Skip to content

Instantly share code, notes, and snippets.

View ddofer's full-sized avatar

Dan Ofer ddofer

View GitHub Profile
@karpathy
karpathy / min-char-rnn.py
Last active May 12, 2025 17:28
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
def determine_feature_importance(df):
#Determines the importance of individual features within a dataframe
#Grab header for all feature values excluding score & ids
features_list = df.columns.values[4::]
print "Features List: \n", features_list
#set X equal to all feature values, excluding Score & ID fields
X = df.values[:,4::]
#set y equal to all Score values
@balzer82
balzer82 / TimeSeries-Decomposition.ipynb
Last active June 20, 2022 14:38
TimeSeries Decomposition in Python with statsmodels and Pandas
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@jkleint
jkleint / timeseries_cnn.py
Created July 29, 2016 04:05
Example of using Keras to implement a 1D convolutional neural network (CNN) for timeseries prediction.
#!/usr/bin/env python
"""
Example of using Keras to implement a 1D convolutional neural network (CNN) for timeseries prediction.
"""
from __future__ import print_function, division
import numpy as np
from keras.layers import Convolution1D, Dense, MaxPooling1D, Flatten
from keras.models import Sequential
@thomasjungblut
thomasjungblut / xgb_bayes_opt_cv.py
Last active May 22, 2024 22:14
XGBoost hyper parameter optimization using bayes_opt
from bayes_opt import BayesianOptimization
from sklearn.cross_validation import KFold
import xgboost as xgb
def xgbCv(train, features, numRounds, eta, gamma, maxDepth, minChildWeight, subsample, colSample):
# prepare xgb parameters
params = {
"objective": "reg:linear",
"booster" : "gbtree",
"eval_metric": "mae",
@cbaziotis
cbaziotis / AttentionWithContext.py
Last active April 25, 2022 14:37
Keras Layer that implements an Attention mechanism, with a context/query vector, for temporal data. Supports Masking. Follows the work of Yang et al. [https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf] "Hierarchical Attention Networks for Document Classification"
def dot_product(x, kernel):
"""
Wrapper for dot product operation, in order to be compatible with both
Theano and Tensorflow
Args:
x (): input
kernel (): weights
Returns:
"""
if K.backend() == 'tensorflow':
@maximus009
maximus009 / outer_product_keras.py
Created February 16, 2017 20:06
Calculate the outer product/bilinear projection in Keras
from keras.layers import Lambda
from keras import backend as K
from numpy import newaxis
from keras.models import Model, Input
def outer_product(inputs):
"""
inputs: list of two tensors (of equal dimensions,
for which you need to compute the outer product
def load_challenge_data(df,start_at,truncate_at):
seq_len = np.max([truncate_at,df[:,1].max().astype(int)+1])
n_vars = df.shape[1]-2 # Drop unit_number and time
n_series = int(df[:,0].max())
feature_data = np.zeros([seq_len,n_series,n_vars])
times_to_event = np.zeros([seq_len,n_series,1])
seq_lengths = np.zeros([n_series])
mask = np.ones([seq_len,n_series,1])
@nigeljyng
nigeljyng / AttentionWithContext.py
Last active February 10, 2021 14:02 — forked from cbaziotis/AttentionWithContext.py
Keras Layer that implements an Attention mechanism, with a context/query vector, for temporal data. Supports Masking. Follows the work of Yang et al. [https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf] "Hierarchical Attention Networks for Document Classification"
class AttentionWithContext(Layer):
"""
Attention operation, with a context/query vector, for temporal data.
Supports Masking.
Follows the work of Yang et al. [https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf]
"Hierarchical Attention Networks for Document Classification"
by using a context vector to assist the attention
# Input shape
3D tensor with shape: `(samples, steps, features)`.
# Output shape
@chretm
chretm / gist:fdcefce520ddfa1b66af3c730d4928c0
Created April 13, 2017 09:16
semantic-similarity-for-short-sentence_python3
#author : Sujit Pal
#Note: this is a python3 updated version of http://sujitpal.blogspot.fr/2014/12/semantic-similarity-for-short-sentences.html
# by mathieu Chrétien ([email protected])
#contributor : Mathieu Chrétien
from __future__ import division
import nltk
from nltk.corpus import wordnet as wn