Created
November 18, 2018 17:17
-
-
Save deepanshululla/0b6b548fe2f237d21d5b4aef17352154 to your computer and use it in GitHub Desktop.
Numpy tutorial part 2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import numpy as np" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "#### Operation with scalars" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([2, 3, 4, 5, 6])" | |
| ] | |
| }, | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a = np.array([1, 2, 3, 4,5]) #create an array\n", | |
| "\n", | |
| "a + 1" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[1, 2],\n", | |
| " [3, 4]])" | |
| ] | |
| }, | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "b=np.array([[1,2],[3,4]])\n", | |
| "b" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[2, 3],\n", | |
| " [4, 5]])" | |
| ] | |
| }, | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "b+1" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "basically add 1 elementwise to every elemnt" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[0, 1],\n", | |
| " [2, 3]])" | |
| ] | |
| }, | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "b-1" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[2, 4],\n", | |
| " [6, 8]])" | |
| ] | |
| }, | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "b*2" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "element wise multiply with every element" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 1, 4],\n", | |
| " [ 9, 16]])" | |
| ] | |
| }, | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "b**2" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ 1, 8, 27, 64, 125])" | |
| ] | |
| }, | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a**3" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Elementwise operation on exponents" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Vector Multiplications" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 17, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[0 1 2 3 4]\n", | |
| "[2. 2. 2. 2. 2.]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "a=np.arange(5)\n", | |
| "b=np.ones(5)+1\n", | |
| "print(a)\n", | |
| "print(b)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([0., 2., 4., 6., 8.])" | |
| ] | |
| }, | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a*b" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 25, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([0., 2., 4., 6., 8.])" | |
| ] | |
| }, | |
| "execution_count": 25, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a.T*b #tranpose(a)*b" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 22, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(5,)" | |
| ] | |
| }, | |
| "execution_count": 22, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.shape(a)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 23, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(5,)" | |
| ] | |
| }, | |
| "execution_count": 23, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.shape(a.T)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(5,)" | |
| ] | |
| }, | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.shape(b)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 33, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[[1 0 0 0]\n", | |
| " [0 2 0 0]\n", | |
| " [0 0 3 0]\n", | |
| " [0 0 0 4]]\n", | |
| "*****************\n", | |
| "[[ 1 0 0 0]\n", | |
| " [ 0 4 0 0]\n", | |
| " [ 0 0 9 0]\n", | |
| " [ 0 0 0 16]]\n", | |
| "*****************\n", | |
| "[[ 1 0 0 0]\n", | |
| " [ 0 4 0 0]\n", | |
| " [ 0 0 9 0]\n", | |
| " [ 0 0 0 16]]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Matrix multiplication\n", | |
| "\n", | |
| "c = np.diag([1, 2, 3, 4])\n", | |
| "print(c)\n", | |
| "print(\"*****************\")\n", | |
| "print(c * c)\n", | |
| "print(\"*****************\")\n", | |
| "print(c.dot(c))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Array Comparisons" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 27, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([False, True, False, True])" | |
| ] | |
| }, | |
| "execution_count": 27, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a = np.array([1, 2, 3, 4])\n", | |
| "b = np.array([5, 2, 2, 4])\n", | |
| "a == b" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 28, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([False, False, True, False])" | |
| ] | |
| }, | |
| "execution_count": 28, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a > b" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 31, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "False" | |
| ] | |
| }, | |
| "execution_count": 31, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#array-wise comparisions\n", | |
| "a = np.array([1, 2, 3, 5])\n", | |
| "b = np.array([5, 2, 2, 4])\n", | |
| "c = np.array([1, 2, 3, 5])\n", | |
| "\n", | |
| "np.array_equal(a, b)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 32, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "True" | |
| ] | |
| }, | |
| "execution_count": 32, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.array_equal(a, c)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 35, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([3, 5])" | |
| ] | |
| }, | |
| "execution_count": 35, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a[a>b]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "#### Logical Operations" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 36, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ True, True, True, False])" | |
| ] | |
| }, | |
| "execution_count": 36, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a = np.array([1, 1, 0, 0], dtype=bool)\n", | |
| "b = np.array([1, 0, 1, 0], dtype=bool)\n", | |
| "\n", | |
| "np.logical_or(a, b)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 37, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ True, False, False, False])" | |
| ] | |
| }, | |
| "execution_count": 37, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.logical_and(a,b)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 38, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "False" | |
| ] | |
| }, | |
| "execution_count": 38, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.all([True,True,False])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 39, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "True" | |
| ] | |
| }, | |
| "execution_count": 39, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.all([True,True,True])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 40, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "False" | |
| ] | |
| }, | |
| "execution_count": 40, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.any([False,False,False])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 41, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "True" | |
| ] | |
| }, | |
| "execution_count": 41, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.any([False,False,True])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 42, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "True" | |
| ] | |
| }, | |
| "execution_count": 42, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.all(a==a)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 60, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[1 2 3 4]\n", | |
| "[1 2 1 1]\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "False" | |
| ] | |
| }, | |
| "execution_count": 60, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a=np.arange(1,5)\n", | |
| "b=np.random.randint(1,4,4)\n", | |
| "print(a)\n", | |
| "print(b)\n", | |
| "np.all(a>b)# check all elments of a are > b" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 61, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "True" | |
| ] | |
| }, | |
| "execution_count": 61, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.any(a==b) # check if any element of a and b are equal" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 62, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "True" | |
| ] | |
| }, | |
| "execution_count": 62, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a = np.array([1, 2, 3, 2])\n", | |
| "b = np.array([2, 2, 3, 2])\n", | |
| "c = np.array([6, 4, 4, 5])\n", | |
| "((a <= b) & (b <= c)).all() # check if all elements of a <b\n", | |
| "# and all elements of b are < c" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "#### Max and min Operations" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 65, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "1" | |
| ] | |
| }, | |
| "execution_count": 65, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "x=np.array([1,3,4,1,8,3])\n", | |
| "x.min()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 66, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "8" | |
| ] | |
| }, | |
| "execution_count": 66, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "x.max()\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 67, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "0" | |
| ] | |
| }, | |
| "execution_count": 67, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "x.argmin() # index of min element" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 69, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "4" | |
| ] | |
| }, | |
| "execution_count": 69, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "x.argmax() # index of max element" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Statistics" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 119, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "x = np.array([1, 2, 3, 5])\n", | |
| "y = np.array([[1, 2, 3], [5, 6, 1],[7,9,8],[10,12,11]])\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 106, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(4,)" | |
| ] | |
| }, | |
| "execution_count": 106, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.shape(x)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 107, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(4, 3)" | |
| ] | |
| }, | |
| "execution_count": 107, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.shape(y)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "There are 4 rows and 3 columns" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 117, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 1, 2, 3],\n", | |
| " [ 5, 6, 1],\n", | |
| " [ 7, 9, 8],\n", | |
| " [10, 12, 11]])" | |
| ] | |
| }, | |
| "execution_count": 117, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "y" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "**Mean**" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 120, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2.75" | |
| ] | |
| }, | |
| "execution_count": 120, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "x.mean()\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 100, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "6.25" | |
| ] | |
| }, | |
| "execution_count": 100, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "y.mean()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 97, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([2., 4., 8.])" | |
| ] | |
| }, | |
| "execution_count": 97, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "y.mean(axis=1)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 98, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([4.33333333, 5.66666667, 4. ])" | |
| ] | |
| }, | |
| "execution_count": 98, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "y.mean(axis=0)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "**Median**" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 101, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2.5" | |
| ] | |
| }, | |
| "execution_count": 101, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.median(x)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 102, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "6.5" | |
| ] | |
| }, | |
| "execution_count": 102, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.median(y)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 103, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ 2., 5., 8., 11.])" | |
| ] | |
| }, | |
| "execution_count": 103, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.median(y, axis=-1) # last axis i.e y axis " | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 113, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ 2., 5., 8., 11.])" | |
| ] | |
| }, | |
| "execution_count": 113, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.median(y,axis=1) # y axis i.e along rows" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 105, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([6. , 7.5, 5.5])" | |
| ] | |
| }, | |
| "execution_count": 105, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.median(y,axis=0) # x axis i.e alonfg rows" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "**Standard Deviation**" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 108, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "1.479019945774904" | |
| ] | |
| }, | |
| "execution_count": 108, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "x.std()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 110, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "3.722118572354549" | |
| ] | |
| }, | |
| "execution_count": 110, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "y.std()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 114, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([0.81649658, 2.1602469 , 0.81649658, 0.81649658])" | |
| ] | |
| }, | |
| "execution_count": 114, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "y.std(axis=1)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 115, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([3.26917421, 3.69966215, 3.96074488])" | |
| ] | |
| }, | |
| "execution_count": 115, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "y.std(axis=0)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 116, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 1, 2, 3],\n", | |
| " [ 5, 6, 1],\n", | |
| " [ 7, 9, 8],\n", | |
| " [10, 12, 11]])" | |
| ] | |
| }, | |
| "execution_count": 116, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "y" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Broadcasting" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Basic operations on numpy arrays (addition, etc.) are elementwise\n", | |
| "\n", | |
| "This works on arrays of the same size.\n", | |
| " Nevertheless, It’s also possible to do operations on arrays of different sizes if NumPy can transform these arrays so that they all have the same size: this conversion is called broadcasting.\n", | |
| "\n", | |
| "The image below gives an example of broadcasting:" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 133, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ 0, 10, 20, 30, 0, 10, 20, 30, 0, 10, 20, 30])" | |
| ] | |
| }, | |
| "execution_count": 133, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a=np.tile(np.array([0,10,20,30]),(3))\n", | |
| "a" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 142, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 0, 10, 20, 30, 0, 10, 20, 30],\n", | |
| " [ 0, 10, 20, 30, 0, 10, 20, 30],\n", | |
| " [ 0, 10, 20, 30, 0, 10, 20, 30]])" | |
| ] | |
| }, | |
| "execution_count": 142, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a=np.tile(np.array([0,10,20,30]),(3,2))\n", | |
| "a" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 147, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 0, 10, 20, 30],\n", | |
| " [ 0, 10, 20, 30],\n", | |
| " [ 0, 10, 20, 30]])" | |
| ] | |
| }, | |
| "execution_count": 147, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a=np.tile(np.array([0,10,20,30]),(3,1))\n", | |
| "a" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 148, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 0, 0, 0],\n", | |
| " [10, 10, 10],\n", | |
| " [20, 20, 20],\n", | |
| " [30, 30, 30]])" | |
| ] | |
| }, | |
| "execution_count": 148, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a.T" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 149, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([0, 1, 2])" | |
| ] | |
| }, | |
| "execution_count": 149, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "b = np.array([0, 1, 2])\n", | |
| "b" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 150, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "ename": "ValueError", | |
| "evalue": "operands could not be broadcast together with shapes (3,4) (3,) ", | |
| "output_type": "error", | |
| "traceback": [ | |
| "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
| "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[0;32m<ipython-input-150-ca730b97bf8a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
| "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (3,4) (3,) " | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "a+b" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 151, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 0, 1, 2],\n", | |
| " [10, 11, 12],\n", | |
| " [20, 21, 22],\n", | |
| " [30, 31, 32]])" | |
| ] | |
| }, | |
| "execution_count": 151, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a.T+b" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 153, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(3, 4)" | |
| ] | |
| }, | |
| "execution_count": 153, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.shape(a)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 154, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(4, 3)" | |
| ] | |
| }, | |
| "execution_count": 154, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.shape(a.T)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 158, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(4,)" | |
| ] | |
| }, | |
| "execution_count": 158, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a = np.arange(0, 40, 10)\n", | |
| "a.shape" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 159, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ 0, 10, 20, 30])" | |
| ] | |
| }, | |
| "execution_count": 159, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a.T" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 160, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ 0, 10, 20, 30])" | |
| ] | |
| }, | |
| "execution_count": 160, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 156, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(4, 1)" | |
| ] | |
| }, | |
| "execution_count": 156, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a = a[:, np.newaxis] # adds a new axis -> 2D array\n", | |
| "a.shape" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 157, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 0],\n", | |
| " [10],\n", | |
| " [20],\n", | |
| " [30]])" | |
| ] | |
| }, | |
| "execution_count": 157, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Array Shape Manipulation" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 165, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[[1 2 3]\n", | |
| " [4 5 6]]\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([1, 2, 3, 4, 5, 6])" | |
| ] | |
| }, | |
| "execution_count": 165, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a = np.array([[1, 2, 3], [4, 5, 6]])\n", | |
| "print(a)\n", | |
| "a.ravel() #Return a contiguous flattened array. A 1-D array, containing the elements of the input, is returned. A copy is made only if needed." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 166, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[1, 4],\n", | |
| " [2, 5],\n", | |
| " [3, 6]])" | |
| ] | |
| }, | |
| "execution_count": 166, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a.T" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 167, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([1, 4, 2, 5, 3, 6])" | |
| ] | |
| }, | |
| "execution_count": 167, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a.T.ravel()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Reshaping" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "The inverse operation to flattening" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 168, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "(2, 3)\n", | |
| "[[1 2 3]\n", | |
| " [4 5 6]]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(a.shape)\n", | |
| "print(a)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 169, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[1 2 3 4 5 6]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "b = a.ravel()\n", | |
| "print(b)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 170, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[1, 2, 3],\n", | |
| " [4, 5, 6]])" | |
| ] | |
| }, | |
| "execution_count": 170, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "b = b.reshape((2, 3))\n", | |
| "b" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 171, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[100, 2, 3],\n", | |
| " [ 4, 5, 6]])" | |
| ] | |
| }, | |
| "execution_count": 171, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "b[0, 0] = 100\n", | |
| "a" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "**Note and Beware: reshape may also return a copy!:**" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 173, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[0., 0.],\n", | |
| " [0., 0.],\n", | |
| " [0., 0.]])" | |
| ] | |
| }, | |
| "execution_count": 173, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a = np.zeros((3, 2))\n", | |
| "b = a.T.reshape(3*2)\n", | |
| "b[0] = 50\n", | |
| "a" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 176, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "False" | |
| ] | |
| }, | |
| "execution_count": 176, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.shares_memory(a,b)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "**Dimension Shuffling**" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 178, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(4, 3, 2)" | |
| ] | |
| }, | |
| "execution_count": 178, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a = np.arange(4*3*2).reshape(4, 3, 2)\n", | |
| "a.shape" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 179, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[[ 0, 1],\n", | |
| " [ 2, 3],\n", | |
| " [ 4, 5]],\n", | |
| "\n", | |
| " [[ 6, 7],\n", | |
| " [ 8, 9],\n", | |
| " [10, 11]],\n", | |
| "\n", | |
| " [[12, 13],\n", | |
| " [14, 15],\n", | |
| " [16, 17]],\n", | |
| "\n", | |
| " [[18, 19],\n", | |
| " [20, 21],\n", | |
| " [22, 23]]])" | |
| ] | |
| }, | |
| "execution_count": 179, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 181, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "4" | |
| ] | |
| }, | |
| "execution_count": 181, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a[0,2,0]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 183, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "3" | |
| ] | |
| }, | |
| "execution_count": 183, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a[0,1,1]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "#### Resizing" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 186, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([0, 1, 2, 3, 0, 0, 0, 0])" | |
| ] | |
| }, | |
| "execution_count": 186, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a = np.arange(4)\n", | |
| "a.resize((8,))\n", | |
| "a" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 187, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "ename": "ValueError", | |
| "evalue": "cannot resize an array that references or is referenced\nby another array in this way. Use the resize function", | |
| "output_type": "error", | |
| "traceback": [ | |
| "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
| "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[0;32m<ipython-input-187-5d858401815e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
| "\u001b[0;31mValueError\u001b[0m: cannot resize an array that references or is referenced\nby another array in this way. Use the resize function" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "b = a\n", | |
| "a.resize((4,)) " | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "**Sorting Data**" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 189, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[4, 5, 6],\n", | |
| " [2, 2, 3]])" | |
| ] | |
| }, | |
| "execution_count": 189, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#Sorting along an axis:\n", | |
| "a = np.array([[5, 4, 6], [2, 3, 2]])\n", | |
| "b = np.sort(a, axis=1)\n", | |
| "b" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 190, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[2, 3, 2],\n", | |
| " [5, 4, 6]])" | |
| ] | |
| }, | |
| "execution_count": 190, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.sort(a,axis=0)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 191, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[4, 5, 6],\n", | |
| " [2, 2, 3]])" | |
| ] | |
| }, | |
| "execution_count": 191, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#in-place sort\n", | |
| "a.sort(axis=1)\n", | |
| "a" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 192, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([2, 3, 1, 0])" | |
| ] | |
| }, | |
| "execution_count": 192, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#sorting with fancy indexing\n", | |
| "a = np.array([4, 3, 1, 2])\n", | |
| "j = np.argsort(a)\n", | |
| "j" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 193, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([1, 2, 3, 4])" | |
| ] | |
| }, | |
| "execution_count": 193, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a[j]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.7.0" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment