6dIl5ebmJm2OThLN/rz5\n5ps1ffp0SdLKlSs1ODiof//730mdpxtwXFqL4zJ2472X7UOxHqO2XSiieU9FVVWVfvGLX0iSzpw5\noxkzZmjWrFmpmK7tRbM/33rrrdHfMjo6OmSM0cyZM1MxXUfjuLQWx2VszATvZftQrMeobV96Cn1P\nxfDwsGpra+X1evXTn/5UkrRlyxbdf//9+t3vfqeCggJ9/OMf18GDB1M8a/uKZn++8MILOnDggDIz\nMzV9+nT96le/SvGs7Wn9+vV65ZVX9K9//UuzZ8/Wrl27NDg4KInjMh6T7U+Oy9h8+F62kpKS0f/O\nYffu3bp48aKk+I5Rj+FyAgDABGz70hMAwB5YKAAAE2KhAABMiIUCADAhFgoAwIRYKAAAE/p/YiJl\n9CvpTYsAAAAASUVORK5CYII=\n",
"text": "<matplotlib.figure.Figure at 0x3814ad0>"
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment