Skip to content

Instantly share code, notes, and snippets.

@davidliyutong
Created March 28, 2022 00:44
Show Gist options
  • Save davidliyutong/59b303cb44f2b5104933d8477cc04ace to your computer and use it in GitHub Desktop.
Save davidliyutong/59b303cb44f2b5104933d8477cc04ace to your computer and use it in GitHub Desktop.
Jax Usage Demo
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import jax\n",
"import jax.numpy as jnp"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class BaseLayer:\n",
" _parameters = {}\n",
"\n",
"\n",
"class Dense2Layer(BaseLayer):\n",
" def __init__(self, input_dims: int, output_dims: int):\n",
" super().__init__()\n",
" assert (isinstance(input_dims, int) and isinstance(output_dims, int))\n",
" self._parameters['u'] = jax.random.normal(jax.random.PRNGKey(0), (input_dims, output_dims))\n",
" self._parameters['v'] = jax.random.normal(jax.random.PRNGKey(0), (input_dims, output_dims))\n",
"\n",
" self._parameters['b'] = jax.random.normal(jax.random.PRNGKey(0), (output_dims, ))\n",
" self._parameters['x'] = None\n",
" self.vjp_fn = None\n",
"\n",
" @classmethod\n",
" def forward_fn(cls, x, u, v, b):\n",
" return x**2 @ u + x @ v + b\n",
"\n",
" def __call__(self, x: jax.numpy.DeviceArray):\n",
" self._parameters['x'] = x\n",
" out, self.vjp_fn = jax.vjp(self.forward_fn, layer._parameters['x'], layer._parameters['u'], layer._parameters['v'],\n",
" layer._parameters['b'])\n",
" return out\n",
"\n",
"\n",
"class MSELoss:\n",
" def __call__(self, x, y):\n",
" return jnp.mean((x - y)**2)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"layer = Dense2Layer(20, 3)\n",
"loss_fn = MSELoss()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x = jax.random.normal(jax.random.PRNGKey(0), (2, 20))\n",
"y = jax.numpy.array([[1, 1, 1], [0, 0, 0]], dtype=jax.numpy.float32)\n",
"pred = layer(x)\n",
"loss = loss_fn(pred, y)\n",
"loss_grad = jax.grad(loss_fn, argnums=0)(pred, y)\n",
"print(loss)\n",
"print(loss_grad)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(layer.vjp_fn(loss_grad)[0].shape)\n",
"print(layer.vjp_fn(loss_grad)[1].shape)\n",
"print(layer.vjp_fn(loss_grad)[2].shape)\n",
"print(layer.vjp_fn(loss_grad)[3].shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"interpreter": {
"hash": "aedd5e66c633617a2b6367c11c0534f47dbb53f58d311e2fdabbf5bcacebad6a"
},
"kernelspec": {
"display_name": "Python 3.8.8 ('default')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment