Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save deeplycloudy/2f778c0d29b61aa8771fc5a3bfcacf9f to your computer and use it in GitHub Desktop.
Save deeplycloudy/2f778c0d29b61aa8771fc5a3bfcacf9f to your computer and use it in GitHub Desktop.
20220809-1000Z-GLM-Wisconsin-non-lightning-events
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "a58f5c67-f113-49be-8ca0-fa520c723b64",
"metadata": {},
"outputs": [],
"source": [
"# %%bash\n",
"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T09:50:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T09:51:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T09:52:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T09:53:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T09:54:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T09:55:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T09:56:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T09:57:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T09:58:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T09:59:00Z\"\n",
"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:00:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:01:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:02:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:03:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:04:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:05:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:06:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:07:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:08:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:09:00Z\"\n",
"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:10:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:11:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:12:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:13:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:14:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:15:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:16:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:17:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:18:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:19:00Z\"\n",
"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:20:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:21:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:22:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:23:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:24:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:25:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:26:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:27:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:28:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:29:00Z\"\n",
"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:30:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:31:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:32:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:33:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:34:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:35:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:36:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:37:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:38:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:39:00Z\"\n",
"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:40:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:41:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:42:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:43:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:44:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:45:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:46:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:47:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:48:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:49:00Z\"\n",
"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:50:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:51:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:52:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:53:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:54:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:55:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:56:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:57:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:58:00Z\"\n",
"# python ./download.py -s goes16 -w '.' -d \"2022-08-09T10:59:00Z\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6e77b71a-c770-4911-9e00-29e7cf5c074f",
"metadata": {},
"outputs": [],
"source": [
"from glmlib import combine_glm_l2\n",
"from glmtools.io.glm import GLMDataset\n",
"import numpy as np\n",
"import glob\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "a25b962d-bf03-4901-b695-016c2ea2925c",
"metadata": {},
"outputs": [],
"source": [
"glml2 = combine_glm_l2(glob.glob(\"./2022/Aug/09/OR*.nc\"))"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "98fe2ec1-4c62-461f-a922-0dc089667534",
"metadata": {},
"outputs": [],
"source": [
"glm = GLMDataset(glml2, check_area_units=False, change_energy_units=False)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "380cae99-0bb4-4893-b231-350b1fad51b6",
"metadata": {},
"outputs": [],
"source": [
"glmsub = glm.subset_flashes(lon_range=(-95., -87), lat_range=(42,48))"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "5b89cae4-06bf-40ba-ae42-fb5194278d4a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2 {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.DataArray &#x27;event_time_offset&#x27; (number_of_events: 47)&gt;\n",
"array([&#x27;2022-08-09T09:59:26.804762840&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804381370&#x27;, &#x27;2022-08-09T09:59:26.804762840&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804762840&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804762840&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804381370&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804381370&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804381370&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.540018081&#x27;, &#x27;2022-08-09T09:59:26.907760620&#x27;,\n",
" &#x27;2022-08-09T09:59:26.907760620&#x27;, &#x27;2022-08-09T09:59:26.907760620&#x27;,\n",
" &#x27;2022-08-09T09:59:26.907760620&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.807814598&#x27;, &#x27;2022-08-09T09:59:26.909286499&#x27;,\n",
" &#x27;2022-08-09T09:59:26.909286499&#x27;, &#x27;2022-08-09T09:59:26.909286499&#x27;,\n",
" &#x27;2022-08-09T09:59:26.909286499&#x27;, &#x27;2022-08-09T09:59:26.911193847&#x27;,\n",
" &#x27;2022-08-09T09:59:26.911193847&#x27;, &#x27;2022-08-09T09:59:26.911193847&#x27;,\n",
" &#x27;2022-08-09T10:36:53.290992736&#x27;, &#x27;2022-08-09T10:36:53.292900085&#x27;,\n",
" &#x27;2022-08-09T10:36:53.292900085&#x27;, &#x27;2022-08-09T10:36:53.292900085&#x27;,\n",
" &#x27;2022-08-09T10:36:53.471811294&#x27;], dtype=&#x27;datetime64[ns]&#x27;)\n",
"Coordinates:\n",
" event_id (number_of_events) uint32 680095274 ... 681675441\n",
" event_time_offset (number_of_events) datetime64[ns] 2022-08-09T09:59...\n",
" event_lat (number_of_events) float32 46.85 47.12 ... 42.94\n",
" event_lon (number_of_events) float32 -91.76 -91.74 ... -90.26\n",
" event_parent_group_id (number_of_events) uint32 283450567 ... 284009298\n",
"Dimensions without coordinates: number_of_events\n",
"Attributes:\n",
" long_name: GLM L2+ Lightning Detection: event&#x27;s time of occurrence\n",
" standard_name: time\n",
" axis: T</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'event_time_offset'</div><ul class='xr-dim-list'><li><span>number_of_events</span>: 47</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-30c4f075-c6e3-42e1-aefa-3171be4976e6' class='xr-array-in' type='checkbox' checked><label for='section-30c4f075-c6e3-42e1-aefa-3171be4976e6' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>2022-08-09T09:59:26.804762840 ... 2022-08-09T10:36:53.471811294</span></div><div class='xr-array-data'><pre>array([&#x27;2022-08-09T09:59:26.804762840&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804381370&#x27;, &#x27;2022-08-09T09:59:26.804762840&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804762840&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804762840&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804381370&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804381370&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804381370&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.540018081&#x27;, &#x27;2022-08-09T09:59:26.907760620&#x27;,\n",
" &#x27;2022-08-09T09:59:26.907760620&#x27;, &#x27;2022-08-09T09:59:26.907760620&#x27;,\n",
" &#x27;2022-08-09T09:59:26.907760620&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.807814598&#x27;, &#x27;2022-08-09T09:59:26.909286499&#x27;,\n",
" &#x27;2022-08-09T09:59:26.909286499&#x27;, &#x27;2022-08-09T09:59:26.909286499&#x27;,\n",
" &#x27;2022-08-09T09:59:26.909286499&#x27;, &#x27;2022-08-09T09:59:26.911193847&#x27;,\n",
" &#x27;2022-08-09T09:59:26.911193847&#x27;, &#x27;2022-08-09T09:59:26.911193847&#x27;,\n",
" &#x27;2022-08-09T10:36:53.290992736&#x27;, &#x27;2022-08-09T10:36:53.292900085&#x27;,\n",
" &#x27;2022-08-09T10:36:53.292900085&#x27;, &#x27;2022-08-09T10:36:53.292900085&#x27;,\n",
" &#x27;2022-08-09T10:36:53.471811294&#x27;], dtype=&#x27;datetime64[ns]&#x27;)</pre></div></div></li><li class='xr-section-item'><input id='section-e020a733-c2a9-4b63-93a5-90f321a8d8e7' class='xr-section-summary-in' type='checkbox' checked><label for='section-e020a733-c2a9-4b63-93a5-90f321a8d8e7' class='xr-section-summary' >Coordinates: <span>(5)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>event_id</span></div><div class='xr-var-dims'>(number_of_events)</div><div class='xr-var-dtype'>uint32</div><div class='xr-var-preview xr-preview'>680095274 680095275 ... 681675441</div><input id='attrs-a2638adb-f695-49f4-b772-4b3712137b9b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a2638adb-f695-49f4-b772-4b3712137b9b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-29cadbe1-e819-452e-aa40-e975e0f30677' class='xr-var-data-in' type='checkbox'><label for='data-29cadbe1-e819-452e-aa40-e975e0f30677' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>product-unique lightning event identifier</dd><dt><span>units :</span></dt><dd>1</dd></dl></div><div class='xr-var-data'><pre>array([680095274, 680095275, 680095276, 680095277, 680095278, 680095279,\n",
" 680095280, 680095281, 680095282, 680095283, 680095284, 680095285,\n",
" 680095286, 680095287, 680095005, 680095521, 680095522, 680095523,\n",
" 680095524, 680095259, 680095264, 680095265, 680095266, 680095260,\n",
" 680095261, 680095262, 680095263, 680095267, 680095268, 680095269,\n",
" 680095270, 680095271, 680095272, 680095273, 680095356, 680095517,\n",
" 680095518, 680095519, 680095520, 680095583, 680095584, 680095585,\n",
" 681675219, 681675235, 681675236, 681675237, 681675441],\n",
" dtype=uint32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>event_time_offset</span></div><div class='xr-var-dims'>(number_of_events)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2022-08-09T09:59:26.804762840 .....</div><input id='attrs-668cbf88-08f4-4576-a2af-d54aa6da0750' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-668cbf88-08f4-4576-a2af-d54aa6da0750' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9e2fae0b-9ac3-4a13-9d37-74a7554a01f6' class='xr-var-data-in' type='checkbox'><label for='data-9e2fae0b-9ac3-4a13-9d37-74a7554a01f6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>GLM L2+ Lightning Detection: event&#x27;s time of occurrence</dd><dt><span>standard_name :</span></dt><dd>time</dd><dt><span>axis :</span></dt><dd>T</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;2022-08-09T09:59:26.804762840&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804381370&#x27;, &#x27;2022-08-09T09:59:26.804762840&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804762840&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804762840&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804381370&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804381370&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.804381370&#x27;, &#x27;2022-08-09T09:59:26.804381370&#x27;,\n",
" &#x27;2022-08-09T09:59:26.540018081&#x27;, &#x27;2022-08-09T09:59:26.907760620&#x27;,\n",
" &#x27;2022-08-09T09:59:26.907760620&#x27;, &#x27;2022-08-09T09:59:26.907760620&#x27;,\n",
" &#x27;2022-08-09T09:59:26.907760620&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.805907249&#x27;, &#x27;2022-08-09T09:59:26.805907249&#x27;,\n",
" &#x27;2022-08-09T09:59:26.807814598&#x27;, &#x27;2022-08-09T09:59:26.909286499&#x27;,\n",
" &#x27;2022-08-09T09:59:26.909286499&#x27;, &#x27;2022-08-09T09:59:26.909286499&#x27;,\n",
" &#x27;2022-08-09T09:59:26.909286499&#x27;, &#x27;2022-08-09T09:59:26.911193847&#x27;,\n",
" &#x27;2022-08-09T09:59:26.911193847&#x27;, &#x27;2022-08-09T09:59:26.911193847&#x27;,\n",
" &#x27;2022-08-09T10:36:53.290992736&#x27;, &#x27;2022-08-09T10:36:53.292900085&#x27;,\n",
" &#x27;2022-08-09T10:36:53.292900085&#x27;, &#x27;2022-08-09T10:36:53.292900085&#x27;,\n",
" &#x27;2022-08-09T10:36:53.471811294&#x27;], dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>event_lat</span></div><div class='xr-var-dims'>(number_of_events)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>46.85 47.12 47.03 ... 43.02 42.94</div><input id='attrs-445b9c87-1843-4386-ad9c-2f2f50c9c38f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-445b9c87-1843-4386-ad9c-2f2f50c9c38f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8e05afdf-4efb-48d8-a0f8-ab0e839a8355' class='xr-var-data-in' type='checkbox'><label for='data-8e05afdf-4efb-48d8-a0f8-ab0e839a8355' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>GLM L2+ Lightning Detection: event latitude coordinate</dd><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd><dt><span>axis :</span></dt><dd>Y</dd></dl></div><div class='xr-var-data'><pre>array([46.852455, 47.116524, 47.027145, 46.937767, 46.848396, 47.02105 ,\n",
" 46.93168 , 47.01699 , 47.128708, 47.03324 , 47.12262 , 46.94793 ,\n",
" 47.0373 , 46.941833, 47.03324 , 47.12262 , 47.027145, 46.941833,\n",
" 47.03324 , 42.960526, 42.879272, 42.800056, 42.95646 , 42.86302 ,\n",
" 42.787865, 42.86709 , 42.79193 , 42.875214, 42.716774, 42.63552 ,\n",
" 42.9524 , 42.871147, 42.712708, 42.79599 , 42.79599 , 42.875214,\n",
" 42.79599 , 42.871147, 42.79193 , 42.871147, 42.875214, 42.79599 ,\n",
" 42.944275, 42.94021 , 42.944275, 43.02349 , 42.944275],\n",
" dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>event_lon</span></div><div class='xr-var-dims'>(number_of_events)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>-91.76 -91.74 ... -90.28 -90.26</div><input id='attrs-6bb273d3-2203-41f1-aee1-1a700b753f46' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6bb273d3-2203-41f1-aee1-1a700b753f46' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7bad8db5-f53b-4acf-8505-8a5b2a38adfc' class='xr-var-data-in' type='checkbox'><label for='data-7bad8db5-f53b-4acf-8505-8a5b2a38adfc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>GLM L2+ Lightning Detection: event longitude coordinate</dd><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd><dt><span>axis :</span></dt><dd>X</dd></dl></div><div class='xr-var-data'><pre>array([-91.75911 , -91.73676 , -91.70426 , -91.67176 , -91.63926 ,\n",
" -91.58238 , -91.54988 , -91.46254 , -91.980515, -91.82614 ,\n",
" -91.85864 , -91.91348 , -91.94801 , -91.79364 , -91.82614 ,\n",
" -91.85864 , -91.70426 , -91.79364 , -91.82614 , -90.59721 ,\n",
" -90.57284 , -90.54846 , -90.48549 , -90.13205 , -90.21939 ,\n",
" -90.241745, -90.32909 , -90.46112 , -90.4144 , -90.39206 ,\n",
" -90.37581 , -90.351425, -90.30471 , -90.438774, -90.438774,\n",
" -90.46112 , -90.438774, -90.351425, -90.32909 , -90.351425,\n",
" -90.46112 , -90.438774, -90.260025, -90.15033 , -90.260025,\n",
" -90.282364, -90.260025], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>event_parent_group_id</span></div><div class='xr-var-dims'>(number_of_events)</div><div class='xr-var-dtype'>uint32</div><div class='xr-var-preview xr-preview'>283450567 283450567 ... 284009298</div><input id='attrs-77455e06-b590-40fe-ba54-c3dfa2f39ebd' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-77455e06-b590-40fe-ba54-c3dfa2f39ebd' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-efd177e7-2a34-42c8-845c-205358bd7eea' class='xr-var-data-in' type='checkbox'><label for='data-efd177e7-2a34-42c8-845c-205358bd7eea' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>product-unique lightning group identifier for one or more events</dd><dt><span>units :</span></dt><dd>1</dd></dl></div><div class='xr-var-data'><pre>array([283450567, 283450567, 283450567, 283450567, 283450567, 283450567,\n",
" 283450567, 283450567, 283450567, 283450567, 283450567, 283450567,\n",
" 283450567, 283450567, 283450503, 283450602, 283450602, 283450602,\n",
" 283450602, 283450565, 283450565, 283450565, 283450565, 283450565,\n",
" 283450565, 283450565, 283450565, 283450565, 283450565, 283450565,\n",
" 283450565, 283450565, 283450565, 283450565, 283450577, 283450601,\n",
" 283450601, 283450601, 283450601, 283450610, 283450610, 283450610,\n",
" 284009222, 284009225, 284009225, 284009225, 284009298],\n",
" dtype=uint32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-f4534b68-34d2-4294-9e09-22285ddb69af' class='xr-section-summary-in' type='checkbox' checked><label for='section-f4534b68-34d2-4294-9e09-22285ddb69af' class='xr-section-summary' >Attributes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>GLM L2+ Lightning Detection: event&#x27;s time of occurrence</dd><dt><span>standard_name :</span></dt><dd>time</dd><dt><span>axis :</span></dt><dd>T</dd></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.DataArray 'event_time_offset' (number_of_events: 47)>\n",
"array(['2022-08-09T09:59:26.804762840', '2022-08-09T09:59:26.804381370',\n",
" '2022-08-09T09:59:26.804381370', '2022-08-09T09:59:26.804762840',\n",
" '2022-08-09T09:59:26.804762840', '2022-08-09T09:59:26.804381370',\n",
" '2022-08-09T09:59:26.804762840', '2022-08-09T09:59:26.804381370',\n",
" '2022-08-09T09:59:26.804381370', '2022-08-09T09:59:26.804381370',\n",
" '2022-08-09T09:59:26.804381370', '2022-08-09T09:59:26.804381370',\n",
" '2022-08-09T09:59:26.804381370', '2022-08-09T09:59:26.804381370',\n",
" '2022-08-09T09:59:26.540018081', '2022-08-09T09:59:26.907760620',\n",
" '2022-08-09T09:59:26.907760620', '2022-08-09T09:59:26.907760620',\n",
" '2022-08-09T09:59:26.907760620', '2022-08-09T09:59:26.805907249',\n",
" '2022-08-09T09:59:26.805907249', '2022-08-09T09:59:26.805907249',\n",
" '2022-08-09T09:59:26.805907249', '2022-08-09T09:59:26.805907249',\n",
" '2022-08-09T09:59:26.805907249', '2022-08-09T09:59:26.805907249',\n",
" '2022-08-09T09:59:26.805907249', '2022-08-09T09:59:26.805907249',\n",
" '2022-08-09T09:59:26.805907249', '2022-08-09T09:59:26.805907249',\n",
" '2022-08-09T09:59:26.805907249', '2022-08-09T09:59:26.805907249',\n",
" '2022-08-09T09:59:26.805907249', '2022-08-09T09:59:26.805907249',\n",
" '2022-08-09T09:59:26.807814598', '2022-08-09T09:59:26.909286499',\n",
" '2022-08-09T09:59:26.909286499', '2022-08-09T09:59:26.909286499',\n",
" '2022-08-09T09:59:26.909286499', '2022-08-09T09:59:26.911193847',\n",
" '2022-08-09T09:59:26.911193847', '2022-08-09T09:59:26.911193847',\n",
" '2022-08-09T10:36:53.290992736', '2022-08-09T10:36:53.292900085',\n",
" '2022-08-09T10:36:53.292900085', '2022-08-09T10:36:53.292900085',\n",
" '2022-08-09T10:36:53.471811294'], dtype='datetime64[ns]')\n",
"Coordinates:\n",
" event_id (number_of_events) uint32 680095274 ... 681675441\n",
" event_time_offset (number_of_events) datetime64[ns] 2022-08-09T09:59...\n",
" event_lat (number_of_events) float32 46.85 47.12 ... 42.94\n",
" event_lon (number_of_events) float32 -91.76 -91.74 ... -90.26\n",
" event_parent_group_id (number_of_events) uint32 283450567 ... 284009298\n",
"Dimensions without coordinates: number_of_events\n",
"Attributes:\n",
" long_name: GLM L2+ Lightning Detection: event's time of occurrence\n",
" standard_name: time\n",
" axis: T"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"glmsub.event_time_offset"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "2215d89c-5e8b-4f36-b3e6-52dafbd000a9",
"metadata": {},
"outputs": [],
"source": [
"first = {'number_of_events':(glmsub.event_time_offset < np.datetime64('2022-08-09T10:15')).compute()}\n",
"second = {'number_of_events':(glmsub.event_time_offset > np.datetime64('2022-08-09T10:15')).compute()}"
]
},
{
"cell_type": "code",
"execution_count": 68,
"id": "d77d37e4-c43c-4097-a2b6-35902720efc7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x7f83e1294ac8>"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEeCAYAAABG2VgdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3debgcVbX+8e9rmMMkJKCAIYgCApfLcBwYVC4iKLMCCpIrqD8RBwQRURQZL1cQVByZHOAKyKAgkwqIBgRFTAjEoAwKYVYGmVXG9ftj7yaVk+7q6j51Tncn7+d5+jndVbuqVnc6Z52qvWttRQRmZmZ1elmvAzAzs/mPk4uZmdXOycXMzGrn5GJmZrVzcjEzs9ot1OsA+sGECRNi8uTJvQ7DzGygTJ8+/eGImNhsnZMLMHnyZKZNm9brMMzMBoqku1qt82UxMzOrnZOLmZnVzsnFzMxq5+RiZma1c3IxM7PaebRYF9Y57Bc8/cwL8ywfv+g4bj7iHR3vb/LnLm25bvYx23a8PzOzXnNy6UKzxFK2fKzVnfzMzDrly2LzoX5PfmY2/3NyMTOz2vmyWM2a9Z+M5HJUq/4Y98WYWT9zchkD/XQ5qs5kVXffjvuKzOYfA59cJI0DpgH3RcR2ks4B1syrlwUei4j16zzm+EXH9VXC6JW6+3bcV2Q2/xj45ALsB/wZWBogIt7bWCHpK8DjdR+w1V/RZUOKy7Q6a+h2f05+ZtZrA51cJK0CbAscDRwwbJ2A9wBb9CC0eQxPFCO91NMs8TSSVN3Jz8ysUwOdXIATgIOApZqsezPw94i4vdmGkvYG9gaYNGnSqAXYSr+dWYx28nO/idmCZWCHIkvaDngwIqa3aLI78KNW20fEKRExFBFDEyc2neumY+MXHVfLfvpB3cmv35KpmY2uQT5z2RTYQdI2wGLA0pLOiIgpkhYC3g1sNJYBNfvLfCSXopr1xfTTpa26+3Za7W9+StpmC4qBTS4RcTBwMICkzYEDI2JKXr0lcEtE3Nuj8Hqi3T02nSardpe26k6mvmxmNv8Y2MtibexGySWxBUmdZxa+tGVmVQ3smUtRREwFphZe79WrWIbzpR4zWxDNF8mln9V9qaff74lxMjUzcHJZ4LnfxMxGw/za52JmZj3k5DKfaHXZqZvLUXXuy8wWTIqIXsfQc0NDQzFt2rReh2FmNlAkTY+IoWbrfOZiZma1c3IxM7PaObmYmVntnFzMzKx2Ti5mZlY7JxczM6udk4uZmdXOycXMzGrn5GJmZrWrlFwkvaLstZmZWVHVM5fvtXltZmb2kkrJJSK2LXttZmZWVGk+F0njgBWL7SPi7tEKyszMBlvb5CJpX+Aw4O/Ai3lxAOuNYlxmZjbAqpy57AesGRGPjHYwZmY2f6jS53IP8PhoB2JmZvOPKmcudwBTJV0KPNNYGBFfHbWozMxsoFVJLnfnxyL5YWZmVqptcomIIwAkLZVexlOjHpWZmQ20tn0uktaVNAOYBdwsabqkdUY/NDMzG1RVOvRPAQ6IiFUjYlXg08CpoxuWmZkNsirJZXxE/LrxIiKmAuNbNZa0oqTvSfp5fr22pA+NOFIzMxsYVZLLHZK+KGlyfhwC3FnS/jTgMmCl/Po2YP+RhWlmZoOkSnL5IDAROB+4ID//QEn7CRFxLvlu/oh4HnhhhHGamdkAqTJa7FHgkx3s82lJy5NKxCDpTfgmTDOzBUrL5CLphIjYX9LF5ERRFBE7tNj0AOAiYHVJ15LOdHatI1gzMxsMZWcuP8w/j+9wnzcDbwXWBATcime8NDNboLT8pR8R0/PT9SPiquIDWL9kn7+LiOcj4uaImBURzwG/qzNoMzPrb1XOKPZssmyv4QskvULSRsDikjaQtGF+bA4sMbIwzcxskJT1uewOvA9YTdJFhVVLAc3K729NSjqrAMWilk8Cnx9xpGZmNjDK+lx+CzwATAC+Ulj+JDBzeOOIOB04XdLOEfGTWqMskWfJnAbcFxHb5WX7Ap8AngcujYiDxioeMzMrSS4RcRdwl6Q9gPsj4t8AkhYnnZ3MbrHdTyRtC6wDLFZYfmSNcRftB/wZWDrH91/AjsB6EfGMpBVG6bhmZtZClT6Xl26IzF4AzmvVWNJJwHuBfUmjxXYFVh1BjC1JWgXYFvhuYfFHgWMi4hmAiHhwNI5tZmatVUkuC0XEs40X+XnZvC6bRMT7gUdzuf6NgVeNLMyWTgAOYu7ktwbwZkm/l3SVpNc321DS3pKmSZr20EMPjVJ4ZmYLpirJ5SFJL90wKWlH4OGS9v/KP/8paSXgOWC17kNsTtJ2wIOFIdMNCwEvB94EfAY4V5KGbx8Rp0TEUEQMTZw4se7wzMwWaFVmotwHOFPSt0l36t8LvL+k/SWSlgWOA27I23y3pH23NgV2kLQNqW9naUln5PjOj4gArpf0ImlQgk9PzMzGiNLv4AoNpSVz+ycr71xaFFgsIka1tli+l+bAiNhO0j7AShFxqKQ1gCuBSVHyRoeGhmLatGmjGaKZ2XxH0vSIGGq2ru2Zi6QVgf8l/cJ+p6S1gY0j4nsl22wCTG7sXxIR8X/dBN+F7wPflzQLeBbYsyyxmJlZ/apcFjsN+AHwhfz6NuAcoGlykfRDYHXgRuaU2g9g1JJLnsBsan7+LDBltI5lZmbtVUkuEyLiXEkHQ5qfRVLZ/CxDwNo+WzAzW3BVGS3W6fwss4BX1BCbmZkNqCpnLp3OzzIB+JOk64FnGgtL5n8xM7P5TJXk0un8LIePPCwzMxtkVZLL7yJiQ1KSAUDSDcCGzRrn+V7MzGwBVlZy/xXAyuT5WUhnLZAKRM4zP4ukayJiM0lPMve0yAIiIpauL2wzM+tnZWcureZneYIm87NExGb551JVDy5puQrNXoyIx6ru08zMeq+s5H5H87O0SxQR8Y8mi+/Pj3lqfxWMAya1O76ZmfWPKn0u10r6Hu3v0J9OuhwmUjJ4ND9fFrib5sUr/xwRG5QdXNKMCjGamVkfqXKfyw+Ay4CV8uvbgP2HN4qI1SLi1bnt9hExISKWB7YDzm+x740rHL9KGzMz6yNVksuEiHhpwrCIeJ45ZV2aeX1E/KzxIiJ+ThrKPI/G7JaQpiuWtJKkSY3H8DZmZjYYqlwW6/QO/YclHQKckbeZAjxSdoA85/1hwN+ZM/FXAOtViM/MzPpMt3fo71LSfndSoriAlCCuzsvK7AesGRGlScjMzAZD2+QSETdImusO/Yh4rllbSeOAb0REp1WJ76H8bMjMzAZIaXLJl8PeB6yVF/2ZNHS42bBiIuIFSRMlLZJL35eSdEB+egcwVdKlzF2P7KtNNzQzs75Wdof+64BfkUZ/zSCdtbwe+LykLSLilhabziYNX74IeLqxsEWiaNxweXd+LJIfMPdd/mZmNkDKzlyOAvbLI8VeImln4Ghg5xbbNW6MfBlzkkdTEXFE3ueuEXHesOOUVV42M7M+plZzekm6NSLW7HRdoc1SpJpiT7UNQrohF8csXTZahoaGYtq0aWNxKDOz+Yak6REx1Gxd2ZnL092sk7Qu8ENgufz6YeD9EXFzk7bvBLYBVpb0jcKqpYHnS45vZmZ9rCy5rFDocC8SaThyK6cAB0TErwEkbQ6cCmzSpO39wDRgB1L5mIYngU+VHMPMzPpYWXI5ldZ9Jt8t2W58I7EARMRUSeObNYyImyTNArbKhTLNzGw+UFYV+Ygu93mHpC+SLo1BukP/zpLjvCBp+arDl83MrP9VuUO/Ux8EjiAVqxTpDv0PtNnmLqoPXzYzsz5Xe3KJiEeBT0pamjTRV9vRYnQwfNnMzPpf7clF0n8A/8fco8X2jIhZrbYp3O9SefiymZn1r7bJpcWIsceB6RFxY5N1JzPvaLFTaD5arHGMysOXzcys/1WZz2UI2AdYOT/2BjYHTpV0UJP284wWA5qOFitoDF9eNSJWBT5NGq1mZmYDqMplseWBDRuXqiQdBvwYeAvp3pQvD2vf0WixrPLwZTMz639VzlwmAcUhws8Bq0bEvyhUMC74IOkmy/PzYwLtR4vdIemLkibnxyG0T0hmZtanqpy5nAVcJ+nC/Hp74Ef5zOJPwxs3Rot1GEc3w5fNzKxPVZks7ChJPwc2Jf3i3yciGlUe9xjeXtIVwK4R8Vh+/XLg7IjYuuQY3SQkMzPrU1WHIs8g3YeyEICkSRFxd4u2ExqJBVLikLRC2c4lrQEcCEwuxhQRW1SMz8zM+kiVocj7AocBfwdeIJ29BLBei01eLCYfSavSfuKv84CTSDXLXqgWupmZ9asqZy77AWtGxCMV9/kF4BpJV+XXbyENXy7zfEScWHH/ZmbW56okl3tIN01WEhG/kLQh8CbSWc6nIuLhNptdLOljwAUURqBFxD+qHtfMzPpHleRyBzBV0qXM/Yu/ZVHJnEwu6SCOPfPPzxR3A7y63YaSxpHmhLkvIraTdDjwYeCh3OTzEfGzDmIxM7MRqpJc7s6PRfKjdhGxWtl6SW+PiCtarN4P+DNp9sqGr0XE8XXFZ2ZmnakyFLnbeV3qdCwwT3KRtAqwLXA00KwGmpmZ9UDL5CLphIjYX9LFNBntFRE7lGy7GfDaiPiBpInAkhExkjvu1WL5CcBBzFum/xOS3k+6XPbpfB/N8Bj3Jg80mDRp0ghCMzOz4crOXBq1wTq6vJRrjw0BawI/ABYGziDdhNmteZKbpO2AByNieq683HAicFTe5ijgK6QKAHPvMOIUUsFMhoaG2g2VNjOzDpRNczw9/7yqVZsW3gVsANyQt78/z9NSt02BHSRtAywGLC3pjIiY0mgg6VQ6G1hgZmY1aFu4UtKmkq6QdJukOyTdKemOkk2ejYggn23UVN149vAFEXFwRKwSEZOB3YBfRcQUSa8sNHsX0HKSMjMzGx1VRot9D/gUqbx+lbvnz5V0MrCspA+TLkmVzs0iaVfgFxHxZK6IvCHwPxHROPt5d4XjNnxZ0vqk5DYb+EgH25qZWQ2qJJfHI+LnVXcYEcdLejvwBKnf5dCSYcQNX4yI8/JAgK1J/TwnAm+seMypwNT8/L+rxmpmZqOjSnL5taTjSOXwizdR3tBqg5xM2iWUosYZ0bbAiRFxYb4Z0szMBlCV5NI4exgqLAtgrorFkp6kpEBlRCzdah1wX76UtiVwrKRFqTaRmZmZ9aEqyeVDETFXB76kecqyRMRSed2RwN9IQ5lFmvOl3Wix9wDvAI6PiMdyp/xn2mxjZmZ9qsrZwY+bLDuvpP3WEfGdiHgyIp7I1Y53LjtARPwTeBDYLC96Hri9QmxmZtaHyu7QXwtYB1hGUnG01tKk+0paeUHSHsDZpMtku9NmlNko3XhpZmY9UnZZbE1gO2BZYPvC8idJVYdbeR/w9fwI4Nq8rMxY3XhpZmZjoOwO/QuBCyVtHBG/q7rDiJgN7NhhHM9GREiq88ZLMzPrkSod+n+R9Hnmnd9+nnpdAJJ+QPNCl03bZx3feGlmZv2rSnK5EPgN8Euq3aFfrOW1GOmS1/1lG3R546WZmfWpKslliYj4bNUdRsRPiq8l/YiUmNq5LW0ev5S0hKSlIuLJqsc1M7P+UWUo8iW58nC3XguUTpiSL4X9GDg5L1oZ+OkIjmlmZj1UNhS5cce9gM9LegZ4Lr+OVnfcN7lT/29AuzOfjwNvAH5P2vntklao+ibMzKy/lI0W62oocJfbPRMRz0ppwklJC1FSSsbMzPpb2z4XSRs2Wfw4cFdEPN+k/ZUR8bZ2y4a5Ko9IWzx37H8MuLhdbGZm1p+qdOh/hzS/yh/z6/8AbgKWl7RPRFwOIGkxYAlggqSXM2fe+6WBldoc47PA/8vH+AjwM+C7HbwPMzPrI1WSy2xS8cqbASStTSoqeRSpDP/lud1HgP1JiaRYjv8J4Nutdi7pZcDMiFgX39tiZjZfqJJc1mokFoCI+JOkDSLijkYfSV7+deDrkvaNiG9WDSAiXpR0k6RJEXF3R9GbmVlfqpJcbpV0IqkQJcB7gdvynCvPNRpJ2iIifkWam2WeaYkj4vySY7wSuFnS9cDThW12qBCfmZn1mSrJZS9SB/v+pH6Ua4ADSYnlvwrt3gr8irmLXDYE6RJaK0dUiMPMzAaEIuod8StptYi4s92yfjI0NBTTpk3rdRhmZgNF0vSIGGq2ruwmynMj4j2S/kjzQpTrtdj0J6TRZUU/BjYqOVazKZIfB6YBnx4+E6aZmfW3ssti++Wf21XZ0QgmFwP4Kqm45VmkS2+7Aa8AbgW+D2xeJQYzM+sPZXfoP5B/3jV8naRrmXeWyG4nFwN4R0S8sfD6FEnXRcSR+eZKMzMbIFU69JuZpxBlt5OLZS9Keg/p8hnALsVddxmjmZn1SLfJpewX/gxJHyddInvpclibycL2IE2L/J287+uAKZIWBz7RZYxmZtYjZR3689yr0lgFLF6yzx8CtwBbA0eSEsefy4LIHfbNhjBDGvpsZmYDpOzMpdUve5h7tsnhXhMRu0raMSJOl3QWcFlZEJLWAE4EVoyIdSWtB+wQEf9Ttp2ZmfWnsg79D3S5z8Zd+49JWpc0n8vkNtucSqpXdnI+9syclJxczMwGULd9LmVOyVWRvwhcBCwJHNpmmyUi4vpirTJgnnL+ZmY2GGpPLhHRKJV/FfDqips9LGl18kABSbsAD9Qdm5mZjY3akoukA8rWR8RXS1Z/HDgFWEvSfcCdwJS6YjMzs7FVOblIWqdYer+JrqZFhpdGi20paTzwsoh4stt9mZlZ73Vy5vJD5q0Z9pKI6LiycauznUbfS5uzHTMz61OdJBe1b9KxxtnOmsDrSQMAIA2DvnoUjmdmZmOgNLlIOozUyS5gRUkvjfqKiCNHevDG2Y6ky4ENG5fDJB0OnDfS/ZuZWW+8rM362cBd+edz+Xnj0ZSk1aosG2YS8Gzh9bO0vzemse9xkmZIumTY8gMlhaQJVfZjZmb1KT1ziYjTG88l7Vd8XaLj+VxI/TnXS7qAdKb0LqDKsSBNDfBnUmn/RqyvAt4O3F1xH2ZmVqPa+lxGMp9LRBwt6RfAZnnRByJiRtuApFWAbYGjgeLggK8BBwEXttuHmZnVr5Pk8rY26zuez0XSDRGxIUBETAeml7Vp4gRSElmq0H4H4L6IuGnYHf/D97s3sDfApEnzzCBgZmYjUDm5RMQ/2qzvZj6X10maWbJewDJNV0jbAQ9GxHRJm+dlSwBfALZqd+CIOIV04yZDQ0OeM8bMrEZlJfdfBRwHrAz8HDguIp7L634aETu12PQvefbIycX9t5jPZa0KMb7QYvmmwA6StiFddlua1HezGtA4a1kFuEHSGyLibxWOZWZmNSg7c/k+qXP+OuBDwFWSto+IR4BVS7a7EPgN8EtaJwag+RTKVUXEwcDBAPnM5cCI2LnYRtJsYCgiHu72OGZm1rmy5DIxIk7Kz/eVNAW4OvdplF1GWiIiPltbhGZmNnDKksvCkhaLiH8DRMQZkv5GmvhrfMl2l0jaJiJ+VmegZSJiKjC1yfLJYxWDmZnNUXYT5XeBNxYXRMQvgV2BWSXb7UdKMP+W9ISkJyU9MfJQzcxsUJTNRPm1FstnSLq0ZLuuqyObmdn8oV35l1Zazt2iZIqkL+bXr5L0hi6PY2ZmA6jb5FJ2t/53gI2B9+XXTwHf7vI4ZmY2gLqdibJstNgbI2JDSTMAIuJRSYt0eRwzMxtAZTdRPknzJCJg8ZJ9PidpXGNbSROBF0cSpJmZDZayDv1uO+a/AVwArCDpaGAX4JAu92VmZgOo28tiLUXEmZKmkwpdCtgpIv5c93HMzKx/1Z5cJH0dOCci3IlvZraA6na0WJkbgEMk/UXScZKGRuEYZmbWx2pPLhFxekRsA7wBuA04VtLtdR/HzMz6VyejxZRfC4iIWLrphnO8hlRSfzLwp5GFaWZmg6Ssz+VK4BXA+cDZEVFpPnpJxwLvBv4KnAMcFRGPjTRQMzMbHGVDkXeStAwpUZwqaTFSsji7zayUdwIbew4VM7MFV2mfS0Q8HhE/AN4JnAQcCezVZp+nAO+QdCiApEmuLWZmtmApTS6SNpH0TdIIsE2Bd0XEV9vs89uk2mK759dP4tpiZmYLlLIO/dnAY8DZwN7A83n5hgARcUOLTV1bzMxsAVfWoT+bNDpsa2Ar5q6EHMAWLbZzbTEzswVcWYf+5q3WSXpTyT5dW8zMbAHXbfmXc4FJzVa4tpiZmXWbXMomCyMibgFu6XLfZmY24Lot/1I2WZiZmS3gykaLXUzrycKWH7WIzMxs4JVdFju+y3VmZraAKxstdtVYBmJmZvOPln0uknaU9PHC699LuiM/dhmb8MzMbBCVdegfBFxUeL0o8Hpgc+CjoxiTmZkNuLI+l0Ui4p7C62si4hHgEUnjRzkuMzMbYGVnLi8vvoiITxReThydcMzMbH5Qllx+L+nDwxdK+ghw/eiFZGZmg67sstingJ9Keh+p5D7ARqS+l51GOzAzMxtcZUORHwQ2kbQFsE5efGlE/GpMIjMzs4HVtrZYTiZOKGZmVlm3tcXMzMxa6rYqspmZjYJ1DvsFTz/zwjzLxy86jpuPeEcPIurOwJ+5SBonaYakS/LroyTNlHSjpMslrdTrGM3MqmqWWMqW96uBTy7AfkBxMrLjImK9iFgfuAQ4tDdhmZktuAb6spikVYBtgaOBAwAi4olCk/F47hmz+Vpdl5HqvBw1Wpe2Jn/u0rlezz5m257H1MpAJxfgBFINtKWKCyUdDbwfeBz4r2YbStob2Btg0qSmMzab2QCo6zJSnZej+vHS1ljHNLCXxSRtBzwYEdOHr4uIL0TEq4AzgU/Ms3Fqc0pEDEXE0MSJrmZjZlanQT5z2RTYQdI2wGLA0pLOiIgphTZnAZcCh/UiQDPrreJlpJFc/hnJ5ahO9zV+0XED13nfzMAml4g4GDgYQNLmwIERMUXSayPi9txsB+CWHoVoZn1kUH5hD0+Aw5NRs3V19eXU2f8ysMmlxDGS1gReBO4C9ulxPGZmo6quxFlnAp4vkktETAWm5uc79zQYMxtTdV1GqvNyVD9e2hrrmBThkbpDQ0Mxbdq0XodhZjUou4xU1O4SUNX9QPs+mKr7qmM/VS5tle2nk/4kSdMjYqjZuoEdLWZmNhL9dmZRl355X04uZjZfGb/ouF6HYMwnfS5mZg2djLYqM/zyUJVRW9D8slRxXyPZz2j3L9WZmJ1czMxqNJojt4rJptukOXw/o8WXxczMrHZOLmY2X2t1qWfQ+2b6/X15KDIeimxmnRuLIc8jKTMzFjwU2cysR/plaPBYc3IxM+tCXZef+v3yVrc8WszMrAt1DXkei5FbveAzFzMzq52Ti5mZ1c7JxcysBvNr30m33OdiZlaD+bXvpFs+czEzs9o5uZiZWe2cXMzMrHZOLmZmVjsnFzMzq50LVwKSHgLu6mCTCcDDoxROXRxjfQYhTsdYD8fYmVUjYmKzFU4uXZA0rVUl0H7hGOszCHE6xno4xvr4spiZmdXOycXMzGrn5NKdU3odQAWOsT6DEKdjrIdjrIn7XMzMrHY+czEzs9o5uZiZWe2cXAok/aek30n6o6SLJS2dl79d0vS8fLqkLVpsv5ykKyTdnn++vLDuYEl/kXSrpK1HIcblJf1a0lOSvlWy/TmSbsyP2ZJuzMsnS/pXYd1JPYzxcEn3FWLZprCuXz7H4yTdImmmpAskLZuX99Pn2LPvY9VjjMX3saY4e/ad7CDGUf9OdiQi/MgP4A/AW/PzDwJH5ecbACvl5+sC97XY/svA5/LzzwHH5udrAzcBiwKrAX8FxtUc43hgM2Af4FsV9/UV4ND8fDIwa5Q/x0oxAocDBzZZ3jefI7AVsFB+fmzh37qfPsdefh87PsZofR/riLPH38mqMY76d7KTh89c5rYmcHV+fgWwM0BEzIiI+/Pym4HFJC3aZPsdgdPz89OBnQrLz46IZyLiTuAvwBtqjvHpiLgG+HeVnUgS8B7gR13GMeoxNtE3n2NEXB4Rz+eX1wGrdBnHqMVID7+PnR5jlL+PtcXZRN98lmP0nazMyWVus4Ad8vNdgVc1abMzMCMinmmybsWIeAAg/1whL18ZuKfQ7t68bLRirOLNwN8j4vbCstUkzZB0laQ3d7nfumL8RD69/37hck4/fo6Q/sr8eeF1v3yOvfw+dnqM0fw+1hVnr76T3RxjtL6TlS1wyUXSLyXNavLYkfQP8nFJ04GlgGeHbbsO6XTzI50etsmylmPARxJjB3Zn7r8SHwAmRcQGwAHAWcVrvmMc44nA6sD6Oa6vNA7bpG1PP0dJXwCeB87Mi/rpc2x52CbL6v4cOzoGI/w+jkGcvfxOdnqMEX0n67LATXMcEVu2abIVgKQ1gG0bCyWtAlwAvD8i/tpi279LemVEPCDplcCDefm9zP1X5yrA/fNsPcIYq5K0EPBuYKPCMZ8BnsnPp0v6K7AGMG2sY4yIvxdiPRW4JL/st89xT2A74G2RL2730+dIb7+PlY9Rx/dxtOPs8Xeyk89yxN/JuixwZy5lJK2Qf74MOAQ4Kb9eFrgUODgiri3ZxUXAnvn5nsCFheW7SVpU0mrAa4Hr64yxQ1sCt0TEvYX9TpQ0Lj9/dY7xjl7EmH8RNryLdLkA+uhzlPQO4LPADhHxz8Lyvvkc6e33sZNjjOr3sY44e/ydrBrjqH8nOzLWIwj6+QHsB9yWH8cwp4LBIcDTwI2Fxwp53XeBofx8eeBK4Pb8c7nCvr9AGuVxK/DOumPM62YD/wCeIv21s/bwGPPr04B9hu13Z9JghZuAG4DtexUj8EPgj8BM0n+sV/bb50jqVL2n8H04qQ8/x15/H5seY6y/j3XE2QffySoxjvp3spOHy7+YmVntfFnMzMxq5+RiZma1c3IxM7PaObmYmVntnFzMzKx2Ti7WE5JWlHSWpDuUKk3/TtK78rrNJV3SZJupku6WpMKyn0p6qsUx5lku6QBJf1Iq43GlpFW7jP80SbsMW7aSpB9X2LZVvDtJWrvC9kOSvlE92tJ9Fav93i7p/Iox7CVppS6POVnS+wqva3s/1j+cXGzM5eTwU+DqiHh1RGwE7Ea1QnuPAZvm/SwLvLK8+TxmkO4LWA/4Maly8EaTdPkAAAtaSURBVPD49pJ0eIf7JSLuj4hd2rdsaSdSBdx2x5kWEZ8cwXGG+1pErB8RrwXOAX4laWKbbfYCukoupCq9LyWXUXg/1gecXKwXtgCejYiX7jiPiLsi4psVtj2blIgglQw5v5MDR8SvY87dy7VWjs1/kc/Kz5eQdG4+QzpH0u8lDRXaHi3pJknX5bO4TUhFC4/LZxGr5zO1YyVdL+k25YKDxTO7fObx/dz2DkmfLBzji0rze1wh6UeSDqzw+ZwDXE7+5S9pI6Vih9MlXSbplfmMbQg4M8e6eLN2efvXKNXTuknSDZJWJ90g+Oa87aeGvZ/l8tnozPzZrNfufVp/cnKxXliHdKdwN64E3pLLWexG+ku7Wx9i7sqxdfoY8Gg+QzqKQt0s0nws10XEf5JKrH84In5LuvP7M/ksolG/bqGIeAOwP3BYi2OtBWxNKsN+mKSFcyLbmTQX0btJyaCqG4C1JC0MfBPYJZ9dfh84OiJ+TKpLtUdErE8qkjhPu7yvM4Fv5/e6CamI4ueA3+T3+bVhxz6CVHV8PeDzwP+VvU8AST/r9hKdjZ4FrnCl9R9J3yZNfvVsRLy+TfMXgGuA9wKLR8TsQhdMJ8ecQvqF+9b8ulEqBWA5YBFJjflP/jsi/tjhITYDvg4QEbMkzSyse5Y5hQ+nA28v2c/5hXaTW7S5NHJxQkkPAivm418YEf8CkHRxB7E3PtA1SZPjXZE/43Gk5DBc03aSlgJWjogLACLi3zmWsmNvxpx5a36lNOvmMiXv896I2KbFvqyHnFysF25mzkRIRMTHJU2gepXWs0kVqg/v5uCStiTVanpr/mVFRDxCKqeOpL2AyRHR1f4bhylZ91zMqbv0AuX/D5+p0K44t1CjXecZd44NSP8WAm6OiI3btG/aTt2VdS8rL9/sfVqf8mUx64VfkWbz/Ghh2RIdbP8b4Et0MWuhpA2Ak0mVYx9s134EriHNrEgeffUfFbZ5kjSPR13H317SYpKWpGK5fkk7k8q+/4hUJHGipI3zuoWV5jQaHmvTdhHxBHBv4wxQqarvEpS/z6uBPXL7zYGH835swDi52JjLf7XvBLxV0p2SridNw/vZQrO3Sbq38Ni4uH1EHB8RD7c51BLD9nEAcBywJHBe7lC+aARv5eTCvn83bN13SL9wZ+b3NRN4vM3+zgY+ozRj4OojiIuI+AOpD+cm0qW1aSXH/1T+LG4HpgBbRMRDEfEssAtwrKSbSJV2N8nbnAacJOlG0mWwVu3+G/hk/hx+C7yC9Fk8nzv5PzUslsOBodz+GOZMGdCS+1z6k6sim42CPOBg4Yj4d04UVwJr5F/YYxXDkhHxVD5buBrYOyK6HUhh1hFfszQbHUsAv84jmgR8dCwTS3ZKviS3GHC6E4uNJZ+5mJlZ7dznYgsklZRayTfstb3hsItj/kzSsvnxsS62b1oWp5c0942jIyrjIunz9UVmvebkYguqSqVW6hQR20TEY8CypJssB46klpfSayjj4uQyH3Fysb4kaYpS2ZMbJZ0saZykj0r6cqHNXpK+2ap9Xv6UKpRaKYlj/bzdTEkXSHp5Xt6qNEvLsi+SZuf7eY4BVs/HPm74GYmkb+V7bZD0DqUSLteQ7rRvtBmvVA7lD3l02Y4t4j9I0h/z+z+mzXsqe6//K+kqYD+lUi835RFyHy8cq2pZmp8qlYm5WdLeedkxwOL5Mzmz7N/UBkRE+OFHXz2A1wEXk0ZbQRrW+35gIvCXQrufk+7obto+Pw9g+/z8y8Ah+flppHIlzY5/OHBgfj6TdLMlwJHACfn5VOAr+fk2wC/z8wOBk/PzdUmlUYby69nABNKd9rMKx9scuKTw+lukwpCLAfcAryUNCji30Q74X2BKfr4scBswftj7eCdp+O8S+fVybd5T2Xv9TmG/xXbHNd5L8X3kz/C3wKL5PT9S+PdpxLE4MAtYPr9+qt13oNffTT+qP3zmYv3obaRaXH/I91G8DXh1RDwE3CHpTUrlWtYErm3VPu9reKmVyVWDUCo7smxEXJUXnQ68pdCkWWmWzUj3qxARs0i/iLu1FnBnRNwe6TfsGYV1WwGfy+93KikRTRq2/ZbADyIX6oyIf7R6TxXe6znQ9DP5YUn8l0bEM5HuR2qUa4F038tNpMKhryIlz+HK/k1tAHgosvUjkYbOHtxk3TmkO99vAS6IiJBU1r6TUiudalaapZuyK88z9yXqxQrPWw3nFLBzRNxasl+VbN+pp7vY5zzlWpTuut8S2Dgi/ilpKnO/34ayf1MbAD5zsX50JbCLpBXgpTLsjUm9zid1xu/OnIrIZe1baVtqJSIeBx5t9KeQ7ja/qmQTqFb2Zfix7wLWViqPsgzpr3RICXS1Qp/Q7oVtLgP2zYm1UdZmuMuBDyrdRImk5Vq9p6rvNdKAhMclbZYX7dHsQyixDKla9D8lrQW8qbDuOeVKx3T3b2p9xMnF+k5E/Ak4BLhcqQzIFeRJwSLiUeBPwKoRcX279iWqllrZk9TxP5NU2PLINvttW/YlUpHMayXNknRcRNxD6k+ZSSpRPyO3+zewN3Bp7tC/q7Cbo4CFgZlKQ4GPGh5IRPyCVAJmWr601Bhe3eo9VX2vHwC+nTv0/9Xm8xjuF6QzmJk55usK607J7+fMLv9NrY/4JkqzGqkPyr6Y9QP3uZjVqx/Kvpj1nM9czMysdu5zMTOz2jm5mJlZ7ZxczAqUCjH+K4+uGr5uVApa9qNcCmabwuv3SvqL+qxwpvUvJxezef01ItYfrZ0PSI2s9UllbQCIiHOA/9e7cGzQOLmYlZD0BUm3SvolqdxMY/nqkn6RCzD+Jt8Q2Fh+XS4oeaSkp/LyzSX9WtJZwB+VCnEel9vNlPSRwr4/U1h+RF42XtKluWDkLEnvLYl5I0lX5dguk/TKvPzDeb83SfpJ4ebKXfM+b5J0taRFSPe4vDcXjWx5LLNWPBTZrAVJGwG7ARuQ/q/cQKojBumGv30i4nZJbyTdPLkF8HXg6xHxI0n7DNvlG4B1I+JOpWrAj0fE6yUtSrqp8nJSna3X5rYCLpL0FlLRzvsjYtsc2zItYl4Y+CawY0Q8lBPD0cAHgfMj4tTc7n+AD+W2hwJbR8R9kpaNiGclHUoquPmJkXyGtuBycjFr7c2k+mX/BJB0Uf65JLAJcF6uvgKp+i/AxqTyNABnAccX9nd9RNyZn28FrCdpl/x6GVJS2So/ZuTlS+blvwGOl3QsqfLwb1rEvCapGvMVObZxwAN53bo5qSyb93tZXn4tcJqkc5lTjNNsRJxczMo1uxHsZcBjXfTLPF14LmDfiLis2EDS1sCXIuLk4RvnM6ltgC9JujwimpVnEXBzRGzcZN1pwE4RcZPSfDGbA0TEPvnsa1vgRkmj1t9kCw73uZi1djXwLkmLS1oK2B4gIp4A7pS0K4CS/8zbXAfsnJ/vVrLvy4CPNgo1SlpD0vi8/IP57AhJK0taQdJKwD8j4gzS2dCGLfZ7K6m22cZ5+4UlrZPXLQU8kI/5UsFJSatHxO8j4lDgYVIZ/LaFPc3K+MzFrIWIuEHSOcCNpKKRxUtRewAnSjqEVEDybOAmYH/gDEmfBi5lWNHKgu+S5oC5Qen61UOks4rLJb0O+F2+rPUUMAV4Damo5IvAc8BHW8T8bL7U9o3cL7MQcAJwM/BF4Pf5vfyROcnjOEmNCcmuzO/jbubMF/OlPFrMrDKXfzErkDSZ1KexbpfbLwH8K88zsxuwe0Q0nYJ40CjNxXJgRGzX61is//mymNncXgCWaXYTZUUbkfotZgIfAz5dW2Q9lEedfQd4tNex2GDwmYvZgJJ0AbDasMWfHT5IwKwXnFzMzKx2vixmZma1c3IxM7PaObmYmVntnFzMzKx2/x8TaK9Ijg/SEAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"glmsub.plot.scatter('event_lon', 'event_lat', marker='s')"
]
},
{
"cell_type": "code",
"execution_count": 79,
"id": "c8998aff-585a-4918-9d18-5ef6528140b5",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAALFCAYAAAA4D/Q0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de7hcZXn38e+PkASJpmoTBHMwaJEYFUE38fSqeKAGsYJWLVEpVl/TeBGRVtrGwyvVnlTQioWaRoloVQ4VUNQoolWpNkgSQEgIaESUTYBAqYKgCcm+3z/W2skwmZk9s/eszL33/D7XNVdmnlmnmeTOfc+znvUsRQRmls8+vT4AM2vMwWmWlIPTLCkHp1lSDk6zpBycZkk5OG1ckLRK0lZJG7q0vbmSviVpk6QbJc3rxna7ycFp48V5wKIubu9zwBkR8RRgIbC1i9vuCgenjQsRcSVwb22bpCdJ+qak9ZL+S9L8drYlaQGwb0RcUW77NxHxYPePemwcnDaerQTeERHPAk4D/rXN9Z4M/ErSJZKulXSGpEmVHeUo7dvrAzAbDUmPBJ4H/Iek4eap5XuvAT7YYLXbI+LlFP/uXwAcAfwSuBB4M3ButUfdGQenjVf7AL+KiMPr34iIS4BLWqw7CFwbEbcASPoy8BySBafLWhuXIuI+4OeSXgegwjPaXH0t8BhJM8vXLwFurOAwx8TBaeOCpPOBNcChkgYlvRV4I/BWST8GNgLHtbOtiNhJ8Rv1O5JuAAR8qpojHz35kjGznJw5zZJycJol1Re9tTNmzIh58+b1+jBSW79+/T0RMXPkJav18hdPi/+5d2fP9r/++m2XR0Q3RyKNWl8E57x581i3bl2vDyM1Sb/o9TEA/M+9O7n68rk92/+kg346o2c7r+Oy1iypvsicNn4EMMRQrw8jBWdOs6QcnGZJuay1ZIKd4bIWnDnN0nLmtFSKDiEPKQVnTrO0HJxmSbmstXR8nrPgzGmWlDOnpRIEO32NMeDMaZaWg9MsKZe1lo7PcxacOc2Scua0VALYmThzSjqUYhLqYU8E3h8RH+/2vhycZh2IiJuBwwHKWzjcDlxaxb5c1pqN3kuBn0VEJVO8OHNaOuOoQ+gE4PyqNu7MafZwMyStq3ksabSQpCnAq4D/qOpAnDnNHu6eiBhoY7ljgGsi4q6qDsTBaakEjJfhe4upsKSFistaSYsk3Sxps6TlDd6fL2mNpG2STqtpnyPpu5I2Sdoo6Z01750h6SZJ10u6VNKjq/wMZvUk7Q8cTevbDI5ZZcFZdjOfQ5H+FwCLy9t917oXOAU4s659B/CuiHgKxX0TT65Z9wrgaRFxGPAT4N0VfQTrkaEePtoREQ9GxO9HxK/H+FFbqrKsXQhsrrlB6QUUt2jbdR/EiNgKbJV0bO2KEXEHcEf5/H5Jm4BZwI0R8a2aRa8CXtvWwbz/bB7Y9tAe7dOmTubqDy5r6wO97PX/yPZtk/donzL1Ib590XtGXP/0DW9i29Dv9mifus9+fOBpn2/rGKx/VFnWzgJuq3k9WLZ1RNI8ituD/6jB228BvtHOdhoFZqv2RhoFZqv2eo0Cs1W79bcqM6catHX0S1/SI4GLgVPLOxnXvvdeivL3C03WXQIsAZg7dy6P7GTH1jNBpB6+tzdVmTkHgTk1r2cDW9pdWdJkisD8QkRcUvfeScArgTdGk7v/RsTKiBiIiIGZM3t+8yyzjlWZOdcCh0g6mGL84QnAG9pZUZKAc4FNEfGxuvcWAX8DvCgiHuzuIVvPBex04gQqDM6I2CFpGXA5MAlYFREbJS0t318h6UBgHTAdGJJ0KkXP7mHAicANkq4rN/meiFgNnA1MBa4oYpirImJpVZ/DrFcqHYRQBtPqurYVNc/vpCh36/2Axr9ZiYg/GM2xTJs6uWlvbbumTH2oaW9tO6bus1/T3lqzen0zQqjd0yWttHO6pBWfLhlZMeO7gQe+m6XVN5nTxguxs/Evmr7jzGmWVN9kzqdfdCYP7Ni+R/u0fadww+tPa7DGwz3ttI/BPg3+Rx8KNpz5l20dw8Gf/6em7/38Te0NER666wiIB/Z8Q9PY53HXjrj+Uz//zw2/B8unb4Kz2T/Itv+hNgrMVu1VaRSYrdrrZA/MAIZ8nhNwWWuWVt9kThs/3CFUcOY0S8rBaZZU35S10/ad0rS3ti1D0bS3dq/StKa9te1o9j1kUcz47rIWQE2uuJpQBgYGYt26db0+jNQkrW9z1rlKPfWwKXHB1w/o2f4Pm3t7iu8B+ihz2vgxFM6c4N+cZmk5OM2S6puy9qlf/FjTDqGNbxh5+N3Ljv572Nag3JoafPuK97V1DMd+/z08uHPbHu37T5rK11/0j21t48gPns0D2xtclzplMmvfP/bL4nrNHUK79U3mHPPwvUaB2aq9gUaB2aq9kUaB2ardxq++CU6z8aZvylobHwKx0zkDcOY0S8uZ09Lxec5C32TOZsP02h6+N7XJSKpm7Q3sP2lqR+2NTJvSeLbAZu02fnn4ngF5hu895bCpcd5XH9+z/T9n3q0pvgdwWWvJ+Dznbn1T1pqNN86clozYGc4Z4ODsyIJ//zgPPNRgCODkKdx44qkjrn/kB1oMvTt9/A+9s+7yf1EdaBSYrdr3WM5D76wDzpyWSnGvFOcMcOY0S8uZ09LxqZSCM6dZUg7ODkyb3GQIYJP2PZbz0DvrgMvaDrRzuqQVny4ZWYTPcw7zt2CWlDOnpTPkDiHAmdMsLQenWVIuay2V4pIx5wxw5jRLy5nTkvGplGH+FsyScnCaJeWy1lLxJWO7+VswS8rBaZaUy1pLZ6dnfAecOc3Scua0VHyXsd38LZgl5eA0S8plraUz5OF7gDOnWVrOnJaKLxnbzd+CWVIOTrOkXNZaKoE8QqjkzGmWlDOnpeNLxgr+FsyScnCaJeWy1lKJwBN8lfwtmCXlzGnJyPdKKVWaOSUtknSzpM2Sljd4f76kNZK2STqtpn2OpO9K2iRpo6R31rz3urJtSNJAlcdv1kuVBaekScA5wDHAAmCxpAV1i90LnAKcWde+A3hXRDwFeA5wcs26G4DXAFdWdexmGVRZ1i4ENkfELQCSLgCOA24cXiAitgJbJR1bu2JE3AHcUT6/X9ImYBZwY0RsKrdX4aFbrwTuEBpW5bcwC7it5vVg2dYRSfOAI4AfdeWozMaJKjNno9QWHW1AeiRwMXBqRNzX4bpLgCUAc+fO7WRV6zFfMlao8lsYBObUvJ4NbGl3ZUmTKQLzCxFxSac7j4iVETEQEQMzZ87sdHWznqsyONcCh0g6WNIU4ATgsnZWVPGD8lxgU0R8rMJjNEursrI2InZIWgZcDkwCVkXERklLy/dXSDoQWAdMB4YknUrRs3sYcCJwg6Tryk2+JyJWS3o18C/ATODrkq6LiJdX9Tls7wrEkC8ZAyoehBARq4HVdW0rap7fSVHu1vsBjX+zEhGXApd28TDNUvIvb7OkPHzP0nFvbcHfgllSzpyWSuBJpYf5WzBLysFplpTLWktG7PT1nIAzp1lazpyWijuEdvO3YJaUg9MsKZe1lo47hArOnGZJOXNaKhFyh1DJ34JZUg5Os6Rc1lo6nhqz4G/BLClnTkslwPdKKTlzmiXl4DRLymWtJSN3CJX8LZgl5eA0S8plraVSXM/p3lpw5jRLy5nT0vGk0gV/C2ZJOTjNknJZa6n4FoC7OXOaJeXMaekMOWcAzpxmaTk4zZJyWWupRMBOdwgBzpxmaTlzWjo+lVJw5jRLysFplpTLWkulGCHknAHOnGZpOXNaOtnvMibp0cCngadRXB/+lohY0+39ODjNOncW8M2IeK2kKcD+VezEwWnWAUnTgRcCbwaIiO3A9ir25eC0VMbBHEJPBO4GPiPpGcB64J0R8UC3d+QOIbOHmyFpXc1jSd37+wLPBD4ZEUcADwDLqzgQZ05LpuenUu6JiIEW7w8CgxHxo/L1l6goOJ05zToQEXcCt0k6tGx6KXBjFfty5jTr3DuAL5Q9tbcAf1bFThyclk72WwBGxHVAq9K3K1zWmiXl4DRLymWtpeKZEHZz5jRLypnT0vElYwV/C2ZJOTjNknJZa6n4Xim7OXOaJeXMaelkHyG0tzhzmiXl4DRLymWtpTIOZkLYa5w5zZJy5rR0PEKoUOm3IGmRpJslbZa0x1QOkuZLWiNpm6TTatrnSPqupE2SNkp6Z817j5V0haSfln8+psrPYNYrlQWnpEnAOcAxwAJgsaQFdYvdC5wCnFnXvgN4V0Q8BXgOcHLNusuB70TEIcB3qGj+FrNeqzJzLgQ2R8Qt5dyeFwDH1S4QEVsjYi3wUF37HRFxTfn8fmATMKt8+zjgs+XzzwLHV/cRbK+LYoRQrx6ZVBmcs4Dbal4PsjvA2iZpHnAEMDzb2eMi4g4oghg4YExHaZZUlR1Cjf4bio42ID0SuBg4NSLu63DdJcASgLlz53ayqvVQ4BFCw6rMnIPAnJrXs4Et7a4saTJFYH4hIi6peesuSQeVyxwEbG20fkSsjIiBiBiYOXNmxwdv1mtVBuda4BBJB5dTCJ4AXNbOipIEnAtsioiP1b19GXBS+fwk4CtdOl6zVCorayNih6RlwOXAJGBVRGyUtLR8f4WkA4F1wHRgSNKpFD27hwEnAjdIuq7c5HsiYjXwIeAiSW8Ffgm8rqrPYL2RrWOmVyodhFAG0+q6thU1z++kKHfr/YDGv1mJiP+hmGXbbELzCCFLxWNrd/M4KbOkHJxmSbmstXRc1hacOc2ScnCaJeWy1lLx1Ji7OXOaJeXMael44HvBmdMsKQenWVIuay2X8HnOYc6cZkk5c1oqHvi+mzOnWVIOTrOkXNZaOi5rC86cZkk5c1oqHlu7mzOnWVIOTrOkXNZaOuGyFnDmNEvLmdPS8SVjBWdOs6QcnGZJuay1VMKXjO3izGmWlIPTLCmXtZaOz3MWnDnNknLmtGQ88H2YM6dZUg5Os6Rc1lo67hAqOHOaJeXMaal4aszdnDnNknJwmiXlstZyiWLwuzlzmqXlzGnpeCaEgjOnWVIOTrOkXNZaKoFHCA1z5jRLypnTkvElY8OcOc2ScnCaJeWy1tLxCKGCM6dZUs6clo5PpRScOc2ScnCaJeWy1lKJcFk7zJnTLCkHp1lSLmstHQ/fKzhzmiXlzGnpeIRQwZnTLCkHp1lSLmstHZ/nLDhzmiVVaXBKWiTpZkmbJS1v8P58SWskbZN0Wt17qyRtlbShrv0Z5To3SPqqpOlVfgbbuwIR0btHJpUFp6RJwDnAMcACYLGkBXWL3QucApzZYBPnAYsatH8aWB4RTwcuBf6qW8dslkmVmXMhsDkibomI7cAFwHG1C0TE1ohYCzxUv3JEXEkRvPUOBa4sn18B/HFXj9osiSqDcxZwW83rwbJtrDYAryqfvw6Y04VtWiLRw0cmVQZnowK+G5//LcDJktYDjwK2N9y5tETSOknr7r777i7s1mzvqvJUyiAPz2qzgS1j3WhE3AT8IYCkJwPHNlluJbASYGBgINt/itaMLxnbpcrMuRY4RNLBkqYAJwCXjXWjkg4o/9wHeB+wYqzbNMuosuCMiB3AMuByYBNwUURslLRU0lIASQdKGgT+EnifpMHhUyOSzgfWAIeW7W8tN71Y0k+Amygy8Weq+gxmvVTpCKGIWA2srmtbUfP8Topyt9G6i5u0nwWc1cXDtGz8IwTwCCGztDy21tJxh1DBmdMsKQenWVIuay0dz4RQcOY0S8qZ01Lxbed3c+Y0S8rBaZaUy1rLJQCXtYAzp1laDk6zpFzWWjo+z1lw5jRLypnT8nHmBJw5zdJycJol5bLWksk383qvOHOaJeXMafm4Qwhw5jRLy8FplpTLWsvFM77v4uA065CkW4H7gZ3AjogYqGI/Dk7LZ3x0CL04Iu6pcgf+zWmWlIPTrHMBfEvSeklLqtqJy1pLqKcdQjMkrat5vbK8nWSt50fElvKOd1dIuqm8E3tXOTjNHu6ekTp4ImJL+edWSZcCC4GuB6fLWssn8X3nJU2T9Kjh5xQ3ct4w1o/ciDOnWWceB1wqCYr4+WJEfLN+IUnt3Cj63oh4c7M3HZxmHYiIW4BntLHoU4D/2+J9Aee02oCD0/IZH+c5R/LeiPh+qwUkfaDV+/7NaVaBiLhorMs4c5pVQNJXaV4DbAN+BpwTEbc124aD03KZODO+n9nivX2BpwIXAc9ttZCZddlIvzeB70g6rNUCDk5LZyJNKi3p+cDfAk+giDcBERFPjIhWvbkOTrOKnQv8BbCe4hKztjk4zar164j4xmhWdHBaPhOorAW+K+kM4BKKXloAIuKakVZ0cJpV69nln7WD6QN4yUgrOjgtn4lxKgWAiHjxaNf1CCGzCkh65ViXceY0q8YZkm6n9ZXj/wh8rdmbDk5LRxOjQ+gu4GMjLPPTVm86OM0qEBFHjXUbDk7Lpc0ZCfqBO4TMknJwmiXl4LRkVJzn7NWj259GWifpZEmP6XRdB6dZtU4AHg+slXSBpJernB1sJA5Oyyfx1Jgdf5SIzRHxXuDJwBeBVcAvJX1A0mNbrevgNKtYeVH1R4EzgIuB1wL3Af/Zaj2fSjGrkKT1wK8orutcHhHDV6b8qLwQu6kRg7O8b8RnKCbP/d+xHqzZiCbWec7XlXPd7iEiXtNqxXYy5wnAn1H8oB0O1G9FTKTJJMwqc3yD/p9fA+sj4rpWK474m3MsP2jNRmUCdQhRXMe5FJhVPpYARwGfkvTXrVZsq0NotD9ozYzfB54ZEe+KiHdRBOtM4IXAm1ut2M5vzlH/oDUz5gLba14/BDwhIn4raVuTdYD2fnO2/EEr6aSI+Gz7x2rWwsSZVHrYF4GrJH2lfP1HwPnl7QNvbLViO785GwZmjXe2dYhmfaYcCXQe8DaK6vPXwNKI+GBEPBARb2y1fjfOc06o/+bMuiUiQtKXI+JZFPPWdqQbwelTKtZVE2QmhGFXSToyItZ2uqIzp1m1XgwslXQr8AC7b8fQ8j4p0MZvTkkHj9D2wxbrLpJ0s6TNkpY3eH++pDWStkk6re69VZK2StpQ1364pKskXVdejrNwpM9g48zEOs95DPBEinlq/wh4ZfnniNo5z3lxg7YvDT+JiGWNVpI0ieK22scAC4DFkhbULXYvcAqNb5d2HrCoQftHgA9ExOHA+8vXZilFxC+AOcBLyucP0ub4gqZlraT5FPcQ/D1JtWMApwP7tbHthcDm4d5eSRcAx1HTfRwRW4Gtko6tXzkirpQ0r8F2ozwGgN8DtrRxLGY9Iel0ioEHh1IMfZ0MfB4YcYxAq9+ch1Kk4Efz8DR8P0XX8EhmAbV37R1k99T0Y3EqcLmkMyn+B3peF7ZpVpVXA0cA1wBExBZJj2pnxabBGRFfAb4i6bkRsWYUB9Woo6gbVf3bgb+IiIslvZ5i5NLL9ti5tIRiHCNz587twm7NRmV7eUolAMrBB21pp7d2s6T3APNql4+It4yw3iBFrT1sNt0pQU9i98CH/wA+3WihiFgJrAQYGBiYWJ3zE9wEO5VykaR/Ax4t6W3AW4BPtbNiO8H5FeC/gG/T2c0/1wKHlD27t1NcevaGDtZvZgvwIuB7FD1gLWfNNuuliDhT0tEUF4ocCrw/Iq5oZ912gnP/iPibURzUDknLgMuBScCqiNgoaWn5/gpJBwLrKDp4hiSdCiyIiPsknU9xac0MSYPA6RFxLsXv3bMk7Qv8jrJ0NcuqDMa2ArJWO8H5NUmviIjVozio1cDqurYVNc/vpCh3G627uEn7D4BndXosNo5MoIHv5ZmODwMHUPTDDA9CmN5yRdoLzncC75G0neLSl7Y3bmZ8BPijiNjU6YojBmdEtNXta9YVE+9eKXeNJjChvYutBbwRODgi/k7SHOCgiLh6NDs06zPrJF0IfBnYdXF1RFwy0ortlLX/CgxR9Iz+HfAbimF5R47qUM36y3SKIXt/WNMWQFeC89kR8UxJ1wJExP9KmjKqwzRrxwQqayPiz0a7bjsDcB8qB7EPj3CYSZFJzWwEkp4s6TvDV1dJOkzS+9pZt53g/ARwKXCApH8AfkBxL3uzSih696jAp4B3U0zsRURcTzEgZ0Tt9NZ+oZyB76UUp1GOH23vk1kf2j8irq6bWHpHOyu201t7FnBhRJwzyoMz62f3SHoSu38Wvha4o50V2+kQugZ4n6QnU5S3F0bEutEeqdmIJlCHEHAyxQUY8yXdDvyc4tTkiNqZGvOzEfEKiounfwJ8WJIHm5u1ISJuiYiXUczyPj8i/k85IwIAkk5qtm4n9+f8A2A+xaVjN43yWM1GNrHmECo+UjFP7f0N3mo673M7E3x9WNJPgA8CG4BnRURbExSZ2YiajvJvJ3P+Avh74L8j4jPAdM94Z9Y1TfN1O8H5dIq5f4Yv4bqfYvieWdf18hxnj2ZgGFPmfHZEnExxYTPl3a09fM+sDWOZ99nD98yqNap5n6G985z1w/deC7Q1NtBsVCbATAhdmPfZw/fMKjLWeZ/bu5FRRNyEz23a3jIBRgh1Yd7nrtxlzMyaG+28zw5Os4qNdt5nB6flM8FmfB/VvM/Q2dhaM+vc1yS9YjQrOnNaPhMrc4563mcHp1mFxjLvs8taswqp8CZJ/698PafdC0ccnJbLxBv4/q/Ac9l9h73heZ9H5LLWrFqjnvfZwWn5TKwOoVFfOOKy1qxao5732ZnTrEJjuXDEwWn5TKCydizzPrusNavW8LzPmyWdIWmg3RUdnJbORDqVMpZ5nx2cZntHx/M+OzjNKlTO+/xTRjHvszuEzKr1c+C5EXFPpys6c5pVayWwSNL7ASTN9dhasxzOoRhb2/Gk7C5rLZ8JdJ6TMYytdeY0q9aox9Y6c1ouvbtnSVVGPSm7g9OsQh5ba5bYaCdld3BaPhOrrB01dwiZJeXMafk4cwLOnGZpOTjNknJZa6mICXeec9ScOc2Scua0fJw5AWdOs7QcnGZJuay1XCbewPdRc+Y0S8qZ0/Jx5gScOc3ScnCaJeWy1vJxWQs4c5ql5cxp6fhUSsGZ0yypSoNT0iJJN5e3P1ve4P35ktZI2ibptLr3VknaKmlDXfuFkq4rH7dKuq7Kz2DWK5WVteVcnecARwODwFpJl0XEjTWL3QucAhzfYBPnAWcDn6ttjIg/qdnHR4Ffd/fIredc1gLVZs6FwOaIuCUitgMXAMfVLhARWyNiLfBQ/coRcSVF8DYkScDrgfO7etRmSVQZnLOA22peD5Zt3fIC4K6IaOtGpGbjTZW9tWrQ1s2CZTEtsqakJcASgLlz53Zxt1apwGVtqcrMOQjMqXk9G9jSjQ1L2hd4DXBhs2UiYmVEDETEwMyZM7uxW7O9qsrMuRY4RNLBwO3ACcAburTtlwE3RcRgl7Znifg8Z6GyzBkRO4BlwOXAJuCiiNgoaamkpQCSDpQ0CPwl8D5Jg5Kml++dD6wBDi3b31qz+RNwR5BNcJWOEIqI1cDqurYVNc/vpCh3G627uFF7+d6bu3SIZml5+J7l47IW8PA9s7ScOS0ddwgVnDnNknJwmiXlstbycVkLOHOajYqkSZKulfS1qvbhzGm5jJ+xte+kGFwzvaodOHOadUjSbOBY4NNV7sfBafZwMyStq3ksabDMx4G/BoaqPBCXtZaKaHyt4V50T0QMNHtT0iuBrRGxXtJRVR6IM6dZZ54PvErSrRSze7xE0uer2JGD0/KJHj5GOrSId0fE7IiYR3F11H9GxJvG/JkbcHCaJeXfnGajFBHfA75X1fYdnJaOB74XXNaaJeXMafk4cwLOnGZpOTjNknJZa/m4rAWcOc3ScnCaJeWy1nIJn+cc5sxplpQzp+XjzAk4c5ql5eA0S8plraXjDqGCM6dZUs6clo8zJ+DMaZaWg9MsKZe1lo47hArOnGZJOXNaLuPnXimVc+Y0S8rBaZaUy1rLx2Ut4MxplpYzp6UifCplmDOnWVIOTrOkXNZaPi5rAWdOs7ScOS0dhVMnOHOapeXgNEvKZa3l4oHvuzhzmiXl4DRLymWtpePhewVnTrOknDktH2dOwJnTLC0Hp1lSLmstHXcIFZw5zZJy5rR8nDkBZ06ztBycZkm5rLVcwh1Cw5w5zZJy5rR8nDkBZ06ztCoNTkmLJN0sabOk5Q3eny9pjaRtkk6re2+VpK2SNjRY7x3ldjdK+kiVn8GsVyorayVNAs4BjgYGgbWSLouIG2sWuxc4BTi+wSbOA84GPle33RcDxwGHRcQ2SQdUcPjWI57xfbcqM+dCYHNE3BIR24ELKIJql4jYGhFrgYfqV46IKymCt97bgQ9FxLbhbXT9yM0SqDI4ZwG31bweLNvG6snACyT9SNL3JR3ZhW1aJhG9eyRSZW+tGrR149PvCzwGeA5wJHCRpCdGPPyblbQEWAIwd+7cLuzWbO+qMnMOAnNqXs8GtnRpu5dE4WpgCJhRv1BErIyIgYgYmDlzZhd2a7Z3VRmca4FDJB0saQpwAnBZF7b7ZeAlAJKeDEwB7unCdi0JRe8emVRW1kbEDknLgMuBScCqiNgoaWn5/gpJBwLrgOnAkKRTgQURcZ+k84GjgBmSBoHTI+JcYBWwqjzFsh04qb6kNZsIKh0hFBGrgdV1bStqnt9JUe42Wndxk/btwJu6eJhmKXn4nuXiGd938fA9s6ScOS0dDfX6CHJw5jRLysFplpTLWsvHHUKAM6dZWs6clk62kTq94sxplpSD0ywpl7WWS5DuuspeceY0S8qZ09Jxh1DBmdMsKQenWVIuay0fl7WAM6dZWs6cloonld7NmdMsKQenWVIuay2XhDOv94ozp1lSzpyWjjuECs6cZkk5OM2Scllr+bisBZw5zdJycJol5bLW0nFvbcGZ0ywpZ07LJYAhp05w5jRLy8FplpTLWsvHVS3gzGmWljOnpeNTKQVnTrOkHJxmSbmstXw8EwLgzGmWljOnpeMOoYIzp1lSDk6zpFzWWi6BRwiVnDnNknLmtFSKe6U4dYIzp1laDk6zpFzWWj5DvT6AHJw5zZJy5rR03CFUcOY0S8rBaZaUy1rLxSOEdnHmNEvKwWmWlMtaSyY8E0LJmdMsKWdOS8czIRScOc2SciaVn5YAAAxOSURBVHCaJeWy1vJJ3CEkaT/gSmAqRfx8KSJOr2JfDk6zzmwDXhIRv5E0GfiBpG9ExFXd3pGD03IJUOJLxiIigN+ULyeXj0pSfaW/OSUtknSzpM2Sljd4f76kNZK2STqt7r1VkrZK2lDX/reSbpd0Xfl4RZWfwayepEmSrgO2AldExI+q2E9lwSlpEnAOcAywAFgsaUHdYvcCpwBnNtjEecCiJpv/54g4vHys7tIhmwHMkLSu5rGkfoGI2BkRhwOzgYWSnlbFgVRZ1i4ENkfELQCSLgCOA24cXiAitgJbJR1bv3JEXClpXoXHZ1n1tkPonogYaGfBiPiVpO9RJJENIyzesSrL2lnAbTWvB8u2blgm6fqy9H1Ml7ZpNiJJMyU9unz+COBlwE1V7KvK4FSDtm78l/hJ4EnA4cAdwEcb7lxaMlya3H333V3Yre010cPHyA4CvivpemAtxW/Or43tAzdWZVk7CMypeT0b2DLWjUbEXcPPJX0KaPjFRMRKYCXAwMBA3hNnNq5ExPXAEXtjX1VmzrXAIZIOljQFOAG4bKwblXRQzctXU0Gtb5ZBZZkzInZIWgZcDkwCVkXERklLy/dXSDoQWAdMB4YknQosiIj7JJ0PHEXRezYInB4R5wIfkXQ4RRFyK/DnVX0G6w1P8FWodBBCeZpjdV3biprnd1KUu43WXdyk/cRuHqNZVh4hZPk4cwK+KsUsLQenWVIuay2XwPdKKTlzmiXl4DRLymWtpSLC5zlLzpxmSTlzWj7OnIAzp1laDk6zpFzWWj4uawFnTrO0nDktF48Q2sWZ0ywpB6dZUi5rLR2PECo4c5ol5cxp+ThzAs6cZmk5OM2ScllryYTL2pIzp1lSzpyWS+DMWXLmNEvKwWmWlMtay8cD34E+Cs7XPHU5v31g2x7tj5g2lUs2fmjE9Z/5obN5YPtDe7RPmzKZa5Yva+sY/s+pZ/Pgtj23sf/Uyfzg4+1tw/pH3wRno8Bs1V6vUWC2am+kUWC2au9XHltb8G9Os6QcnGZJ9U1Za+OIy1rAmdMsrb4JzkdMm9pRe71pUyZ31N7I/lMbL9us3fpb35S17ZwuaaXd0yWt+HRJGwIYclkLfZQ5zcabvsmcNl74krFhzpxmSfVN5nzx2/6FB3/XYOjcfpP57qfeMeL6z3/tmajBf+gh+OGXTmvrGBbNX44a/J6KfcQ3bxr5N/Gz/qn5EML1727v9+zLF5/Fg7/d3tay1lt9E5yNArNVe71GgdmqveGyTTo6mrXX68oQwvEQmC5rAZe1Zmn1Tea0ccSZE3DmNEvLwWmWVN+UtfvvN7lpb207Qo07f0LtH0Pso6a9te2YNmVy097adu3/iCm5O4U8QmgXRR/U9wMDA7Fu3bpeH0ZqktZHxECvj+P3ph4Yz5v1pp7t/5s//2iK7wH6KHPaeBEQnkQI/JvTLC0Hp1lSfVPWHvnB5kPf1r5/5KFvR096fePzbxJX7LyorWN4+Zxl7PPQniXb0OR9uPy2s0dc/3nvaj57339/dAJdjtYH/SDt6JvMOeahb83+wXTwD6lRYLZqr+fZ+/pL32ROGyd8KmWXvsmcZuONg9MsKZe1lo87hIA+ypxjnj1PTYbYNWtvYGhy46+7WXs9z97XX/omc7ZzuqSVdk+XtNLO6ZJWJtTpklacOYE+ypxm442D0yypvilrbbzw1JjDHJwdeMEpZze9JvS/PjHy78EXvb35DIDf/+TIMwBaf3FZ24GxzuA31vWtvzhzWi4BDPl6TnDmNEvLmdPycYcQUHHmlLRI0s2SNkta3uD9+ZLWSNom6bS691ZJ2ippQ5NtnyYpJM2o6vjNeqmy4JQ0CTgHOAZYACyWtKBusXuBU4AzG2ziPGBRk23PAY4Gftmt421Hs5n62p3Bb6zrW3+psqxdCGyOiFsAJF0AHAfcOLxARGwFtko6tn7liLhS0rwm2/5n4K+Br3T5mFtq53RJKz5d0iaXtUC1Ze0s4Laa14Nl25hIehVwe0T8eITllkhaJ2nd3XffPdbdmu11VWbORpdrjOm/REn7A+8F/nCkZSNiJbASinlrx7Jf25vCMyGUqsycg8CcmtezgS1j3OaTgIOBH0u6tdzmNZIOHON2zdKpMnOuBQ6RdDBwO3AC8IaxbDAibgAOGH5dBuhARNwzlu2aZVRZcEbEDknLgMuBScCqiNgoaWn5/ooy460DpgNDkk4FFkTEfZLOB44CZkgaBE6PiHOrOt6RvPrxb+e3v/ndHu2PeOR+XLrlkz04ogkqIDzjO1DxIISIWA2srmtbUfP8TorStNG6i9vY/rwxHmLbGgVmq3azsfIIIcvHHUKAx9aapeXgNEvKZa3l4xFCgDNn2x7xyP06ajcbK2fONvl0yV4S4YutS86cZkk5OM2Scllr+bhDCHDmNEvLwWmWlMtaSyfcWws4c5ql5cxpyfheKcOcOc2ScnCaJeWy1nIJfD1nyZnTLClnTsvHcwgBzpxmaTk4zZJyWWupBBDuEAKcOc3Scua0XCLcIVRy5jRLysFplpTLWkvHHUIFZ06zpJw5LR93CAHOnGZpKfrgwlZJdwO/6NLmZgCZbtbbreN5QkTM7MJ2xkTSNyk+U6/cExGLerj/XfoiOLtJ0rqIGOj1cQzLdjzWPS5rzZJycJol5eDs3MpeH0CdbMdjXeLfnGZJOXOaJeXgNEuqb4NT0mMlXSHpp+Wfj2my3CJJN0vaLGl5TfvfSbpe0nWSviXp8WX7wrLtOkk/lvTqmnWeJemGclufkKS9dExHS1pf7nu9pJfUrPO9clvDx3zAaL9T67KI6MsH8BFgefl8OfDhBstMAn4GPBGYAvwYWFC+N71muVOAFeXz/YF9y+cHAVtrXl8NPBcQ8A3gmL10TEcAjy+fPw24vWa57wEDvf778GPPR99mTuA44LPl888CxzdYZiGwOSJuiYjtwAXlekTEfTXLTaOYYYOIeDAidpTt+w23SzqIInjWRBEVn2uwz6qO6dqI2FK2bwT2kzS1wbYtkX4e+P64iLgDICLuaFLOzQJuq3k9CDx7+IWkfwD+FPg18OKa9mcDq4AnACdGxA5Js8r1a7c1a28dU40/Bq6NiG01bZ+RtBO4GPj78j8P67EJnTklfVvShgaP49rdRIO2Xf9wI+K9ETEH+AKwrKb9RxHxVOBI4N2S9hve1vAxUWTGF+6tYyr3/VTgw8Cf1zS/MSKeDrygfJzY5nFYxSZ05oyIlzV7T9Jdkg4qM9Twb8N6g8CcmtezgS0Nlvsi8HXg9Lr9b5L0AMXvvEFgdkTML/e/GDgqInYFSpXHJGk2cCnwpxHxs5pjvL38835JX6Qomz/XYHu2l03ozDmCy4CTyucnAV9psMxa4BBJB0uaApxQroekQ2qWexVwU9l+sKR9y+dPAA4Fbi3L1fslPafspf3TBvus6pgeTRGo746IHw4vIGlfSTPK55OBVwIbGuzTeqHXPVK9egC/D3wH+Gn552PL9scDq2uWewXwE4oe0vfWtF9M8Q/5euCrwKyy/USKTpfrgGuA42vWGSjX+RlwNuUIrb1wTO8DHiiPafhxAEWn0fpy+Y3AWcCkXv/d+FE8PHzPLKl+LmvNUnNwmiXl4DRLysFplpSDMxFJx0ta0OvjsBwcnLkcDzg4DXBwdkzSmyRdXV5e9W+STpb0kZr33yzpX5osO6ls/42kfygvKbtK0uMkPY9i4MAZ5fJParDvfSWtlXRU+fqfyrG0NgE5ODsg6SnAnwDPj4jDgZ3Ab4DX1Cz2J8CFTZZ9Y7nMNOCqiHgGcCXwtoj4b4qRPn8VEYdHzRC7YVFc7fJm4JOSjgYWAR/o/ie1DCb02NoKvBR4FrC2vE76ERTjX2+R9ByKkT2HAj8ETm6yLMB24Gvl8/XA0e0eQERslPTvFCOAnhvFZWM2ATk4OyPgsxHx7oc1Sm8FXk8xlvXSiIhy/Owey5Yeit1Ds3bS+d/D04FfAY/rcD0bR1zWduY7wGuHr7MspxV5AnAJRWfOYuDCEZZt5X7gUa0WkPQaijG4LwQ+UQ5qtwnIwdmBiLiRYhD5tyRdD1wBHBQR/wvcSHG/katbLTvCLi4A/krStU06hGYAHwLeGhE/oRg8f1Z3Pp1l44HvZkk5c5ol5Q6hpCSdAzy/rvmsiPhML47H9j6XtWZJuaw1S8rBaZaUg9MsKQenWVIOTrOkHJxmSf1/3h1jPnTKNoYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 864x864 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure(figsize=(12,12))\n",
"art = glmsub[first].plot.scatter('event_x', 'event_y', marker='s', hue='event_energy')\n",
"art.axes.set_aspect(1.0)"
]
},
{
"cell_type": "code",
"execution_count": 77,
"id": "ab92075b-2ef5-416e-a632-ef14a56d295a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x7f84e48c4400>"
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEdCAYAAADEuPqOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeZwcVdW/n293z5o9JCwhhASBCCJrACGIgKwBAyogSwTUV/QVMG4vPxFcEHlfNhF8X0TCIsoiO7JFFsGAoCwJm4Q1hCULkATIntl6zu+Pqk56enqpSbq7pjPn4VOfqbp1b91TRadOnXvPPUdmhuM4juOUg0TcAjiO4zjrD65UHMdxnLLhSsVxHMcpG65UHMdxnLLhSsVxHMcpG65UHMdxnLLRK5WKpGskLZD0UpmuN0rSg5JekfSypNHluK7jOI7TlV6pVIBrgYPLeL0/ARea2TbAbsCCMl7bcRzHCemVSsXMHgM+yi6T9AlJ90uaIekfkj4Z5VqStgVSZvZQeO3lZray/FI7juM4vVKpFGAKcJqZ7QL8CPhdxHZbA4sl3SHpOUkXSkpWTErHcZw+TCpuAaIgqT+wJ3CrpExxQ3juS8Av8zSbZ2YHEdzjZ4GdgHeBm4GTgKsrK7XjOE7foyaUCoFFtdjMdsw9YWZ3AHcUaTsXeM7MZgNI+gvwGVypOI7jlJ2aGP4ys6XAW5KOAlDADhGbPwMMkTQ8PN4PeLkCYjqO4/R5eqVSkfRn4F/AWElzJX0DOB74hqQXgJnA4VGuZWZpgjmYhyX9GxBwZWUkdxzH6dvIQ987juM45aJXWiqO4zhObeJKxXEcxykbvcr7a9iwYTZ69Oi4xXAcpwaYMWPGIjMbXrpmYQ7at599+FE6Wn8vtj5gZuWM9LFe0quUyujRo5k+fXrcYjiOUwNIemddr7HoozRPPTAyUt26Td4ctq799QV8+MtxnD6MkbbOSFsUJCXDyB33hsc3S3o+3N6W9HyBdgdLek3SLEk/LuMNVp1eZak4juNUEwM6KasH7GTgFWAggJl9JXNC0q+BJbkNwrBRlwEHECzWfkbS3WZWk+vp3FJxHKdP0xnxv1JIGgkcClyV55yAo4E/52m6GzDLzGabWRtwExHX4fVG3FJxHKfPYhjtEYe2InAJcDowIM+5zwIfmNkbec5tCszJOp4L7F4uoaqNWyqOUwXM2mlZdjlLP9ibJR98hlVLzsU6l8YtVp/HgDQWaQOGSZqetZ2cuY6kw4AFZjajQFfHkt9KgSDKRz7RahK3VBynCqz46Jt0tD4BtADQuuIa2lv/xoDh9yM1xCtcH6cHcyqLzGxcgXPjgYmSJgCNwEBJ15vZJEkp4EvALgXazgU2yzoeCcyPKlRvwy0Vx6kwHW3/pqP1n2QUSkAbnen3aF81NS6xHEJLxSzSVvQ6ZmeY2UgzGw0cAzxiZpPC0/sDr5rZ3ALNnwG2kjRGUn3Y/u6y3GAMuFJxnAqTbn+OvKMZtoKOtqerLo/Tlc6I2zpwDDlDX5JGSJoKYGYdwKnAAwSeY7eY2cx16zI+fPjLcSpMIrkpKJVHrzSSSG4eh0hOiJnRVuagumY2DZiWdXxSnjrzgQlZx1OB9cJsdaXiOBUm1fA5pAGYraTLN6+S1DcfFZtcTmadilNOfPjLcSqMlKL/sNtJ1u0A1AMNJJJj6L/BTSSSG8QtXh9HpCNuTjQqaqlIGkuQEz7DFsDPzOySSvbrOL2NZGozBgy/m870IqAdJTYmWA/nxIkBnTXrvNs7qahSMbPXgB1hdSiCecCdlezTcXoziaTHJOxtuBVSXqo5p/J54E0zW+fIoo7jOOUgWPzoSqWcVFOpdHOrAwhXpZ4MMGrUqCqK4zhOX8eAdvOp5XJSlacZLuiZCNyae87MppjZODMbN3z4OuXbcRzH6RGGSJOItDnRqJalcgjwrJl9UKX+HMdxItFpPvxVTqqlVIoFU3Mcx4kFn1MpPxVXKpKaCZLPfKvSfTmO4/QMkfY5lbJScaViwTJiX+HlOE6vw4B2knGLsV7hYVocx+mzmLmlUm5cqTiO06fp9DmVsuJKxXGcPkswUe+WSjlxpeI4Th/Gh7/KjSsVx3H6LEHoe1cq5cSViuNUCTOD9JtgbZAaSxBj1YkTQ7RZ+f4/hIFzpwPzzOywsOw0gsyOHcB9ZnZ6nnZvA8uANNBhZuPKJlSVcaXiOFXA2t/AFv8npBeCEkADDL4YNewZt2h9ns7yDn9NJkgJPBBA0r7A4cD2ZtYqacMibfc1s0XlFCYO3O5znApj1oZ9NAnS7wKrwFaAfYQt/k8s/X7c4vVpMhP15Yj9JWkkcChwVVbxfwLnmVkrgJktqMR99CZcqThOpWmdBrR1L7c0tuqOakvjZGGItEXbgGGSpmdtJ+dc7hLgdLpmKN4a+KykpyQ9KmnXgqLAg5Jm5LluTeHDX45TaTo/BEvnOdEGaY+xGjc9mKhfVGiuQ9JhwAIzmyFpn6xTKWAI8BlgV+AWSVuYWW6+yfFmNj8cHntI0qtm9liPbqSX4ErFcSpNfYGPUzWjhvHVlcXpghnlcikeD0yUNAFoBAZKuh6YC9wRKpGnJXUCw4CFXeWw+eHfBZLuBHYDalKp+PCX41QYpbaExoNATVmljZDaEhr2i00uJxj+ardkpK3odczOMLORZjaaICHhI2Y2CfgLsB+ApK2BeqDLZLykfpIGZPaBA4GXyn2v1cItFcepAhp0PrSMx1beBNYKjRNRv+OQ/J9g3FR4Rf01wDWSXiKYWDvRzEzSCOAqM5sAbATcKQmCd/KNZnZ/JYWqJP6LdpwqICWg6QjUdETcojhZGCp7ki4zmwZMC/fbgEl56swHJoT7s4EdetKHpI3N7P1Cx3Hiw1+O4/RpajSd8NUljmPDLRXHcfosRtkXP1YFMzu02HGcuFJxHKfPkpmorzXCcDAbkfUON7N345NoDa5UHMfp09RajvowltjPgQ9Ys9DSgO1jEyoLVyqO4/RZzFSLw1+TgbFm9mHcguTDlYrjOH2aGsynMgdYErcQhXCl4jhOnyXIp1Jbw1/AbGCapPuA1kyhmV0cn0hrcKXiOE4fpiYzP74bbvXh1qtwpeI4Tp/FoOa8v8zsbIAwtIuZ2fKYReqCKxXHcfoslVhRX2kkbQdcBwwNjxcBJ5jZzFgFC3Gl4jhVwtpfx1ruBmtFjQdC3TjCeE9OjNRgjvopwA/M7O8AYaj9K4FekUbUlYrjVIHOFdfCsl8TpCnvxFbeAk2HwcBfuWKJkSD0fc09/34ZhQJBrLEwunFeJG0E/DcwwswOkbQtsIeZVSS0S82paMepNSz9QahQWoE0wUj+Klh1L7TPiFc4h05TpK0XMVvSTyWNDrezgLeK1L8WeAAYER6/DnyvUsK5UnGcStP6GCjfZHAL1vJA1cVx1hDMqSQibb2IrwPDgTuAO8P9rxWpP8zMbiFcfW9mHQRfNxXBh78cp9KoLjBOupEA9TqP0D5F4P3VqxRGSczsY+C7PWiyQtIGhL9CSZ+hgosna+tpOk4t0rAf+bVKHWo8vNrSOF0or6UiKSnpOUn3ZpWdJuk1STMlXVCg3cFhnVmSflygziXh33sk3Z27FRHrB8DdwCckPQH8iZ4ppR5RcUtF0mDgKmA7gn9ZXzezf1W6X8fpLSgxEAb/Blv8PYLvuGAdNwO+j+q2jlk6p8wr6icDrwADASTtCxwObG9mrZI2zG0QRhy+DDiAIKf9M5LuNrOXc6peF/69qIcyzQQ+B4wFBLxGBQ2Kagx/XQrcb2ZHSqoHmqvQp+P0KtS4H2z4OLQ+AtYGDZ9DyY3iFqvPU07vL0kjgUOBcwmsA4D/BM4zs9agP1uQp+luwKwwAySSbiJQRF2UipllvDp2NLNLc/qeDDxaQLR/mdnOBMolU/9ZYOfodxedig5/SRoI7E2YlczM2sxscSX7dJzeihIDUdMRqPloVyi9iB4Mfw2TND1rOznnUpcAp7MmHD3A1sBnJT0l6VFJu+YRYVOCIJEZ5oZlhTgxT9lJuQWSNpa0C9AkaSdJO4fbPlTw477SlsoWwELgD5J2AGYAk81sRYX7dRzHKYkhOqJP1C8ys3H5Tkg6DFhgZjPCl3aGFDAE+AywK3CLpC3MLHuSLZ+p1G0STtKxwHHAmJw5lAFAvjD4BxEom5FAdrDJZcBP8t1HOai0UkkRmFinmdlTki4Ffgz8NFMh1PYnA4waNarC4jiO46whSCdcluGv8cBESROARmCgpOsJrI47QiXytKROYBjBx3aGucBmWccjgfl5+vgn8F7Y/tdZ5cuAF3Mrm9kfgT9K+rKZ3b7Wd9ZDKq1U5gJzzeyp8Pg2AqWyGjObQhB2gHHjxuV1vHQcx6kU5ViDYmZnAGfA6rApPzKzSZK+DexHEKp+a4Kowotymj8DbCVpDDAPOIbAIsnt4x3gHUnHA/PNrCXsr4lAEb1dQLbbJR0KfIpA4WXKf7nWN1yEis6pmNn7wBxJY8Oiz5Mz+eQ4jhMbEVfTr4M1cw2whaSXgJuAE83MJI2QNBVWL0Y8lWDV+yvALSWCQ65eyBiSBm4tVFnS74GvAKcRDLUdBWy+tjdUimp4f50G3BB6fs2m+MpPx3GcqlGJJF1mNg2YFu63AZPy1JkPTMg6ngpMjdhFKrxupm1b+H4txJ5mtr2kF83sbEm/JliNXxEqrlTM7Hkg7+SW4zhO3PSyuF5RWChpopndDSDpcLoPqWWzKvy7UtIIgkn9MZUSzsO0OE6VaG39JytX3ITRSlPT4TQ2HozkQS3ixICOzpr7f/BtgtGfywhuYS5wQpH694aL0C8Eng3bXFUp4VypOE4VWLrkPFasuJJgbtVobXmYhobPMmToNR76PkZqMUmXmb0JfEZSf0BmtqxE/XPC3dvD8DGNZlax2F+uVBynwnR0zGH58isIQt8HmK2ktfUftLX+g4bGveMTzin7nEqlWZv8KJL2BEYTvvMlYWZ/qoR8NWf3OU6t0dr6KOQZ5jJbySoPfR8vVpP5VK6lB/lRJF1HEC9sL4IFmLtSwXlut1Qcp8JI/RDJPHGKUyQ0MAaJnAxlXPxYTYaZ2S2SzoDAJVlSsfwo44Btc1bxV4yiSqVEOOUMH5nZSeURx3HWPxobD2QJp+c5k6K531FVl8fpSg0qlZ7mR3kJ2JhgNX7FKWWpbAP8R5HzIgjZ7DhOARKJfvRvPp5lK6Z0Ka/TYJJJD00UJ4ZI1573V25+lOEECxoLMQx4WdLTZE3smdnESghXSqmcaWaFwikDIOnsMsrjOOsd1rmYzpV/oB9J0uEgWBIBi1i+9AIGDKpYbD8nArU2UU/P86P8ogoyraaoUgnzGhclSh3H6cu0rrgVzJBEKusFZma0r7gJXKnEhllNDn/1KD9KKcOg3JSaU7mHAtm1CcyoN4HLzGxOgTqO49CaP7g5YHRUVxSnG1YjSkXSxgR5Vpok7cSaX9VA8uRHkfS4me0laRld3+MCzMwq4iVSavirWNrKFEHUy1uAPcomkeOsZ9Q1HUnrsnypyUVd04Q85U716HXuwsUolB9lKXnyo5jZXuHfAVE7kDQ0QrXOYskWSw1/lTKbHpa0fQQhHKfPkkxtTF2/b9C+4urwe9FAIq1BDBroU5JxYlAzE/U9zY9SSkGY2Ud5iueHWzFNmwQKephEWqciaTzBZM/mYZuM+bSFmRXzDnMcB2ge9HPaGw9h1dKLMVtCqukQBvb/T6S6uEXr21gwr1JjPCHpakqvqJ9BoDdFoAQ+DvcHA++SP6jkK2a2U7HOJT1X7HzUxY9XA98PhSy2yMZxnALUNexG3fCb4hbDyaEGvb/+EG5nhsevAzcTvKdXY2ZjYHU+lbvD8PpIOgTYv8C1o0xlFK0T1e5bYmZ/NbMFZvZhZovY1nEcp1diBBP1UbYoSEpKei4M3IikX0iaJ+n5cMs7iSbpbUn/DutML9HNsNDrthNWJ/kq9rG/a0ahhPX/SuCS3I1MNsmsexkhaVRmy62Tj6iWyt8lXUiQ2CV78cyzEds7juP0Qso+UT+ZIHtjtmfVb8ysmNNThn3NrFhelAw9XVG/SNJZwPVhm0kEOVUKIuk04OfAB6zJMmlAyTn0qEpl9/BvdhAyI8i97DiOU7OUa05F0kjgUOBcglXvlSLfivoji9Q/lkBB3Enw3n4sLCvGZGDs2oxIRVIqZrZvTy/sOI7T2zGDzvJ5f10CnA7kuvCeKukEYDrwQzP7OJ8owIOSDLjCzKbkqRPKbM9K6rKi3sza89WVlAR+a2bdUhqXYA7FrZ+ClFr8eJiZ3buudRzHcXorPRj+GpYz3zEl8/KXdBiwwMxmSNonq87lwDkESuMc4NfA1/Nce7yZzZe0IfCQpFfN7LHcSuGw13HAJ8OiVwhcgPO5B2NmaUnDJdVn57UvhKSMhTUbmCbpPrpOeVyct2EWpSyVCyXNo7jP8n8DrlQcx6lJejD8tcjMCuUhGQ9MDCfiG4GBkq7PthAkXUmBd6WZzQ//LpB0J7AbwTDVaiRtAzxCkEvlOYL38q7ATyTtZ2avFpDtbQI35LuBFVl95lMQGSvr3XCrDzcoHF2lC6WUygd0XbmZjzeidOQ4fZ3Ojjm0t9wH1k6qcX+SddvELZJDecK0mNkZwBkAoaXyIzObJGkTM8uEnP8iQRj6LkjqByTMbFm4fyDwyzzdnANMzo23KOnLBPM4Xy4gXmZBY4LuQ3O593F2eM2jzOzWnH4i5WkotaJ+nygXcRynOG0rbqZlyVkEjjSdtC77X+r7nUjjoDNLNXUqiBHdXXgtuUDSjgRf+W8D3wKQNAK4yswmABsBd0qC4J18o5ndn+danzazbhPyZna7pP8uJECWohgQHNryCHKfAdwaoawbnvnRcSpMZ3pRqFBas0rTtK38E3VNh5Ks3zEu0ZwKRCk2s2nAtHD/qwXqzAcmhPuzgR0iXHrF2pyTtB1wHTA0PF4EnGBmM/PUPSSUa1NJv806NRCiRT91peI4Faaj9RFQsvuItLXQvuoeVypxUzthWjbMmkjPRgRuxYWYAvzAzP4Oq4fnrgT2zFN3PoGX2kSCCCoZlhFEVSmJKxXHqTiFvoRrLjzIekmthL4nUASF5kSuKtKuX0ahQGBJhXM33TCzFyS9BBwYBrDsMVEDSk4niDVzYwEfa8dxCpBq3B8W50vE1UBd0xFVl8fpSq0ElMzMjawFsyX9lGAIDIIV9W8V6SctaYOobsi5RF31cwwwAnhG0k2SDlI4q+Q4TnESiSE0Dr4QqCOIGi6gjvr+3yJZ/+l4hevjlDv2Vy/l6wTDY3cQrKofDnytRJt3CNyQfyrpB5ktSmdRV9TPAs4Mtd1hwDVAp6RrgEsLxOV3HCfEOpcQfMOlCV5lCazTjf4gNmEyvhQABtS2wihJOLr0XUkDCRJsRfH+iuyGnEvkOZUwGdfXCDwDbgduAPYiWIzjM42OU4DO9AJal/6Krt5frbSvuoW65iNI1e8Sl2ixkW5/nVWLT6ez/XkgQapxfxoHn08iMaTqslhn6Tq1jKRPA3+iq/fXiWbWbc1MhrV0Qwaiz6nMABYTxOv/sZll/nU8FSbwchynAB2tfy/i/XVvn1MqnZ0fs2LRl8AyqdM76Wh5mJWLjqbf8Aep7sh67Q1tFRiGWgLMMLPn85y7gu7eX1PI7/2V6SOyG3IuUS2Vo0Jf6m6Y2ZeKNZT0NoE7WhroKBLmwHHWU5Jg3V38DaMvOmC2r7gFrI2uWradzvRc0m1Pk2rYvVDTylAjE/VZjAu3e8LjQ4FngG9LutXMLsipH9n7K4ueuCF3Ieov+og8Xw/FNGMuUfMEOM56R6JuB8zayPsBntqq6vLETbrjNSBfniejs+MtqKZSsZpyKc6wAbBzZkhK0s+B24C9CdaW5CqVHnl/hayNIgKie3+NA74NbBpuJwP7AFdKOj3iNRynT9La9gwtCDPrsrVZJ63tBYe111uSdTsBzXnOWDzx0Czi1nsYBWS7+rYDm5vZKrpO3GXI9v66AxhGae+v2aHn1+hwO4vSigiIbqn0VDNmEzlPgOOsl5iRpp0VQCpc8JgOB7/qimdmXS+pb/4ibcsvxTpbWZMFt4Fk3Q4k66NEKyk3NWep3Ag8Kemu8PgLwJ9DS+Ll3MoZ768e9vF14GwCJSSCiMmlFBEQXakU1IyS8mnGbIrmCZB0MoHlw6hRoyKK4zi1QzJr3Ksj55M3VXsvtHVGif70G34vLUvOpaP1YUQ9dc1H0TDwh/EIVGPeX2Z2jqS/EoTbF/BtM8vkeTk+t76khwjmxReHx0OAm8zsoCJ9rI0iAqIrlR5pxhzhiuYJCC2XKQDjxo3rXUam45QBYdSRpH31V3lACtHZ2eNsresFieTGNA/937jFqOV1Ks8RrCNJAUgaZWbvFqg7LKNQIFAY4Ud+QSRtDfwIGE2WnjCzkinkSyqVcOX8tcBUgnUpJTVjVtuoeQIcZ70lUbcDKSBFgnRoqSRCC2V5+xwGxiibUzthWjJIOo0g5/wHBOOHIlCP2xdo0pmtdCRtTulZoluB3xPEFEuXqNuFkkrFzEzSX8xsF7pGrYxC1DwBjrPe0qkGVpKkiQ6SCEl0mtFmxipfVR8/NaZUgMnAWDOLauaeCTwu6dHweG/CKYcidJjZ5WsjXNThrycl7Wpmz/Tk4j3IE+A46y11yZGssBRt1kajhMxoMaOVBAPqd4pbPKeMw1+SkgSh4+eZ2WGSfgF8E1gYVvmJmU3N0+5g4FKC4HBXmdl5RbqZQ7CkIxJmdr+knYHPEFg134+wxOMeSd8hiBWWnaO+ZEiuqEplX4KFNW8TJINRcH0rZG45jhOSSDSxwYDT+HDZb2mzVavLpUY2GBTT5LQTYKDyTtRPBl6BLqOavzGziwo1CBXRZcABwFyCwL13m1mh+erZwDRJ99H1hV8w9XuoRO6NfBdwYvj3v7IvA2xRqmFUpXJID4RxHCeHoQO/Syo5gg+X/ZZ0eiGNDbswfNCZNNRtHbdofRyVzVKRNJJgdfu5QKSIviG7AbMyUUsk3QQcTmEnqHfDrT7cyo6ZjSl2XtIBZvZQvnNRoxS/I2kvYCsz+4Ok4UD/novqOH0TSQzqfxTzXt6Jh254graWNvb+Uju7HtBJIhF1DbJTEco3p3IJcDrdo/qeKukEgmGxH+bJSbUpwZBWhrlAwbAC65BXpZycD6y9UgkXO44DxhIk66oDrifwk3YcJwLXn3cXt17yV9pa2jEznrjnWXY7aAfOuOZbVQ6i6HQhulIZFiYszDAls5hb0mHAAjObEcbJynA5cE7YyznArwkWFmaT739+N6kkXWJm35N0T77zZjaxkOD5jAIzi7RCvtAlC52IOvz1RWAn4FkI1p6EIZEdx4nAgjkfcsvFU2lrbV9d1rKilacfeIEXHnuVHT8XQ3gSJyC6UllUJCDueGCipAlAIzBQ0vVmNilTQdKV5J/XmAtslnU8kmANSi6Z2F0F52fyUSGjoOBTi6pU2kLXYguFjBRYzHGcgBkPv4SS3T/uWla08s/7nnWlEhdlWvxoZmcAZ8DqiL4/MrNJkjYxs/fCal8E8gV7ewbYStIYYB5Bpt3j8vQxI/z7aO65ElTVKIiqVG6RdAUwWNI3Ccy3KysllOOsbzT2a8g7d5JMJWjq3xiDRE6GMnt/5XKBpB0J1NfbwLcAJI0gcB2eYGYdkk4FHiBwKb6mWN6SMIfVL4DNCd7hGW/cQp5ZlTAK3i50IupE/UWSDgCWEphQPys08+84Tnd2P3gHLM/S7WRdkv2PLZmiwqkhzGwaMC3c/2qBOvMJsuhmjqcSRC2JwtXA9wkWo0dZ7d5jo0DSUcD9YTSUs4CdgV+ZWcbaKZhHK3KGoFCJuCJxnLWgeUATP7/xNH55/P8hBaFB0u1pvnPB8Wy21SZxi9enUe2tqF9iZn+NWnktjYKfmtmt4QT/QQTzOJdTxCstQ1Tvry8RuJBtSGBqZcwtD1vkOBHZaZ9tuWnWJTz7yEzaW9vZad9PMWCIT0/GTu0FlPy7pAsJwtJnL358tlCDtTAKMhbQocDlZnZXGB2gJFEtlQuAL5jZKz0QynGcHBqa6tnjUA/N0mvofQm4opCxFrI90QzoEkFY0jKK3F0Jo2BeOGS2P3C+pAYiJnWMqlQ+cIXiOM56Se0plW9kVt9nkNRtkt7MBoTnfgm8T+CSLILI8qW8v44GDgYuMrPFkjaha8iWgkRVKtMl3Qz8ha7m1h0R2zuO4/RKKuz9VQluI5g4z+ZWYJcC9Q8ys+y5kMslPUWRjL1mtlLSAoJ0J28AHeHfkkRVKgOBlQT5UFb3SzCm5ziOU7vUiKUi6ZPAp4BB4Tx3hoEECy4LkZZ0PHATwd0eSwmvsXVZMBnVpThSbmLHcZxaQlZT3l9jgcOAwQTZdzMsIwivX4jjCMLqX0qgVJ4gz+LKHNZ6wWRU76+tCdzJNjKz7SRtD0w0s19Fae84jtNrqRHvLzO7C7hL0h5m9q8etHubIOpxT1jrBZNRh7+uJJikuSIU8kVJNwKuVBzHqW1qx1LJMEvST+iePz43UCUAkv5A/gCUeeuHrHUUlahKpdnMns6JpNoRsa3jOE6vpQYn6u8C/gH8jWgr6rODWDYSDG3lC1i5mnWJohJVqSyS9AlCbSfpSOC94k0cx8lm5fIWrj73Lh657WnSHWl2O+DTfPvsLzNsk8Fxi9Z3qa05lQzNZvb/olY2s9uzjyX9mUAhleL1oLn9TVKzpAFmtqxUo6hK5RRgCvBJSfOAtwh8nR3HiYCZ8YMv/Jp3Zs4NYrQAT9z5DC8+/hp/mn4Ojc0NMUvYh6k9pXKvpAn5ct1HZCtgVLEK4ZDXycBQ4BMEicR+D3y+1MUjrZA0s9lmtj8wHPikme1lZu9kCXBi4daO47zwxOu8M3POaoWSYdnCpdxz7T9iksoB1qyqL7XFjKRlkpYCkwkUyypJS7PKi7bLbMA9QClL5xQC9+GlAGb2BkGYrpL0KI+pma0oYP5M7sl1HKev8dhdMwq+mB6/e0Z1hXG6kHErLrXFjZkNMLOB4d+EmTVlHRcMuZLVLrNtnTsklodWM2vLHEhKEVG1Ro5SXILa8MlznJiobyj8T62uvsEpY7oAACAASURBVFz/DJ2+gKTc1fQAS4B3zKybA5Wkh83s86XKcng09DBrCifsv0Ng4ZSkR5ZKEXqBHnec3st+R29S8HP3kK/uVWVpnNVY4P0VZYuCpKSk5yTdm1P+I0kmaViBdm9L+rek5yVNL9HN74AnCVx8rwz3bwJel7Q66omkRklDgWGShkgaGm6jgREl+vh/wELg3wSJxaYCZ5VoA7il4jhVoTP1Paxzx8ARvzN8QyUSkEqw6ZjhscrW5ynvJ/Fk4BWC0CkASNoMOAB4t0Tbfc1sUYQ+3iYIKjkzvP62BOsIzyEInfVgWO9bwPcIFEh2WPylwGWFLi4pAbxoZtuxFhl+I1kqYe7kYmVP9LRjx+krtLe/xXMPC9rTaxQKBPttHTxyc+TF0U4lKNNEvaSRBPlHrso59Rvg9GhXicQns9MNm9nLwE65kYvN7FIzGwP8yMzGZG07mNn/Fbq4mXUCL0gq6iFWiKiWyu10j4p5G2FUTDM7dW06d5y+QEd6Du+/1a/gK+XdV+dVV6BeRCbFcs7C6qohyjoJfwmB8lgdI0vSRGCemb1Q4h4NeDAMi3KFmU0pUvc1SZcTDHkBfIVg6KsBaM/qez8ze4QgN0q39L8losxvAsyU9DSwIqvNxGI3ASWUyjpExXQcJySV2oZhgwu/uZoHNldRmt5BZ8fbrFr8E9Jt/wRSpJq+QNOgs1EihmSy0ZXKsJz5jimZl7+kw4AFZjZD0j5hWTNwJl2juxdifBi0cUPgIUmvmtljBeqeRDBx/j0Cvfg48CMChbJvVr3PAY/QNfhkhlJR5s+OIHNeSlkqaxsV03GckBRL+NQOq6irN9rbun6tJlOw877bxiRZPFjnYlYsnIjZUqATaKNj1d2s6HidfsPura7V0jN34UVmNq7AufHAREkTCD64BxIkxRpDMJQEMBJ4VtJuZvZ+FzHM5od/F0i6E9gNyKtUzGwV8Otwy2V5Vr2fh7u/NLO3sivlm9LI6ePRYueLUVSprG1UTMdxsmh7hu13a2WzT6zknTeaSXcEU5mJRCf9B6XY7yt7xCxgdWlbeRtGK4FCydBOZ8ebpNumk2rYtboClSH2l5mdAZwBEFoqPzKzL2fXkfQ2MC53Mj6MAJwws2Xh/oHAL3P7kHSLmR0t6d/kDxC5fQHxik5f5KNAKuIlwHTgh7nzN9lEnVPpUVTMPAImQ2HmmdlhEft0nPWDxFASiSTnXfcSU84dw2NTh5FOi533Wsp3zv8szQOa4pawqqTbXwZblfdcZ8ebUGWlEsfCRkkjgKvMbAKwEXBnaM2kgBvN7P48zTKLzCO9Q9dx+uJigqCTNxIMsR0DbAy8BlwD7FOoYVSl0tOomLl0c7NznD5Dw75AHf0HruAH58/iB+fPCk80ouGXxylZLCTrPk1Hy315FUuibuvqC1RmpWJm04BpecpHZ+3PByaE+7OBHSJc973w7zu55yQ9QfesjOsyfXFwTgriKZKeNLNfhgZGQXoS+j5yVMxsstzszgV+sDbXcJxaRqqHoddhH38b7GOCD786NPhilNw4bvGqTn3zl2lbfilmwRBYR7uQ6qlrGkuybqfqCtNL4nqVgW7uv+s4fdEp6WiCYTKAI7MvXaxhVKWyLlExu7nZOU5fQ3VjYfgj0PEa0A6pbQjCKfU9lBhIv2H3MOvZn3PZmSuY9eJglBR7HLw9p120goFD+1dXnvVDqRS7i+cknUIwFLZ62KvE9MXxBOmHfxde+0lgkqQmoOgSkqi/6snATyS1AW0En1pWLIgZ5Hezy1PnZIIQy4watVZrbRynJpAEdZ+MW4xewfKlQ/jJcYNYubQ+CNzcCU/eP5N5b/6Gy6adVVUPsFpJ0pVvrUnmFFBsYu464FXgIAIHgOMJpiMKEg7J5XNFhsCFuSCRlIqZra2V0c3NTtL1ZjYp69pTCHK1MG7cuPXjm8Fx8pBOd3L/tY8y9Q/TaG/rYJ8jd+dLpxxEY7++l0vlwT//i47Wji6ZADra07z/ziJmPjmL7fbYqnrC1M5bp9BLHrpmd8xlSzM7StLhZvbHMBX8A8U6krQ1cDmwkZltJ2l7YKKZlUwhH0mpKPhsOB4YY2bnhLFsNjGzp4u1K+BmN6lYG8dZXznva5fz9IMv0royiCh+00X38sTdM7j07z8lVde3hsLeeWUerS3t3crNjHlvLqieUqmhORUz+9paNs086MWStgPeJ/DkLcaVBPHErgj7fjFURiWVStQoxb8D9gCOC4+XUyQgmeM4XZn90hyefuBFWls6oKEeGhpoa+9k7psf8M97n4tbvKozdufRNDTXdys3YPSnNq2aHOrBVsNMkTQE+ClwN/AycEGJNs15jIZuYfXzEVWp7G5mpwAtAGb2MdD9F1EEM5vma1ScvsorT82iI5GAfs1QXw/1ddDcRGsHPP/oy3GLV3X2O/ozNPdvJJFc87qua0ix1Q6bM3an0dUVpkYyP64tZnaVmX1sZo+a2RZmtqGZ/b5Es0WSPkF455KOBN6L0l9Um7s9XMCY6WA4ZVmH6jh9g7rGOjoTqe4T0PV1kEzGI1SMNPdv5NKHzuCqn93G0w+9RKo+yQHH7MEJZxxedVnWE++vbkgquoTDzC4ucvoUgrnuT0qaB7wFRJq6iKpUfgvcCWwo6VwCn+VICVscx4EOAwp4NFmi7ykVgOEjhnDGVb0ghGCNfh5L+lR2CPw8rPUyjtD7a//sEDJR20b1/rpB0gzg8wTDi0eYWVGXNMdx1tDQWE8ylSDdkfMGk+g/uO9FKe419JL882vJdXSP6bUaM+txpOFC1k3Gwi5h3QDRvb8uBW42M5+cd5y1YMvtNiXdnu5urZix2Zi8GWadalG7SqUS/gMZ62YssCvBxD4E7syFQvF3Ierw17PAWaHv8p0ECqZUHmXHcUJe/ufrJNta6KhvDF9iFiiYlSt5c8YsOC43bJNTLWrJUpH0c4JfkICNJP0sc87MukU27ikZ60bSg8DOmWEvSb8Abo1yjajDX38E/ihpKPBl4HxJo8ysiiuUHKd2qW+so7OlFVu2MoxHkXWuqUeOlE65qSGlQpCfPkM70C24ZC6SxuTLp5JblsMogugpGdoovbYFiG6pZNgS+GR48b7nB+k4a8mWO28RDH9Bt5fYJluOqL5AzmpqyVIJP/ABkDQ5+7gIPc6nQjBf83SYMMyALwJR+oo8p3I+8CXgTeBm4BwzWxylreM4MO22pwqee+Ku6Uw46XNVlMZZTRh3rEYpOqeyLvlUzOxcSfcDe4VFXzOzSKt0o1oqbwF75GYscxwnGovmFv6n8/EHffP7bOlHy7nhovt4/J5nqW9IMeHEvfnit/cnVVc9F2tRW5ZKDp8vcb7H+VQkPWtmOwOY2QxgRrE6+YiqVKYAx0naIkzSMgrYuFTsL8dxArbeZQsevHZa3nObbLFhdYXpBbSuamPygeexaP7HdITDgjdccC8zn5zFL244pbrClFGpFMpyK+lHwIXA8Hwf55IOJgg1nyTICHleqb7M7KMS59cmn8o2kl4scl7AoGIXiKpULiMwEvcjCJ28jGCcrsrJpB2nNln4wdLA28u6v8GWLm2NQaJ4mXbHMyxeuHS1QgFobWnn+X+8ylsz5zLmUyOrJovy/D9ZB7pluQ0D8B4AvJu3/0ARXRbWmQs8I+luM3s5p95mBIppU+CvwIVm1h6e+4uZHVFApp6kg4+Sm6Fo9t+oSmV3M9tZ0nOhMB9LcpcVx4nIxx8sRc3N2KpV0BkO4kuoqYlVy1viFS4GXvrXG7SsbOtWLonXn3unekqljHG9imS5/Q1BosK7CjTdDZgVrmJH0k3A4XR3hrqG4GP+SeAbwKOSvmBmHwKbFxEtcjr4fKmKe4rH/nKcKrDr/tvxt5v+hfr1w7KVisROn9smXuFiYMQWG1HfWEdbTvh7JcSGmw2tqiw9SNI1TFL2+rwpYT6oDN2y3EqaSDAU9kKRxGObAnOyjucCu+epNzwrEORpkiYBj4V9FFONa50Ofm2IGqU4N/bX48B/V0wqx1nPGH/ojgweFrxrlEgEm0RdfYojTz0oZumqz0HH70ky2fX1k0gmGDRsADt8dmxVZZFF24BFZjYua1utULKz3GaVNQNnAj/L7TNXhDxl+ZREnaTsdMDXEwy3PQBsUuT694aJEqtCJKViZjcQaOD/IQh/fISZRVpd6TgOJFNJfvu3M9hm3BgSqQTJZIIRn9iQi6eezqANqpuTvTcwdKNB/M+d32fklhtR15AiWZdkyx0244K7fkAiEfVbt0yUJ/R9Jsvt28BNBPPP1wFjgBfC8pHAs5I2zmk7F9gs63gkMD9PH1eRY8GY2d+Ao4CXisg2mUCxtEhaKmmZpKUl72gtkZV3kmqdGDdunE2f7tFfnPWbZR+voKM9zZANB5auvJ7z4fuL+eUJl/PWzHkkkgn6D27mh/93EjvtXXq+WNIMMxu3Lv3322Az2+7Q70eq+/R1P4zUX1aW28Nyyt8GxuV6f0lKAa8TuAjPA54BjisRgTi3z++Z2SVR61eSKn8SOI4zYEg/VygEqYN//MXfMOvFObS3ddC6qo0P31vM2ZN+x/y3FlZRkIhbGZE0QtJUADPrAE4lGMZ6BbilJwolpGDuFAVMkvTT8HgzSbutpeglqVmlYtZCuv0NOjs/jlsUx4lEy8pWrj77do755A85csvvcfF3r2XxwoqNQvR6Zj71Jh++9xGd6a4z5emONFOvfbQqMmQWP0acU4lEoSy3ZjY6Y6WY2Xwzm5B1bqqZbW1mnzCzc9fyVgpR1XTwPY391StoXf4HWpeFKZatnVTjATQNvhglmuIVzHEKYGacdfRvee25t2hvDVJ9P3zLUzz/2Ktc+a9f0tDHgkpa29N8+PrZBPPLXV9DHe1p3nu7esE71Nl7pgDWgWI3UdUlITVnqbS3PEjrsvPAVgQbbXS0/I1Vi/8rbtEcpyCvTJ/NrBffXa1QIPgiX/rxCh79S9+aR7T0+9jH32SrbefQ0d79A7uhuZ4dI8yplEeYHmwxk5lgz7MtA4pFJa3qkpCaUyqtyy4DW5VbSkfL/VjnklhkcpxSzP73HDo7u/87blnRymszZscgUXzYylvB0mw8soV9JnxAQ+Oa9XipugSDNhjA/l/5TNXkUWe0LW7MbICZDcyzDTCzYqNOVV0SUnPDX5b+IP8JpbDOj1GiaFgax4mFTcYMJ5lKEqTAWENDUz0jt8r1MF3P6ZxHJlXHd89+lbHbL+XeP49k1coU4w/dmq/88Ls09S8aRLe89AIrpJJUOx18zSmVZMPudKy6m+7RBlIouWkcIjlOSXb63DYM2XAgbS1tq/PUS1BXn2L/r+wRs3TVRfV7YC33g60kkYBDjprPIUfNBxrRsLNQqrrrdmo4SnEkqp0OvuaGvxoHfB/URBDMM0RNNA78KVJdbHI5TjESiQQX3fNf7LzPtiRTSZKpBFvtOJpfTz2dAYP7xS1edWk8BBIjgIaswiZo3B+ltqyuLBZM1EfZaphMOvhZki6UtE5re0pRc5ZKIjWa/sP/Ssuy35Jue4pEcgQN/U8l1bh33KI5TlGGbjSIc276Lq2r2uhMd1Z3iKcXIdXDBrdgK66GlqmgBmg6FjUfHY9ANa0vSlPtdPA1p1QAEqnNaR7y67jFcJy1oq+5D+dDif5owGQYMDleOaid4a/QyytbWoXHAszMSq2orUo6+JpUKo7jOGXBLG+Om17Kw8DGwB3ATWaWNz9LLtVOB+9KxXGcPk2tWCpmdoSkQQQK4sowYvHNBAqmWBbIqqaDr7mJesdxnLJSI4sfAcxsiZn9ATgE+D1BJt6TSjSbAhws6WcAkkZVMvaXWyqO48SCWTvt7S8hNZBKbUORJFYVFAKU7iUaIwKS9gSOBT5LsIjxi2b2jxLNqpoO3pWK4zhVp6Xlb3z80WkE6806SSSGMXSDP1FXt3X1hakRnRKGzl9MkK/lZKAjLN8ZwMyeLdC0qrG/KqpUwjG/xwgc0lPAbWb280r26ThO76aj410+/uhkzFpWl6XTc/hw0ZfZaONnq77erFbmVIC3CVTgQcCBdI1MbASWSD6qGvur0pZKK7CfmS1X8Et5XNJfzezJCvfrOE4vZeWKP2OWGxHDMGultWUajU0HVFegGvH+MrN9Cp2TVCxYWm7sryOBs8or3RoqqlQsSCu5PDysC7fa+D/oOE5FSKffJzcGWkAnnZ0fVlucsloqoUUwHZhnZodJOgc4nMAyWACcZGbdUgWHQ1vLCMYDO9Yio+UtwKh8J6od+6vi3l+SkpKeJ3igD5nZUznnT5Y0XdL0hQurmO3NcZxYaGzcF6m5W7lZmvqG6kUnDjrtwRaNyQTZGzNcaGbbm9mOwL3Az4q03dfMdlzLFMlFvRzM7FUzu8zM/q+SCgWqoFTMLB0+0JHAbpK2yzk/xczGmdm44cOHV1ocx3FiprHpEFKprYE1SfWkZpr7HU0qNbqqsojA+yvKVvJa0kjgUOCqTJmZZaf27EflRmp6zQhQ1by/zGyxpGnAwcBL1erXcZzehVTHsOF3sGL59axadSdSE/36nUBj0xfikSf6nMowSdkZ1aaY2ZSs40uA04EBXa4fzGOcACwB9i1wbQMelGTAFTnXzVznHvIrDwEbRL2JSlNp76/hQHuoUJqA/YHzK9mn4zi9H6mR/gP+g/4D/iNeQXo2tLWo0NCUpMOABWY2Q9I+XbowOxM4U9IZwKlAPg/Y8WY2X9KGwEOSXjWzx3LqXFREtmLnqkqlLZVNCKJjJgmG2m4xs3sr3KfjOE5Eyhb7azwwUdIEoBEYKOl6M5uUVedG4D7yKJXM5L2ZLZB0J7AbwXKM7DqPlkPQSlPRORUze9HMdgonqrYzs19Wsj/HcZyeIou2FcPMzjCzkWY2GjgGeMTMJknKDi8/EXi1W/9SP0kDMvsEa1C6TRFIOlzSKVnHT0maHW5HrsWtVwRfUe84Tt+l8mFazpM0lsCl+B3g2wCSRgBXmdkEYCPgzjBMTQq40czuz3Ot0wkUVoYGglAr/YA/ALdV6iZ6gisVx3H6NmVe/Ghm04Bp4f6XC9SZD0wI92cDO0S4dL2Zzck6ftzMPgQ+DC2cXoErFcdx+ja9xhm3JEOyD8zs1KzDXrMew0PfO47Tp5FZpK0X8JSkb+YWSvoW8HQM8uTFLRXHcWIlne5k5pNvsHJ5K5/eYyv6DWwq3aic9A6FEYXvA3+RdByQiUi8C8HcyhGxSZWDKxXHcWLjzX/P4ayv/C+tq9qQoKM9zcnnHMWhJ+1dHQGMCsbrLS9mtgDYU9J+wKfC4vvM7JEYxeqGKxXHcWIh3ZHmzKMuZcmHy7uUX/mz2xi702i23CFvfMSyIgx11ohWCQmVSK9SJNn4nIrjOLHw/D9eo72to1t5e2s7U68rlcywjJhF25xIuKXiOFVk1ktzeOT2Z2hr7WCvQ3dkhz23iieNbi9g5bJVecs7O41lH62ojhA1NPxVK7hScZwqcdvvH+b6i6bS1tYBZjx829PsdeiO/ODi4/ukYvn0nlvntVQam+sZ/4WdqiZHL/HsWm/w4S/HqQIL53/Mny68j9aWdqzTMIOWlW08ft/zvPTUm3GLFwuDhw3gK5MPpq5+zbdtY3M9n9h+FHsdtnP1BPHhr7LiSsVxqsCMaa+QSHb/59a6qo0npj4fg0TxM/Xaadx80T3I0iQTkEjAEd/aj/+5/Xuk6pJVkiKiQnGlEhlXKo5TBeob6kjkGeJKJBLUN9bHIFG8vP3KPH7/4z/T1tJO6/IWOla1km5p467fPUhnuoqTHAakLdrmRMKViuNUgd0P2I7Ozu4vpmRdks9/edcYJIqXh65/nPbWjq4WgBmdaeOZB1+sqiw1tKK+JnCl4jhVoN/AJs684us0NNXT1K+BxuYG6hpSfOPMw9l87CZxi1d1PlqwBMtjkbSubGXlspbqCuPDX2XFvb8cp0rsut+23Pjcr3j64Zm0t3Uwbp9tGDJ8YNxixUIikd/bzcxoaK6rniAG5LEgnbXHlYrjVJHm/o3sc/gucYsRO4U8qFN1SVYtb62iJG6FlBsf/nIcp+pst+dYGvs1dCtPppJsvfOY6grT2Rlti4CkpKTnJN0bHp8j6UVJz0t6MEzOla/dwZJekzRL0o/LeHdVx5WK41SJtpY2/viLmzl21Lc4auNv8NtTrmTph8viFisW9jlydwYNG0Cqfo3rcH1TPTt8bhu22G6z6gmSGf6KskVjMvBK1vGFYTr1HYF7gZ/lNpCUBC4DDgG2BY6VtO063VeMuFJxnCpgZpx52P9wywV3sWjuRyxesJS/XvUwp+5+Bm0tbXGLV3Uamxv432k/55CT9mHoxoPYaNQwjjv9C/zshlNLNy4rBtYZbSuBpJHAocBVq69utjSrSj/ypwTbDZhlZrPNrA24CTh8nW4rRnxOxXGqwGvPzOLVp96graV9dVlHe5qPFyzh0Vv/xQFf/VyM0sXDwA36c8pFkzjloknxClK+OZVLCPLID8gulHQucAKwBNg3T7tNgew0wXOB3cslVLVxS8VxqsAbM2Zj4RCKUikSzc0k+venLS2enPpsidZOxejZ8NcwSdOztpMzl5F0GLDAzGZ068LsTDPbDLgByGeK5XNbqFnvAbdUHKcKbDxmQxKpBKqrQw0NawJIJpM89dDLvPPqPDb/5KbxCtlXiW6pLDKzcQXOjQcmSpoANAIDJV1vZtlm2I3AfcDPc9rOBbInkkYC86MK1dtwS8VxqsDOB2zPwKEDuioUAIl0upMbzrs7PuH6NFYW7y8zO8PMRprZaOAY4BEzmyRpq6xqE4FX8zR/BthK0hhJ9WH7mv1BuFJxnCqQTCb5rz+eSjJPUEnrNF579q0YpOo9LJz7Ee++Np/OamdhNMrqUpyH8yS9JOlF4EAC7zAkjZA0FcDMOgiGxR4g8By7xcxmrvO9xYQPfzlOldhyh9Ek65J0tnbPIbLJmOExSBQ/C+d+xK9OuIy3Zs4lkUzQ2NzAj37/Dcbt/+nqCVHmxY9mNg2YFu5/uUCd+cCErOOpwNSyChITbqk4TpXoN6iZ/Y7eg4amrlGJG5rqOf70iTFJFR9mxv/7wgW88fw7tLW007KilcULl3LOpMuY9+YH1RTEY3+VEVcqjlNFTr34qxz01c9S31hHqj7JBiMG819X/AefHj82btGqzswn3+DjBUu7hbrv6Ehz79V/r5IUET2/PD5YZHz4y3GqSF19iu9ceDzfPPcrtCxvof+Qfn0ylTDAR+8tzhsDLN2e5oN3FlVHCAOLsLDRiY4rFceJgbr6FHVD+8ctRqyMHbcF7W3pbuUNzfXsvN+nqidINZOC9QEqOvwlaTNJf5f0iqSZkiZXsj/HcWqHjUYN44Dj9qShec0cU11DiqEbDWb/Y/asjhBWHpdiZw2VtlQ6gB+a2bOSBgAzJD1kZi9XuF/HcWqA035zAtvstiV3XfE3Vi1v4bNH7MqRpx2cN4JxxfBJ+LJSUaViZu8B74X7yyS9QhDnxpWK4zhI4oDjxnPAceNjk8HcCikrVfP+kjQa2Al4Kqf85EwsnYULF1ZLHMdxHFYn6XKX4rJRFaUiqT9wO/C9nFDQmNkUMxtnZuOGD++bC8Acx4kJA9LpaJsTiYp7f0mqI1AoN5jZHZXuz3EcJyoGq6NHO+WhokpFgQP+1cArZnZxJftyHMfpMWaREnA50an08Nd44KvAfmGO5ufD0NCO4zi9Auu0SJsTDVkvmoCStBB4J245ysgwoEpLg3s1/hz8GWQo53PY3MzWaSJW0v0EMkVhkZkdvC799QV6lVJZ35A0vUhSnz6DPwd/Bhn8Oaz/eEBJx3Ecp2y4UnEcx3HKhiuVyjIlbgF6Cf4c/Blk8OewnuNzKo7jOE7ZcEvFcRzHKRuuVBzHcZyysd4qFUlvS/p3uOByeli2g6R/heX3SBqYp13RHDCSTpP0WnjuggJ9D5Z0m6RXw+vsEZYPlfSQpDfCv0Oy2pwhaVZ47YOyyncJ5Z0l6bdhlAIkNUi6OSx/KgzYmWlzYthHu6Q51X4GksZmLXZ9XtJSSd+L6Rm8IWlhjL+F74fnX5L0Z0mNMT2HWH4LYZ3J4f3PzPwOYnoGb0g6MZ+MThkxs/VyA94GhuWUPQN8Ltz/OnBOnnabADuH+wOA14Ftw+N9gb8BDeHxhgX6/iPwH+F+PTA43L8A+HG4/2Pg/HB/W+AFoAEYA7wJJMNzTwN7AAL+ChwSln8H+H24fwxwc7g/FJgd/n03fA5Dqv0Msq6VBN4nWKgWxzMYArQDn6j2b4EgzcNbQFN4fAtwUl/6LQDbAS8BzQRhof4GbBXjb2F29jPwrQLv3rgFqNiN5VcqS1njnLAZ8HKE69wFHBDu3wLsX6L+wPBFojznXgM2Cfc3AV4L988Azsiq90D4D2cT4NWs8mOBK7LrhPspglXKyqnzNoGCO7aazyCn7YHAE3E9g/DcMuDkGH4LmwJzwhdaCrgXOLAv/RaAo4Crso5/Cpwe42/hiuxn4Fv5t/V2+IsgAOmDkmZIOjksewmYGO4fRfAPCUkjJE3NvYC654DZGvhsaF4/KmnXPP1uASwE/iDpOUlXSeoXntvIgsRlhH83DMszL58Mc8OyTcP93PIubcysA1gCbJBzLQMOAC6s8jPI5hjgz1nH1X4GEGQg/Vm1fwtmNg+4iMBKeA9YYmYPxvQc4votvATsLWkDSc3AhEw/MTyD3DZOBViflcp4M9sZOAQ4RdLeBCb+KZJmEJjybQBmNt/MugS6VP4cMCkCE/ozwH8Bt2TGdLNIATsDl5vZTsAKAtO+GLnXgOAlUKg8apvxwOXAlVT3GWTa1xO8tG7Ndz63eoT7yS7vSZsrgd9Q5d9COEdwOMEQzgign6RJeWTu0iziPWXKo7aJ5bdgZq8A5wMPAfcTDGt15JG3S3cR7ie7fG3bOBVgvVUqZjY//LsAGPsUQgAACvlJREFUuBPYzcxeNbMDzWwXgq/nN/O1VeEcMHOBOyzgaaCT7sHo5gJzzSzzNXcbgZIB+EDSJmEfmwALstpslnWNkcD8sHxknvIubSSlgEHAR9nl4TMYSTAOXs1nkOEQ4Fkz+yCrrKrPIGQQMD+G38L+wFtmttDM2oE7gD3jeA5x/hbM7Goz29nM9g7leiOOZ5CnjVMB1kulIqmfpAGZfYJx/ZckbRiWJYCzgN/naVssB8xfgP3CelsTTMJ3ibhqZu8DcySNDYs+D7wc7t8NnBjun0gwPp0pPyb0YBkDbAU8HQ4JLJP0mVCuE3LaZK51JPCImRnB2PKBkjaVtFl47/+o5jPI4li6Dn1V+xkMkbQpcBDwQLV/CwTDXp+R1Bxe6/PAKzE8h1h/C1n9jAK+xJrfRLV/C0PCe38gV0anjMQ9qVOJjWBe44VwmwmcGZZPJvhSex04jzWTlCOAqeH+XgTm8YvA8+E2ITxXD1xPME78LLBfbvvweEdgeniNvxB6mxCM8T5M8KX2MDA0q82ZBF+KrxF6tITl48L+3gT+L0vmRoJhpVkEHjFbZLX5OsHEbCvBiy2OZ9AMfAgMyvl/U81nMCt8Du/G+Fs4G3g1rHcdazyl+tJv4R8EH1YvAJ+P8bcwC/ha3O+n9X3zMC2O4zhO2Vgvh78cx3GceHCl4jiO45QNVyqO4zhO2XCl4jiO45QNVyqO4zhO2XClEiOSNpJ0o6TZYQiRf0n6YnhuH0n35mkzTdK72SuXJf1F0vICfXQrl/QDSS9LelHSw5I2X0v5r5V0ZE7ZCEm3RWhbSN4jJG0bof04Sb+NLm3Ra/1C0jwFEXzfkHRHRBlOkjRiLfscLem4rOOy3Y/jxIkrlZgIlcJfgMfMbAsLVjUfQ9cVw4VYTBB2A0mDCQLt/f/2zj7mq7KM45/vHghEGkWitdZiw1KjDCaxYDBI/KuyYTK1eBmt2iCLF4frZZb0YolS1JgOG2NqY0EZrHxpgaCgGaGCPICZNO2F1dLKVZqA4NUf1/V7nuOP3/m9PPwent/m9dnOOPc51/1yHZ6d63ef+76/dyvsBSaY2YX4iv9a8vXzJS1vsVzMJT5mNbYsZSauUtuonsfMbNEp1FPNKjMbZ2bvAjYC2yWNapBnPr4moy+MBnqCSj/4kyQDQgaVgeNi4JiZ9axiNrM/mdnqJvJuwAMQ+ArlTXVsT8LMHjCz/0VyF80FsqaIX+AH4nyYpJ9Ej2ijXHhwQsH2Bkn7JO2KXttkXCvs5ug1jIme2QpJuyU9LWlq5O3pyUVPY13YPiNpUaGOr8r3tdkq389kWRPPZyOwhXjpy/fw2BG9yV9Jelv00CYA66OtZ9Syi/znSro/fN0jaQy+2HBq5F1a5c/I6H12x7O5sJGfSdIpZFAZOMbiq5D7wjZc+bWL2DviFNrxaXxfiv7gc8AL0SP6JnBR4d6ZwC4zez+wE/ismT2Cy21cG72GihbVIDObCCwBri+p63xcjmUicL2kwRHALseVdT+OB4Fm2QOcL9e9Wg3Mit7kOuAGM7sLV02YbWbjcJHEk+yirPXALeHrZFyx+EvAQ+Hnqqq6vw7sjef2FeDOen4CSLqvr5/ikqSdDBroBiSOpFtwSYxjZtZITv4E8DBwJb4B1B9VWyi4UZ1z8BfttEhXZDPA9wB5g6SZkZ5rZvtbrGIK8AMAMzsgqbtw7xi+vwjA47gsexmbCnajS2zuNbOjwFFJzwHnRP0/N7OXASTd3ULbKw/0PHyjqa3xjLvwoFBNTTu5Bt3bzWwzgJkdibbUq3sKHgwxs+1y2fgRdfw8bFWqwkkyUGRQGTgOEi8OADO7WtJZ+K/fZtiAq80u70vlki7B9ZWmxUsKM/snrluGpPnAaDPrU/mVaurce8V6NYJOUP9v8WgTdkcL5xW71iNtL+Px/wsBB81sUgP7mnaqsUVvE9STa6/lZ5J0DPn5a+DYDgyVtLBwbVgL+R8CvsPJKsANkTQe3wHvY+Zy8P3Fw8AVUed7gPc1kee/+N4e7ar/UklD5fuBfKSZTJIux9Vsf4wLGo6SNCnuDZY0tkZba9qZ7z1yuNLjkyvvDqO+nzuB2WE/HfiH9e5hkiQdTQaVASJ+pc8Epkl6VtJufLvXLxbMZkg6XDgmFfOb2UozK5OdrzCsqoxrgJuB4cBPY6D4F6fgym2Fsn9Tde9W/EXbHX514zvy1WMDcK1818wxp9AuzOxRfIxmH/4J7bE69S+NZ3EImIMr7j5vZsdwKfUVkvbhKr2VPVFuB9ZIegL/3FVmNxdYFM/hEeCt+LM4HoP3S6vashyYEPY30ivpXkqOqSSdQqoUJ/1GTCQYbGZHIkBsA94dL+rT1YbhZvZi9A524nvV93WCRJIkDcjvsUl/Mgx4IGYoCVh4OgNK8MP49DYUuCMDSpL0L9lTSZIkSdpGjqm8zlGVLIpcemV6k3mnyxcsVtILJM3rh2aW1T9V0sHK4sPTVW+SJOVkUEmakkUpYTq9g9GY2Rozu7PcvO3MBlbGAsKXT2O9PUgaVC+dJK83Mqh0OJLmyCVKnpB0m6QuSQsl3VSwmS9pdZl9XH9RTcii4LOjjkWeG9UrPLmyql2jgQX0zpqaGjIiy+L+g5JWSdop6XeSPiAXajwk6Vv1/KvxDGbEbLD9cpmSIZI+g09X/pqk9TXyXCPpQBxLCtfnhT/7JP0orp0jaXNc2ydpsgpyM2GzTKGFFr59W9IOYHGNdJlcS5nkTJekleFft6QvxPWa5SRJR9MfG9/n0Z4DuAC4G59BBT5Fdx4wCvhDwe6X+CrsmvZxbsClcX4TcF2c345Li1TXPRJfe1EZd3tTDZvlwLJaaeBBYEWcLwb+igtfDgEOA2+p195CmUOBv+CzxsAlS5Y0aPtFwH5cCmY4vtB0PC6N83vgrIqP8e/GQpldwAh85f6BQpnLgOUF324t3OtJA4PxacOjIn0lsK5g9904/zBwf5wvBH6Gy9FUnn1pOXnk0clHdtU7mxn4C/JRuazHGcBzZva8XFDwg8AhXCLk18DVteyjrFZkUQD+AxwB1kq6t5C3FSrrX/bjq83/BiDpGeAdeCAsa2+F84BnzezpSN+B+/n9OvVOATab2UtR3yZgKh5Y77JY22Nm/wr7i/FgjZmdAP4t6c0NfKvWW6ukG8m61JKcuQRYY2bHK+2S9N4G5SRJR5JBpbMRPg32yzXubcQ//zyFv0BN/vYps29FFgUzOy5pIh7YrgI+j798W6EiKfIqr5UXeZVeGZWy9lboi9RKWR7RK3fSiOO89vPw0Kr7L5WkG8m61JKcqdWuZuVhkqSjyDGVzmYbMEvS2dAjiV7ZUGsTPsj+CXp/JdezL6OmXIhc1mSEmd2HqwOPazZvCzTT3qeA0ZLOjfRcYEeDcncCM+XS+2cCl+GyNtuAK+TCmUgaWWjHwrjWJdfr+jtwtlzMcQjw0SZ9qifrUsYWYIFikD/a1ZdykmTAyaDSwZjZk8B1wBa5ZMdWYkMuM3sBeBJ4p5ntbmRfhzJZlDcC90Q5O4BqKRHw8ZDLKgP17fSvYHME+BQuKbMf7+WsqS6rKs8efLxlN/BbYK2Z7TWzg7gc/Q65lMr3Isti4ENR/uPAWDN7BfhG5L8HD27N+FRP1qWMtcCfge7I88k+lpMkA04ufkySJEnaRvZUkiRJkraRQSVJkiRpGxlUkiRJkraRQSVJkiRpGxlUkiRJkraRQSVJkiRpGxlUkiRJkraRQSVJkiRpG/8HU6z5yYtM2+MAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"glmsub[first].plot.scatter('event_time_offset','event_energy', hue='event_lat')"
]
},
{
"cell_type": "code",
"execution_count": 67,
"id": "a2d24a7c-a888-4728-b932-036ede96cff2",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAuoAAAHwCAYAAADwwkrGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dfbRmVX0n+O8vVY0OpoltKER5SZUGZMoJo3hDOu1LmHGwMdMRx2SmMenu2DHNVE9YtuOiCRlsXUbtJB0Toy0jTY9ETSIYk3Ek0Qmd2FGmbbpTt5DizbeCRaRApwqwBw1p3vzNH/egT663qi7ceupuqM9nrWfVPXvv83v2YR3O/dau85ynujsAAMBYvmu9JwAAAHwnQR0AAAYkqAMAwIAEdQAAGJCgDgAAAxLUAQBgQBvXewKjOvroo3vz5s3rPQ0AAJ7gduzYcVd3b1reLqjvw+bNm7O4uLje0wAA4Amuqv58pXa3vgAAwIAEdQAAGJCgDgAAAxLUAQBgQII6AAAMSFAHAIABCeoAADAgQR0AAAYkqAMAwIAEdQAAGJCgDgAAAxLUAQBgQII6AAAMSFAHAIABCeoAADCgjes9Ab7Tc9/8R/mL+x/+jvanPGlDbnrLWeswIwAADjUr6gNaKaTvrx0AgCceQR0AAAYkqAMAwIAEdQAAGJCgDgAAAxLUB/SUJ214VO0AADzxeDzjgDyCEQAAK+oAADAgQR0AAAYkqAMAwIAEdQAAGJCgDgAAAxLUAQBgQII6AAAMaK5BvarOqqovVNWuqrpwhf5Tquqaqrq/qs5f1ndZVe2pqhv3Ufv8quqqOnqm7dSp3k1VdUNVPXlqP6KqLq2qL1bV56vqxw/2sQIAwME0ty88qqoNSS5OcmaS3Um2V9WV3X3zzLB7krwuyStXKPH+JO9J8sEVap8w1f3yTNvGJL+d5O93986q+t4kD07dFyXZ090nV9V3JXnaGg8PAADmap4r6qcn2dXdt3b3A0muSHL27IDu3tPd2/PtQD3bd3WWgvxK3pnkgiQ90/ayJNd3985p/7u7++Gp72eS/NLU/s3uvuuxHxYAAMzfPIP6cUlun9nePbWtSVW9IskdjwTyGScn6aq6qqquraoLpvFPnfrfOrV/pKqevtZ5AADAPM0zqNcKbb1C2+oLVh2ZpdtY3rRC98YkL0ryU9Of/0NVvXRqPz7JZ7r7tCTXJHnHPuqfW1WLVbW4d+/etUwVAADWZJ5BfXeSE2a2j09y5xprPjvJliQ7q+q2qea1VXXs9H6f7u67uvu+JJ9IclqSu5Pcl+SjU42PTO3fobsv7e6F7l7YtGnTGqcKAACP3TyD+vYkJ1XVlqo6Isk5Sa5cS8HuvqG7j+nuzd29OUvh/LTu/mqSq5KcWlVHTh8s/ZEkN3d3J/mDJGdMZV6a5ObvrA4AAOOY21NfuvuhqjovSwF6Q5LLuvumqto29V8yrYQvJjkqyTer6vVJtnb3vVV1eZbC9dFVtTvJm7v7fft5v69V1a9n6S8IneQT3f3xqfvnk/xWVf1Gkr1J/uE8jhkAAA6WWlpwZrmFhYVeXFxc72kAAPAEV1U7unthebtvJgUAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADmmtQr6qzquoLVbWrqi5cof+Uqrqmqu6vqvOX9V1WVXuq6sZ91D6/qrqqjp5pO3Wqd1NV3VBVT162z5X7qgcAACOZW1Cvqg1JLk7y8iRbk7y6qrYuG3ZPktcleccKJd6f5Kx91D4hyZlJvjzTtjHJbyfZ1t3PTXJGkgdn+l+V5BuP7WgAAODQmueK+ulJdnX3rd39QJIrkpw9O6C793T39swE6pm+q7MU5FfyziQXJOmZtpclub67d077393dDydJVX13kjckedvaDgkAAA6NeQb145LcPrO9e2pbk6p6RZI7HgnkM05O0lV1VVVdW1UXzPS9NcmvJbnvALXPrarFqlrcu3fvWqcKAACP2cY51q4V2nqFttUXrDoyyUVZWj1fbmOSFyX5wSwF8k9W1Y4kdyf5/u7+X6tq8/7qd/elSS5NkoWFhTXNFQAA1mKeQX13khNmto9Pcucaaz47yZYkO6vqkZrXVtXp0/t9urvvSpKq+kSS07J0X/oLquq2LB3vMVX1qe4+Y41zAQCAuZnnrS/bk5xUVVuq6ogk5yS5ci0Fu/uG7j6muzd39+YshfPTuvurSa5KcmpVHTl9sPRHktzc3e/t7mdO41+U5ItCOgAAo5vbinp3P1RV52UpQG9Icll331RV26b+S6rq2CSLSY5K8s2qen2Srd19b1VdnqUntxxdVbuTvLm737ef9/taVf16lv6C0Ek+0d0fn9fxAQDAPFW3W7FXsrCw0IuLi+s9DQAAnuCqakd3Lyxv982kAAAwIEEdAAAGJKgDAMCABHUAABiQoA4AAAMS1AEAYECCOgAADEhQBwCAAQnqAAAwIEEdAAAGJKgDAMCABHUAABiQoA4AAAMS1AEAYECCOgAADEhQBwCAAQnqAAAwIEEdAAAGJKgDAMCABHUAABiQoA4AAAMS1AEAYECCOgAADEhQBwCAAQnqAAAwIEEdAAAGJKgDAMCABHUAABiQoA4AAAMS1AEAYECCOgAADEhQBwCAAQnqAAAwIEEdAAAGJKgDAMCABHUAABiQoA4AAAMS1AEAYECCOgAADEhQBwCAAQnqAAAwIEEdAAAGJKgDAMCABHUAABiQoA4AAAOaa1CvqrOq6gtVtauqLlyh/5Squqaq7q+q85f1XVZVe6rqxn3UPr+quqqOnmk7dap3U1XdUFVPrqojq+rjVfX5qf2XD/6RAgDAwTW3oF5VG5JcnOTlSbYmeXVVbV027J4kr0vyjhVKvD/JWfuofUKSM5N8eaZtY5LfTrKtu5+b5IwkD07d7+juU5I8P8kLq+rlj+2oAADg0JjnivrpSXZ1963d/UCSK5KcPTugu/d09/Z8O1DP9l2dpSC/kncmuSBJz7S9LMn13b1z2v/u7n64u+/r7j+d2h5Icm2S49d2aAAAMF/zDOrHJbl9Znv31LYmVfWKJHc8EshnnJykq+qqqrq2qi5YYd+nJvmxJJ9c6zwAAGCeNs6xdq3Q1iu0rb5g1ZFJLsrS6vlyG5O8KMkPJrkvySerakd3f3Lad2OSy5O8u7tv3Uf9c5OcmyQnnnjiWqYKAABrMs8V9d1JTpjZPj7JnWus+ewkW5LsrKrbpprXVtWx0/t9urvv6u77knwiyWkz+16a5Evd/Rv7Kt7dl3b3QncvbNq0aY1TBQCAx26eQX17kpOqaktVHZHknCRXrqVgd9/Q3cd09+bu3pylcH5ad381yVVJTp2e8rIxyY8kuTlJquptSb4nyevX8v4AAHCozC2od/dDSc7LUoD+XJLf7e6bqmpbVW1Lkqo6tqp2J3lDkjdW1e6qOmrquzzJNUmeM7W/9gDv97Ukv56lvyBcl+Ta7v54VR2fpdtltmZp9f26qvrZuRw0AAAcJNW9ptvGn7AWFhZ6cXFxvacBAMAT3PS5yoXl7b6ZFAAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAcw3qVXVWVX2hqnZV1YUr9J9SVddU1f1Vdf6yvsuqak9V3biP2udXVVfV0TNtp071bqqqG6rqyVP7C6btXVX17qqqg32sAABwMM0tqFfVhiQXJ3l5kq1JXl1VW5cNuyfJ65K8Y4US709y1j5qn5DkzCRfnmnbmOS3k2zr7ucmOSPJg1P3e5Ocm+Sk6bViXQAAGMU8V9RPT7Kru2/t7geSXJHk7NkB3b2nu7fn24F6tu/qLAX5lbwzyQVJeqbtZUmu7+6d0/53d/fDVfWMJEd19zXd3Uk+mOSVazw2AACYq3kG9eOS3D6zvXtqW5OqekWSOx4J5DNOTtJVdVVVXVtVF8zMY/fBngcAAMzTxjnWXuk+8F6hbfUFq45MclGWVs+X25jkRUl+MMl9ST5ZVTuS3LvaeVTVuVm6RSYnnnjiWqYKAABrMs8V9d1JTpjZPj7JnWus+ewkW5LsrKrbpprXVtWx0/t9urvv6u77knwiyWlT+/GrmUd3X9rdC929sGnTpjVOFQAAHrt5BvXtSU6qqi1VdUSSc5JcuZaC3X1Ddx/T3Zu7e3OWQvhp3f3VJFclObWqjpw+WPojSW7u7q8k+XpV/c3paS//IMnH1jIPAACYt7kF9e5+KMl5WQrQn0vyu919U1Vtq6ptSVJVx1bV7iRvSPLGqtpdVUdNfZcnuSbJc6b21x7g/b6W5Nez9BeE65Jc290fn7r/cZL/I8muJLck+b8P8uECAMBBVUsPQmG5hYWFXlxcXO9pAADwBFdVO7p7YXm7byYFAIABCeoAADAgQR0AAAYkqAMAwIAOGNSrarGqfq6q/sahmBAAALC6FfVzkjwzyfaquqKq/vb0PHIAAGBODhjUu3tXd1+U5OQkH0pyWZIvV9Vbqupp854gAAAcjlZ1j3pVnZrk15L8apLfT/ITSe5N8m/nNzUAADh8bTzQgKrakeQ/JXlfkgu7+/6p6z9W1QvnOTkAADhcHTCoJ/kfu/vWlTq6+1VV9dPd/YGDPC8AADisreYe9RVD+ox/cpDmAgAATA7Gc9Q9AQYAAA6ygxHU+yDUAAAAZlhRBwCAAa3mm0m3HKDtMwd1RgAAwKpW1H9/hbbfe+SH7j7v4E0HAABI9vN4xqo6Jclzk3xPVb1qpuuoJE+e98QAAOBwtr/nqD8nyd9J8tQkPzbT/vUk/2iekwIAgMPdPoN6d38syceq6oe7+5pDOCcAADjsreabSXdV1f+WZPPs+O7+mXlNCgAADnerCeofS/L/JPmTJA/PdzoAAECyuqB+ZHf//NxnAgAAfMtqHs/4h1X1o3OfCQAA8C2rCer/JEth/T9X1b1V9fWqunfeEwMAgMPZAW996e6/figmAgAAfNsBV9Rryd+rqn82bZ9QVafPf2oAAHD4Ws2tL/97kh9O8pPT9jeSXDy3GQEAAKt66ssPdfdpVfXZJOnur1XVEXOeFwAAHNZWs6L+YFVtSNJJUlWbknxzrrMCAIDD3GqC+ruTfDTJMVX19iT/Lsk/n+usAADgMLeap778TlXtSPLSJJXkld39ubnPDAAADmMHDOpV9a4kH+5uHyAFAIBDZDW3vlyb5I1VtauqfrWqFuY9KQAAONwdMKh39we6+0eTnJ7ki0l+paq+NPeZAQDAYWw1K+qP+P4kpyTZnOTzc5kNAACQZHXfTPorVfXFJL+Y5MYkL+juH5v7zAAA4DC2mhX1P0/ytiT/vrt/M8lRVXX6fKcFAACHt9UE9R9I8kNJXj1tfz2JJ8AAAMAcHfDxjEl+qLtPq6rPJkl3f62qjpjzvAAA4LC2mhX1B6tqQ5JOkqralOSbc50VAAAc5lYT1N+d5KNJjqmqtyf5d0n++VxnBQAAh7kD3vrS3b9TVTuSvDRJJXlld39u7jMDAIDD2GruUU93fz6enQ4AAIfMo/nCIwAA4BAR1AEAYECCOgAADGiuQb2qzqqqL1TVrqq6cIX+U6rqmqq6v6rOX9Z3WVXtqaob91H7/Krqqjp62t5cVX9ZVddNr0tmxr66qm6oquur6o8e2QcAAEY1t6A+PXv94iQvT7I1yaurauuyYfckeV2Sd6xQ4v1JztpH7ROSnJnky8u6bunu502vbdPYjUneleS/6e5Tk1yf5LzHdFAAAHCIzHNF/fQku7r71u5+IMkVSc6eHdDde7p7e5IHl+/c3VdnKciv5J1JLsj0JUwHUNPrKVVVSY5KcueqjwIAANbBPIP6cUlun9nePbWtSVW9Iskd3b1zhe4tVfXZqvp0Vb04Sbr7wST/OMkNWQroW5O8bx+1z62qxapa3Lt371qnCgAAj9k8g3qt0LaaFfB9F6w6MslFSd60QvdXkpzY3c9P8oYkH6qqo6rqr2UpqD8/yTOzdOvLL6xUv7sv7e6F7l7YtGnTWqYKAABrMs+gvjvJCTPbx2ftt5w8O8mWJDur6rap5rVVdWx339/ddydJd+9IckuSk5M8b2q7pbs7ye8m+VtrnAcAAMzVqr6Z9DHanuSkqtqS5I4k5yT5ybUU7O4bkhzzyPYU1he6+66q2pTknu5+uKqeleSkJLcmeXKSrVW1qbv3ZulDqJ9byzwAAGDe5hbUu/uhqjovyVVJNiS5rLtvqqptU/8lVXVsksUsfcDzm1X1+iRbu/veqro8yRlJjq6q3Une3N0r3ls+eUmSX6yqh5I8nGRbd9+TJFX1liRXV9WDSf48yWvmcMgAAHDQ1NLdICy3sLDQi4uL6z0NAACe4KpqR3cvLG/3zaQAADAgQR0AAAYkqAMAwIAEdQAAGJCgDgAAAxLUAQBgQII6AAAMSFAHAIABCeoAADAgQR0AAAYkqAMAwIAEdQAAGJCgDgAAAxLUAQBgQII6AAAMSFAHAIABCeoAADAgQR0AAAYkqAMAwIAEdQAAGJCgDgAAAxLUAQBgQII6AAAMSFAHAIABCeoAADAgQR0AAAYkqAMAwIAEdQAAGJCgDgAAAxLUAQBgQII6AAAMSFAHAIABCeoAADAgQR0AAAYkqAMAwIAEdQAAGJCgDgAAAxLUAQBgQII6AAAMSFAHAIABCeoAADAgQR0AAAYkqAMAwIAEdQAAGJCgDgAAA5prUK+qs6rqC1W1q6ouXKH/lKq6pqrur6rzl/VdVlV7qurGfdQ+v6q6qo6etjdX1V9W1XXT65KZsUdU1aVV9cWq+nxV/fjBPlYAADiYNs6rcFVtSHJxkjOT7E6yvaqu7O6bZ4bdk+R1SV65Qon3J3lPkg+uUPuEqe6Xl3Xd0t3PW6HWRUn2dPfJVfVdSZ72KA8HAAAOqXmuqJ+eZFd339rdDyS5IsnZswO6e093b0/y4PKdu/vqLAX5lbwzyQVJepVz+ZkkvzTV/WZ337XK/QAAYF3MM6gfl+T2me3dU9uaVNUrktzR3TtX6N5SVZ+tqk9X1Yun8U+d+t5aVddW1Ueq6ulrnQcAAMzTPIN6rdC22hXwlQtWHZml21jetEL3V5Kc2N3PT/KGJB+qqqOydHvP8Uk+092nJbkmyTv2Uf/cqlqsqsW9e/euZaoAALAm8wzqu5OcMLN9fJI711jz2Um2JNlZVbdNNa+tqmO7+/7uvjtJuntHkluSnJzk7iT3JfnoVOMjSU5bqXh3X9rdC929sGnTpjVOFQAAHrt5BvXtSU6qqi1VdUSSc5JcuZaC3X1Ddx/T3Zu7e3OW/jJwWnd/tao2TR9gTVU9K8lJSW7t7k7yB0nOmMq8NMnN31kdAADGMbenvnT3Q1V1XpKrkmxIcll331RV26b+S6rq2CSLSY5K8s2qen2Srd19b1VdnqVwfXRV7U7y5u5+337e8iVJfrGqHkrycJJt3f3Ih1F/PslvVdVvJNmb5B8e9AMGAICDqJYWnFluYWGhFxcX13saAAA8wVXVju5eWN7um0kBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgAR1AAAYkKAOAAADEtQBAGBAgjoAAAxIUAcAgAEJ6gAAMCBBHQAABiSoAwDAgOYa1KvqrKr6QlXtqqoLV+g/paquqar7q+r8ZX2XVdWeqrpxH7XPr6quqqOn7c1V9ZdVdd30umSFfa7cVz0AABjJxnkVrqoNSS5OcmaS3Um2V9WV3X3zzLB7krwuyStXKPH+JO9J8sEVap8w1f3ysq5buvt5+5jPq5J841EeBgAArIt5rqifnmRXd9/a3Q8kuSLJ2bMDuntPd29P8uDynbv76iwF+ZW8M8kFSXo1E6mq707yhiRvW/30AQBg/cwzqB+X5PaZ7d1T25pU1SuS3NHdO1fo3lJVn62qT1fVi2fa35rk15Lcd4Da51bVYlUt7t27d61TBQCAx2yeQb1WaFvVCvg+C1YdmeSiJG9aofsrSU7s7udnafX8Q1V1VFU9L8n3d/dHD1S/uy/t7oXuXti0adNapgoAAGsyt3vUs7SCfsLM9vFJ7lxjzWcn2ZJkZ1U9UvPaqjq9u7+a5P4k6e4dVXVLkpOT/GCSF1TVbVk63mOq6lPdfcYa5wIAAHMzz6C+PclJVbUlyR1Jzknyk2sp2N03JDnmke0pfC90911VtSnJPd39cFU9K8lJSW7t7sUk753Gb07yh0I6AACjm1tQ7+6Hquq8JFcl2ZDksu6+qaq2Tf2XVNWxSRaTHJXkm1X1+iRbu/veqro8yRlJjq6q3Une3N3v289bviTJL1bVQ0keTrKtu/f1YVQAABhada/ptvEnrIWFhV5cXFzvaQAA8ARXVTu6e2F5u28mBQCAAQnqAAAwIEEdAAAGJKgDAMCABHUAABiQoA4AAAMS1AEAYECCOgAADEhQBwCAAQnqAAAwIEEdAAAGJKgDAMCABHUAABiQoA4AAAMS1AEAYECCOgAADEhQBwCAAQnqAAAwIEEdAAAGJKgDAMCABHUAABiQoA4AAAMS1AEAYECCOgAADEhQBwCAAQnqAAAwIEEdAAAGJKgDAMCABHUAABiQoA4AAAMS1AEAYECCOgAADEhQBwCAAQnqAAAwIEEdAAAGJKgDAMCABHUAABiQoA4AAAMS1AEAYECCOgAADEhQBwCAAQnqAAAwIEEdAAAGJKgDAMCABHUAABjQXIN6VZ1VVV+oql1VdeEK/adU1TVVdX9Vnb+s77Kq2lNVN+6j9vlV1VV19LS9uar+sqqum16XTO1HVtXHq+rzVXVTVf3yPI4VAAAOprkF9arakOTiJC9PsjXJq6tq67Jh9yR5XZJ3rFDi/UnO2kftE5KcmeTLy7pu6e7nTa9tM+3v6O5Tkjw/yQur6uWP9ngAAOBQmueK+ulJdnX3rd39QJIrkpw9O6C793T39iQPLt+5u6/OUpBfyTuTXJCkDzSJ7r6vu/90+vmBJNcmOf7RHAgAABxq8wzqxyW5fWZ799S2JlX1iiR3dPfOFbq3VNVnq+rTVfXiFfZ9apIfS/LJtc4DAADmaeMca9cKbQdcAd9vwaojk1yU5GUrdH8lyYndfXdVvSDJ/1VVz+3ue6d9Nya5PMm7u/vWfdQ/N8m5SXLiiSeuZaoAALAm81xR353khJnt45Pcucaaz06yJcnOqrptqnltVR3b3fd3991J0t07ktyS5OSZfS9N8qXu/o19Fe/uS7t7obsXNm3atMapAgDAYzfPFfXtSU6qqi1J7khyTpKfXEvB7r4hyTGPbE9hfaG776qqTUnu6e6Hq+pZSU5Kcus07m1JvifJz67l/QEA4FCZ24p6dz+U5LwkVyX5XJLf7e6bqmpbVW1Lkqo6tqp2J3lDkjdW1e6qOmrquzzJNUmeM7W/9gBv+ZIk11fVziS/l2Rbd99TVcdn6XaZrVlafb+uqgR2AACGVt1rum38CWthYaEXFxfXexoAADzBVdWO7l5Y3u6bSQEAYECCOgAADEhQBwCAAc3zqS88Cpsv/Pg++2775f/+EM4EAIARWFEHAIABWVEHAOCw9Nw3/1H+4v6Hv6P9KU/akJvectY6zOivsqIOAMBhaaWQvr/2Q01QBwCAAQnqAAAwIEEdAAAG5MOkg/AIRgAAZllRBwDgsPSUJ214VO2HmhV1AAAOSyM8gnF/rKgDAMCABHUAABiQoA4AAAMS1AEAYECCOgAADEhQBwCAAQnqAAAwIEEdAAAGJKgDAMCABHUAABiQoA4AAAMS1AEAYECCOgAADEhQBwCAAQnqAAAwoOru9Z7DkKpqb5I/X+95PAEdneSu9Z4Ew3J+sD/OD/bH+cH+jH5+fF93b1reKKhzSFXVYncvrPc8GJPzg/1xfrA/zg/25/F6frj1BQAABiSoAwDAgAR1DrVL13sCDM35wf44P9gf5wf787g8P9yjDgAAA7KiDgAAAxLUAQBgQII6q1ZVT6uqP66qL01//o19jDurqr5QVbuq6sKZ9rdW1fVVdV1V/ZuqeubUfmZV7aiqG6Y//9uZfT411bpueh0ztT+pqj48vcd/rKrN8z16DmQ9zo+Zfa+sqhtntl9TVXtnzpufnccx8+gMdo64hgxmnX7H/FFV7ayqm6rqkqraMLW7hgxmsPPj0F0/utvLa1WvJP8iyYXTzxcm+ZUVxmxIckuSZyU5IsnOJFunvqNmxr0uySXTz89P8szp5/8qyR0z4z6VZGGF9/lfZvY/J8mH1/u/z+H+Wo/zY2p7VZIPJblxpu01Sd6z3v9NvIY+R1xDBnut0++Yo6Y/K8nvJzln2nYNGew12AyuYEkAAAVaSURBVPlxyK4fVtR5NM5O8oHp5w8keeUKY05Psqu7b+3uB5JcMe2X7r53ZtxTkvTU/tnuvnNqvynJk6vqSY9iLr+X5KVVVY/yeDi4Dvn5UVXfneQNSd52kI+F+RjpHHENGc8hPz9m9tmYpWDnCRvjGun8OGTXD0GdR+Pp3f2VJJn+PGaFMccluX1me/fUliSpqrdX1e1JfirJm1bY/8eTfLa7759p+83pn6r+2cz/CN96n+5+KMn/l+R7H9thcZCsx/nx1iS/luS+lcZO/8z5e1V1wqM+GuZhpHPENWQ86/I7pqquSrInydezFLq+NdY1ZCgjnR+H7PohqPNXVNWfVNWNK7zOXm2JFdq+tULR3Rd19wlJfifJecve+7lJfiXJ/zzT/FPd/QNJXjy9/v5q3of5GOn8qKrnJfn+7v7oCjX/IMnm7j41yZ/k2ysfzNnj6BxxDVkHI50fM/v87STPSPKkJI/cn+wasg4eR+fHIbt+bJxHUR6/uvu/21dfVf2/VfWM7v5KVT0jS3/DXG53ktmVh+OT3LnCuA8l+XiSN0+1j0/y0ST/oLtvmZnPHdOfX6+qD2Xpn7U+OPM+u6tqY5LvSXLPqg+Ux2Sw8+OHk7ygqm7L0rXsmKr6VHef0d13z9T611m6+HIIPF7OkbiGrIvBzo/Zef3nqroyS7c0/LFryPp4vJwfOYTXDyvqPBpXJvnp6eefTvKxFcZsT3JSVW2pqiOy9CGLK5Okqk6aGfeKJJ+f2p+apf9hfqG7P/PIgKraWFVHTz//tSR/J8kjT22YnctPJPm3PX2qg3VzSM+P7n5vdz+zuzcneVGSL04BLNNFfLbW59Z8dBwMw5wjcQ0Z0aH+HfPdj1wrprD1ozP7uIaMZ5jzI4fy+jGvT6l6PfFeWbr/6pNJvjT9+bSp/ZlJPjEz7keTfDFLn7y+aKb997MUtK/P0j8rHje1vzHJXyS5buZ1TJY+7LFjGn9Tkncl2TDt8+QkH0myK8mfJXnWev/3Odxfh/r8WPbem/NXn+jxS9M5szPJnyY5Zb3/+3gNd464hgz2WoffMU/PUrB75HfMv0yycdrHNWSw12DnxyG7ftT0hgAAwEDc+gIAAAMS1AEAYECCOgAADEhQBwCAAQnqAMxVVb2yqrau9zwAHm8EdQDm7ZVJBHWAR0lQByBV9feq6s+q6rqq+ldV9XNV9S9m+l9TVf9yH2M3TO3fqKq3V9XOqvoPVfX0qvpbWfpykV+dxj97hffeWFXbq+qMafuXqurth+TAAQYmqAMc5qrqv0zyd5O8sLufl+ThJN9I8qqZYX83yYf3MfanpjFPSfIfuvu/TnJ1kn/U3f8+S9/i90+7+3m98tdzP5TkNUneW1VnJjkryVsO/pECPL5sXO8JALDuXprkBUm2V1WS/BdJ9iS5tar+Zpa+CfA5ST6T5Of2MTZJHkjyh9PPO5KcudoJdPdNVfVbWfrGwB/u7gfWeEwAj3uCOgCV5APd/Qt/pbHqtUn+pySfT/LR7u5aSuffMXbyYH/7664fzqP/HfMDSf5Tlr66G+Cw59YXAD6Z5Ceq6pgkqaqnVdX3Jfk/s/RB0Fcn+fABxu7P15P89f0NqKpXJfneJC9J8u6qeupjPRiAJwpBHeAw1903J3ljkn9TVdcn+eMkz+juryW5Ocn3dfef7W/sAd7iiiT/tKo+u48Pkx6d5JeTvLa7v5jkPUnedXCODuDxq779r5QAAMAorKgDAMCAfJgUgEOmqi5O8sJlze/q7t9cj/kAjMytLwAAMCC3vgAAwIAEdQAAGJCgDgAAAxLUAQBgQII6AAAMSFAHAIAB/f+MYklMIoT+0AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 864x864 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure(figsize=(12,12))\n",
"art = glmsub[second].plot.scatter('event_x', 'event_y', marker='s')\n",
"art.axes.set_aspect(1.0)"
]
},
{
"cell_type": "code",
"execution_count": 78,
"id": "79e2f702-cc7d-41e3-addf-6ae33d24594e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x7f8380734518>"
]
},
"execution_count": 78,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEdCAYAAACsS3i2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd7wdVb3//9ebEAgJREoCAiGGJkWkBpAmCHwFAgZBLAhIUbl4AYPIFRFFBPEnRQUVxVCuKCi9SFMiGBA1IKGEEprUAJcQpASBtPP+/bHWTnZ2dplT9jl7n3yej8c8cmZmzcza2+P5sGbWfD6yTQghhNAKlujrDoQQQgglEZRCCCG0jAhKIYQQWkYEpRBCCC0jglIIIYSWEUEphBBCy2jboCTpIknTJT3cQ+cbKelWSVMlPSppVE+cN4QQQnFtG5SAXwO79+D5fgOcaXsDYCtgeg+eO4QQQgFtG5Rs3wn8u3ybpLUl/VHSZEl/lbR+kXNJ2hBY0vaEfO63bb/T870OIYRQT9sGpRrGA0fb3gI4DvhFweM+CLwh6RpJ90s6U9KApvUyhBBCVUv2dQd6iqRlgW2BKyWVNi+d9+0LnFLlsBdt70b6HnYANgOeBy4HDgEubG6vQwghlOs3QYk06nvD9qaVO2xfA1xT59hpwP22nwaQdB3wESIohRBCr+o3t+9svwU8I+nTAEo2KXj4P4EVJA3P6zsDjzahmyGEEOpo26Ak6ffAP4D1JE2T9EXgAOCLkh4EHgH2LnIu2/NIz6Buk/QQIOD85vQ8hBBCLYrSFSGEEFpF246UQggh9D8RlEIIIbSMtpx9N2zYMI8aNaqvuxFCaAOTJ0+eYXt445a17faxIX7t3/OKXW/KrD/Z7slsM4uVtgxKo0aN4t577+3rboQQ2oCk57p7jhn/nsfdfxpRqO3AVf81rLvXW5y1ZVAKIYTeZea5o687sViIoBRCCA0Y6CBmKveGCEohhFBABzFS6g0x+y6EEBowZo47Ci1FSBqQkz/fmNdPlTRF0gO5rttqNY7bXdLjkp6S9M2y7WdKeiyf41pJy/fIB+8Di0VQevO1mfzyhMs4aJPj+fI2J3H9+bczb178V08IoRgD83ChpaBxwNSy9TNtb5xzd94InFR5QK5ccC6wB7AhsH8uuwMwAdjI9sbAE8AJXfqgLaDf37579+33OGrn03h9+pvMnZOmdF50yjU8ft8zfOOXX+zj3oUQ2kVPPVOSNALYEzgNOBbm5+4sGQJVL7YV8FRZ4ujLSKnUHrV9a1m7ScB+PdLZPtDvR0oTLvs7b73+9vyABDDr3dncdcN9vPR0FJcNITRmYJ5daCngbOAbsPBDKkmnSXqBlMNzkZESsDrwQtn6tLyt0mHALUU60or6fVB68K7HmfXO7EW2D1hyAE888GzvdyiE0JY6Ci7AMEn3li2Hl84haS9guu3Jlee3faLtNYBLgaOqdEFVti0UBSWdCMzN52hL/f723eprrcKSAwcsNFICwGb46iv2TadCCG3FNrOLJ6+eYXt0jX3bAWMljQEGAUMlXWL7wLI2vwNuAr5bcew0YI2y9RHAS6UVSQcDewG7uI0zbff7kdKYQz7KkgMXrmw+YMklGLbaCmy41dp91KsQQjtJ7ykVHinVPo99gu0RtkcBnwNut32gpHXLmo0FHqty+D+BdSWtKWmpfPwfIM3KA44Hxtp+p2ufsjX0+6D0/pHDOOX3R7PyGiux1KCBDFxqST609Tr88NpjKSubHkIIdYh5BZcu+qGkhyVNAT5Omp2HpNUk3Qxgey7ptt6fSDP3rrD9SD7+58BywIQ8rfy8bnzYPtWW9ZRGjx7tzua+s82Ml15nqUEDed9KyzWpZyGEZpk3r4PpL7zGkKHLMHTFZQsfJ2lyndtphWy08VK++qZiKe3WH/lyt6+3OOv3z5RKJMUzpBDa1N9uup+ffv0S3ntnFh1zO9hkh/U5/ldfZLnlh/RaH7oxCgqd0O9v34UQ2tuTDzzHGUdcyJszZjLrndnMmT2XB+6cyvcO+kWv9SG9PNvU23chi6AUQmhpV/9yArNnzVlo29w583jy/md58V+v9EofDMzxEoWW0D3xDYYQWtr/Pfsq7lj02feApZZkxstv9EofjJjHEoWW0D3xDYYQWtomO6zPwKUWffw9d9Zc1vpQscJ7PaHDKrSE7omgFEJoafv81y4MXm4QA5Zc8Odq0OCl2OeIXVhuhd6Z6BDPlHpPU4OSpEGS7pH0oKRHJH2vTtstJc2T1LaJBEMIPW/54UM5d+J3+Pjnt2P4iBVZ+8Nr8NUfHcQh396nF3sh5nmJQkvonmZPCZ8F7Gz7bUkDgbsk3WJ7UnmjnJL9dNJLYSGEsJBhq67AuB8f1GfXNzCHAQ3bhe5ralDK+ZfezqsD81Ltbd2jgauBLZvZnxBC6ApbMQrqJU3/lnOFxQeA6cAE23dX7F8d2AeomxZD0uGlrLuvvvpq8zocQghVdKBCS+iepgcl2/NyNcURwFaSNqpocjZwvO15ix690HnG2x5te/Tw4cOb1d0QQlhEmugQU8J7Q6+lGbL9hqSJwO7Aw2W7RgOX5eSow4Axkubavq63+hZCCPXF7bve0tSgJGk4MCcHpGWAXUkTGuazvWZZ+18DN0ZACiG0klS6IoJSb2j2SGlV4OI8u24JUqr1GyUdAWC7bdOrhxAWH0bMdsy+6w3Nnn03Bdisyvaqwcj2Ic3sTwghdFVH3L7rFYtN6YoQQuiq0kSH0HwRlEIIoQEj5kVeu14RoT+EEAroYIlCSxH5/c37Jd2Y10+VNCWXMr9V0mo1jttd0uOSnpL0zbLtn86p3DoktXXV2whKIYTQgE1P574bB0wtWz/T9sb5nc4bgZMqD8gTxs4F9gA2BPaXtGHe/TCwL3BnFz9iy4igFEIIDRgxxwMKLY1IGgHsCVww//z2W2VNhlA9HdtWwFO2n7Y9G7gM2DsfP9X24934iC0jnimFEEIBPTjR4WzgG8By5RslnQZ8AXgT+FiV41YHXihbnwZs3VOdahUxUgohhAZMsQJ/ucjfsFKezrwcXjqPpL2A6bYnL3IN+0TbawCXAkdV6Ua1mRbVRlQNSXp/vfW+FEEphBAK6ETuuxmlPJ15GV92mu2AsZKeJd1+21nSJRWX+h3wqSpdmAasUbY+Anipix/nwgbrfSaCUgghNGDSy7NFlrrnsU+wPcL2KOBzwO22D5S0blmzscBjVQ7/J7CupDUlLZWP/0OXPo+9Z731vhTPlEIIoYHSRIcm+qGk9YAO4DngCIA8NfwC22Nsz5V0FKkY6gDgItuP5Hb7AD8DhgM3SXrA9m61LpZn8q1CWQyw/XxzPlrnRFAKIYQC5vVwrSTbE4GJ+edqt+uw/RIwpmz9ZuDmKu2uBa4tcl1JRwPfBV4hBUFIg8GNC3e+iSIohRBCA7b6U+67ccB6tl/r645UE0EphBAK6Ef1lF4gTTtvSRGUQgihgVRPqd/kvnsamCjpJmBWaaPtH/ddlxaIoBRCCA31q8qzz+dlqby0lAhKIYTQgKHZs+96je3vAUhaLq367T7u0kIiKIUQQgOljA79gaSNgN8CK+b1GcAXStPL+1oEpRBCKKBoWYo2MB441vZfACTtBJwPbNuXnSpp6rcsaZCkeyQ9mGt9fK9KmwNyHZEpkv4uaZNm9imEEDorla5QoaUNDCkFJJj/vtSQWo0lrSLpQkm35PUNJX2xWZ1rduifBexsexNgU2B3SR+paPMMsKPtjYFTSVE8hBBaSicSsra6pyV9R9KovHyb9He4ll+TskiUCg8+ARzTrM41NSg5KT1EG5gXV7T5u+3X8+okUpLBEEJoGemZUvdz37WIw0jpiK4hZYEYDhxap/0w21eQsz/YngvMa1bnmv5MKedYmgysA5xr++46zb8I3FLjPIcDhwOMHDmyp7sZQgg1pdl3bRFwGsqDgK924pD/SFqJPKDId7ua9vJt04OS7XnAppKWB66VtJHthyvbSfoYKShtX+M848m39kaPHt2lGiIhhNA17Z9mSNLZto+RdANV6jDZHlvj0GNJ2cjXlvQ30sjq083qZ6/NvrP9hqSJwO6kevLzSdqYVBp4j1bNxxRCWLz1g4wOv83/ntXJ4x4BdgTWIxUafJwmPvpp9uy74XmEhKRlgF2pqBMiaSTp3uZBtp9oZn9CCKEr+sPsu7Jqt5vavqN8IU1Eq+UftufafsT2w7bnAP9oVj+bPVJaFbg4P1daArjC9o2SjgCwfR5wErAS8AtJAHNtj25yv0IIoVPa/fZdmYOBcyq2HVK5LZdIXx1YRtJmLCjHPhQY3KzONTUo2Z4CbFZl+3llP38J+FIz+xFCCN1hxNw2D0qS9gc+D6wpqbxi7XJAtccmu5GC1QigPFnrTOBbTepmZHQIIYRGUjn01r01V9DfgZeBYcCPyrbPBKZUNrZ9MelO16dsX907XYygFEIIhbT77TvbzwHPSToAeMn2ezD/ef8I4Nkax10taU/gQ8Cgsu2nNKOf7f0thxBCbyiYzaHoaErSAEn3S7oxr5+aU609IOlWSavVOG53SY9LekrSN8u2ryhpgqQn878r1Ln8/Bdhs3nAlXX6eh7wWeBo0nOlTwMfKPRBuyCCUgghNFAq8ldkKWgcMLVs/UzbG9veFLiRNAFsIXnC2LnAHsCGwP6SNsy7vwncZntd4La8XsuStmfP/2zp53p1lba1/QXg9Vz2YhtgjUYfsKsiKIUQQgE9NVKSNALYk/RuJgC23yprMoQqL7cCWwFP2X46B5LLgL3zvr2Bi/PPFwOfrNOFVyXNf1FW0t7AjDrt383/vpNHcHOANeu075Z4phRCCA0YmNtR+L/hh0m6t2x9fM5IU3I28A3SrLf5JJ0GfIGUwudjVc67OvBC2fo0YOv88yq2Xwaw/bKklev07wjgUknnkj7atHzdWm7M75ueCdyXj7mgTvtuiaAUQggNdLLI34xa71pK2guYbntyrmO04Br2icCJkk4AjgK+W3l41a51ku1/AR+RtCwg2zMbtD81/3h1fgY2yHb75r4LIYT+oIfSDG0HjJU0hjSTbaikS2wfWNbmd8BNLBqUprHws5wRwEv551ckrZpHSasC02t1QNIqwA+A1WzvkZ9LbWP7wjrHbAuMIscMSdj+TeOP23nxTCmEEBpxzzxTsn2C7RG2RwGfA263faCkdcuajaUiHVv2T2BdSWtKWiofX3oJ9g+kTA3kf6+v041f04n6SJJ+S8qXtz2wZV6alnUnRkohhNBAL7w8+0NJ65Gmaj9Heu5Dnlhwge0xtudKOooUUAYAF9l+pHQ8cEWuCPs89bN4D7N9Rb5NSD5vvfpIo4ENbfdKdYa6QakiFUUt/7Z9SM90J4QQWlNPB6Vchnxi/vlTNdq8BIwpW78ZuLlKu9eAXQpeurP1kR4G3k/KBtF0jUZKG1A/L51I8+ZDCKHfMmJe8dl3ra6z9ZGGAY9KugeYVdpYp/5StzQKSifmtOY1SfpeD/YnhBBaUj+op1TS2fpIJ/dCn+arG5RyXfa6irQJIYR2ZveLhKwl/7C9OSk4ASDpPmDzao0bDUx6WqNnSlXL5mazgH8B59p+oUabPvX0I9O44cK/8OqLr7Plrh/i4/tvxzLLDmp8YAghVHCbB6XO1keSdJft7SXNZOE4IMC2hzajn41u39Urm7skKWvsFaRcSC3lzuvv5UdH/Zo5s+fSMa+Dh/7+BNeNv52f33YiQ4Y2rT5VCKFf6tTLs62qVn2kt6hSH8n29vnf5Sr31SJpxQLNOmy/UWtno9t3jYZtt0nauEAnetXcOXM552u/Zda783MOMuvd2bz20utcN/52Djhurz7sXQih3RjafqJDZ+sjNQowtv9dZfNLeakXwQcAI2vtLPSekqTtSA+7PpCPKQ3f1sqVY1vKM4++SEfHoncdZ8+ay11/mBxBKYTQOU7PlfqJv0m6kMYZHSaT4rFIQeT1/PPypHehqiVlnWp7kWrj5STdX29/0dB/IWm4V3qjd3T+ty5JgyTdI+lBSY9Um6mn5Ke5PsgUSVUftnXGkOWWoWNe9XfBll1+SHdPH0JYDPVw6Yq+9L8UyOhge03ba+W2n7A9zPZKwF7ANTXOXeRRTt02RYPSm7ZvsT3d9mulpcBxs4CdbW8CbArsnl/UKrcHsG5eDgd+WbBPNa221sqsvvb7WWLAwh9v0OCl2Pvwnbt7+hDCYsakiQ5FljYwLM+a7oCU0YFU6K+WLfNLu+T2t5CmlC+iVM0W5hcyXE3SyNJS2aaaokHpL5LOlLSNpM1LS6ODnLydVwfmpXIQvDfwm9x2ErB8TijYLSdf8t+sOmo4g4YszeDlBjFw6SUZ+6Wd2W7PuiPLEEKoomcrz/axzmZ0mCHp25JGSfqApBOBuoMSSUcDrwATSMllbyIVL2yoaO67Us2O8iR8BhoOO3K1xMnAOqTp43dXNKlWI2R1KlJaSDqcNJJi5Miaz8jmW3nESlww6RQev+8ZXp/+FutvsRYrrNyUGYwhhMVAP3qmVC2jw3512u9Pylh+Lenv/p15Wz3jgPUK3lFbSKGgZLtawalCbM8DNs1Foq6VtJHth8uaFKoRkotkjQcYPXp0oV8PSay/xVpd6HUIISxgQ0ebz74rsX2fpIUyOtieU61tHlT8tKK0RhEvUH/0VVOjl2f3sl13yFWkDYDtNyRNBHYnJfgrqVcjJIQQWkKb3JqrK9+2+zywft40lfT3ttr0bmzPkzRc0lK5BHuj8x+bf3wamCjpJhbOl/fjqgeWaTRSOlPSi9Sfc/4DatwrlDQcmJMD0jLArsDpFc3+ABwl6TLSbcI3S2V9QwihVbT77TtJGwC3k2bT3U/6u74l8C1JO9uuVsMJ4FnSNPI/AP8pbawRYEov2j6fl6XyAgWr5DYKSq+w8Ju/1TxZZ9+qpJe1BpAmVVxh+0ZJRwDYPo+Uhn0M8BTwDnBokY6HEEJvapOZdfWcCoyrzFcq6VPAaUDV8hkseCF2CRYEnapsfy+f89O2r6y4Tr1M5PM1yuiwU5GT1Dl+CrDIdLccjEo/GziyO9cJIYRmMm0z3bueD9teZEKD7asl/aDWQWWBZrm0On9GdT0nAFcW2LaIqDwbQgiN9I8s4f/pyj5JGwG/BVbM6zOAL5RVvS1vuwfpztfqkn5atmsoMLdIJyMohRBCET34TCk/0rgXeNH2XpLOBD4BzCZVXzi0WtJSSeOAL5OeB51v++y8fRPgPGBZ0jOgA2y/VXH4ymUTERY6LWlaeC3jgWNt/yVfayfgfGDbKm1fyp9rLOlVoJKZwNfqXGO+/jHHMYQQmqyHMzqMI818K5kAbGR7Y1LanxMqD8gjli8DWwGbAHtJWjfvvgD4pu0Pk94n+p8q1zyf9Eyoclk2H1/LkFJAgvll3Kvma7P9IHAJcJfti8uWa2y/Xuca8xVNyHovKV/S74qeOIQQ+pOemn0naQSwJ2lywbHp3L61rMkkqr/MugEwyfY7+Tx3APsAZ5DeObozt5tAmmH3nYX7765WCX9a0ndIt/AADgSeqdU4TyNfqeg08kpFR0qfIyXv+6ekyyTtJqntb7CGEEIRncx9N0zSvWXL4RWnOxv4Bjn3XBWHAbdU2f4w8NH8B38w6dnNGmX7xuafP83C735212Gk23vXkEZhw2k8S/o50jTy70g6trQUuVjRjA5PASfmaLkXcBHQIeki4JwadTVCCKF/MFD81twM26Or7ZC0FzDd9uT8bKZy/4mkCQGXLtIFe6qk00kjobeBB1kweeAw4KeSTiK9+9npEUot+e7YVyUNJRXoKzL7rvA08kqFJzrkYn6HkqLz1aQvbXvSy1ibduaiIYTQblxrXNM52wFjJY0BBgFDJV1i+0BJB5P+o3+X/KrMon1INY8uBMjTuKfl7Y8BH8/bP0i6PdgjJH0Y+A0Lz747uCJdXGU/uzKNHCj+TGky8Abpy/im7VLaiLtzAcAQQujHeuY9JdsnkCcx5JHScTkg7Q4cD+xYemZUtRfSyran5zIQ+5JrE5VtXwL4NmkmXq1zVLuN9iYw2fYDVfb9ikVn342n+uy70jUKTyOvVHSk9GnbT1fbYXvfgucIIYT21dw0Qz8HlgYm5Mf1k2wfIWk14ALbY3K7q3P+ujnAkWUTz/aXVEpCcA1pYloto/NyQ17fE/gncISkK22fUdF+kdl3khpVS+3MNPKFFA1Kn6wyr6FeZA0hhP7DPZ9mKE+tnph/XqdGm5dIj0xK6zvUaHcOcE7BS68EbF66pSbpu8BVwEdJ7xZVBqVOzb7LuhLIgOKz70YDR5DqHK1Oqmu0E3C+pG8UPEcIIbQvF1xa30gWnggxB/iA7Xcpy+hdpnz23TXAMBrPvns6z7wblZdv0ziQAcVHSp2NrCGE0M/0m7dgfgdMknR9Xv8E8Ps8knm0snFp9l0nr3EY8D1SEBPpHapCybaLBqWakVVStcgaQgj9S8/Mvutztk+VdAtpJqCAI2zfm3cfUNle0gTSvII38voKwGW2d6tzja4EMqB4UOpUZA0hhH6lc+8ptYP7Se8RLQkgaaTt52u0HVaeh8/265JWrnfyPC39OGAUZXHG9s6NOtYwKOXMDb8m1T3angKRNYQQ+pt2L/JXIulo4LukennzSH/TDWxc45CO8qAl6QM0fnp2JWla+gX5GoU1DEq2Lek621uwcNbXEEJYfPSToERKBrue7dcKtj8RuCvn2oM0l6AydVKlubZ/2ZXOFb19N0nSlrb/2ZWLhBBC2+s/t+9eIL3SU4jtP0raHPgIaVT1NdszGhx2g6T/JuXKmz/voEhKuqJB6WOkF6ueJRWDUjq/aw33Qgih/zCon0x0AJ4GJkq6iYUDxo9rHZCD0I2duMbB+d/yEhoG1mp0YNGgtEcnOjOfpDVIOZPeT5q7Mj6/5FXe5n2k+hsjc3/Osl3vbeQQQuhl6k8jpefzslReepztNevtl/T/bE+otq9olvDnJG0PrGv7fyUNJxWGamQu8HXb9+XEfJMlTbBdPmPvSOBR25/I531c0qVdqcMRQghN00+eKXWjrlJPKmU7X0TRhKzfJWV1WI+UU2kgaXRTNxmr7ZeBl/PPMyVNJWWEKA9KBpbLs/yWBf5NwVruIYTQa9o8KEk62/Yxkm6gyqexPbbKYaVjFxmU2C6UoaHWKWvtKHr7bh9gM+A+SPmY8sineA+kUfkcd1fs+jmp/sdLpLobn7UXTRKfC2UdDjBy5MjOXDqEELqvzYMSC3LXndWZg7o6KGmg5rdZNCjNzlPDnTtZKLFeiaRlSTWYjrH9VsXu3YAHgJ2BtUlZcv9a2c72eFLmWUaPHt3+vx4hhPbRD16etT05/3tHo7YVuj0o6YyiCVmvkPQrYHlJXwb+TEpD3pCkgeSigLavqdLkUOAaJ0+RkvatX7BfIYTQK9RRbGl1kraTNEHSE5KelvSMpKqlibLZuehglwYlNTxba0fRiQ5nSfp/wFukIdxJtWZOlMvPiS4EptaZbvg8sAvwV0mr5PPX+4JCCCF03YXA10jJEIpkW6gclBxGg0GJpE8Df8xzCb4NbA5833ZptFWzDl/hcug5CDUMRBW2Aw4CHpJUqrv0LdL0b2yfB5wK/FrSQ6SHX8cXeDErhBB6lfrPQ4M3bd9StHEXByXfsX1lniCxG+k51i+BrRtdr+jsu31JU/hWJgWO0suzQ+sdZ/suGuR7z0WsPl6kHyGE0Gfa/JlSmb9IOpNUVqL85dn7ah3QhUFJaQS2J/BL29dLOrnIgUVHSmcAn7A9tROdCiGE/qGHC/hJGgDcC7xoe68cJD5BKhH0L+DQ8szcZceNA75M+o/9822fnbdvSkqAOoj0Ss1/276nxuVLo5XRZdtMmmxWfq2Z1PnUDQYlL+ZbfrsCp0tamoJzGIoGpVciIIUQFms9e/tuHDAVKP1hnwCcYHuupNOBE4Djyw+QtBEpIG1FCl5/lHST7SdJA4fv2b5F0pi8vlONa3/R9kLP7SUtkv7H9nJ53ynA/5GmlItUGaLR7LvPALuTMvS8IWlVFk45VFPR2Xf3Srpc0v6S9i0tBY8NIYS211Oz7ySNIN3WuqC0zfattktJAyYBI6ocugEwyfY7ue0dpOnakEJmKcC9j/TeZy1XVdl2ZZ32u9n+he2Ztt/K2b8/Vac9tt8BppPKHUEavT1Z75iSoiOlocA7LPzsx6R7kiGE0P8VHykNk3Rv2fr4/J5lydnAN6g92jgMuLzK9oeB0yStBLwLjCHdAgQ4BviTpLNIg41tKw+WtD7wIeB9FYOKoaTbfrXMk3QAcBnpW9ifBrP2uvPCbdEp4YVqq4cQQn8kd2r23Qzbo6vtkLQXMN32ZEk7Vdl/ImlUcWnlPttT8629CcDbwIMsSMn2FVJJiaslfYY07XvXilOsB+wFLE96flUyk3RbsJbPA+fkxcDf8rZ6uvzCbdHZdx8kTedbxfZGkjYGxtr+fpHjQwih7fXM7LvtgLH5uc8gYKikS2wfKOlgUtDYJb+sumgX7AtJAQdJPwCm5V0Hk55TQboVd0GVY68Hrpe0je1/FO2w7WeBvYu2z7qcBajo7bvzSQ+pfpU7OUXS74AISiGExUMPTHSwfQJpEgN5pHRcDki7kyY27Jifx1QlaWXb0yWNBPYFtsm7XgJ2BCaSZtHVe37zlKRvAaMoiwG2D6txzf+legLXqu2zTr9wW1I0KA22fU9K0DBfZPIOISw2mpxC6OfA0qTcn5AmNBwhaTXgAttjcrur8zOlOcCRtl/P278MnCNpSeA96pcrvx74KyldXJGMDuXF/QaRbs3Vm0jR5SxAUDwozZC0NgtyH+1HLkkRQgj9XueeKRU7pT2RNLLB9jo12rxEmtBQWt+hRru7gC0KXnqw7eMbN5t/7qvL1yX9nhTQGnkiHe4/SxosaTnbMxsdVHRK+JGkW3frS3qRNNPjiILHhhBC+3PBpfXdmJ9pddW65FRxteRbdleRH/mQ6uhdV+TkRWffPQ3smh9WLVEZ7SQdbPviIucKIYS21B4Bp6ayDA0CviVpFuk2YN20cVUyO/wfFS/2VnEk6SXfu0knf1LSykX6WTghaz7xf2rsGgdEUPu8M3cAACAASURBVAoh9FvtnpC1lKGhl46bZXt2aR5CftZV6BvsVFCqo99kKgwhhP5M0uZVNr8JPFeWVaK8/W22d2m0rcIdeYbfMnnCw38DNxTpX08FpTb/b4gQQqjD7VHAr6BfkOobPZTXP0x6EXclSUfYvhVA0iBgMClDxQosGHwMBVZrcI3jgS/la/wXcDNV3p2qJkZKIYRQRP/5T+9nSUlZHwGQtCHpPdRTSanjbs3t/os0qW01cmaG7C3g3Fonl7QEMMX2RhR8N6lcodl3ktZssO1vnb1wCCG0lf4z+279UkACsP0osFll5nDb59hek/SC75plyya2f17r5LY7gAfzC76dVnSkdDVpuFfuKvK8eNtHdeXiIYTQDkT7T3Qo87ikX5ISrAJ8Fngi1zyaU2okaWfbt5NqIy1SFcJ2vYTcqwKPSLoHmD9BzvbYRp2rG5S6kVU2hBD6l/4TlA4hTTw4hhRv7wKOIwWkj5W12xG4nYWTt5Y0qhLxva52rtFIqatZZQGQtAbwG+D9QAcphfs5VdrtRErnPpCUYXfHIp0PIYRe0YSMDn3F9rvAj/JS6e2ydt/NP55i+5nyRtUe6VRc446u9q9uUOpqVtkyc4Gv274vpy2fLGlCvocJgKTlSbNBdrf9fNEXrEIIoVe1+ew7SVfY/oykh6ieYHXjGofWfXxT41rVSqm/Sar/9PXK51flij5T6lRW2bL9L5Nz5NmeKWkqKd3Eo2XNPg9cY/v53G56wT6FEEKv6QcjpVJpi72KNO7m45sfk5K2/o50i/BzpDtmjwMXUbtUe+Gg1NmssouQNIpU9Onuil0fBAZKmkiqxHiO7d9UOf5wcubbkSO7NKkjhBC6rs2DUh4kYPu5yn2S/saiVWG78/hmd9tbl62PlzTJ9il5gFNTZ0pXFM4qW0nSsqQh4DG236rShy2AXYBlgH/kzj9R3iiXEx4PMHr06Db/9QghtJX2me7dVYv8l343H9905Aq4V+X1/cpPXe/AokHpRkljbN/cyY4haSApIF1aYwrhNNLkhv8A/5F0J7AJKe15CCG0hH5w+66eep/ufklHkm7lzb9t1+DxzQGk8um/yOeeBBwoaRmg7itERYPSOFJW2dnAbBpklS1RysZ3ITDV9o9rNLse+HlO2LcUsDXwk4L9CiGEXtHuaYaqvWtU2kW6S1XLb4HHgN2AU0gBZ2q9a+WJDNWmkkOagl5T0dIVXcouS7pHeRDwkKQH8rZvkYeKts+zPVXSH4EppPktF9h+uIvXCyGE5mj/kVKtIAELV5ettI7tT0va2/bFkn4H/KnehSR9EPglsIrtjSRtDIy1/f1GnSwUlPKI5wBgTdun5vePVrV9T73jcjXEhnnxbJ8JnFmkLyGE0Ot6+JmSpAGk6dEv2t5L0pmkoDEb+BdwqO03qhw3jjTJQMD5ts/O2y8nTUyANDHhDdubLvQR7EO72N1Sloc3JG1Eqqc0qsEx55Py6f0qX3tKDmYNg1LRyrO/ALYhTd+G9IJVzYR8IYTQn6gTS0HjWPgW2ARgo/yu0BPACYv0IQWEL5OK520C7CVpXQDbn7W9aQ5EV1M/20Jnjc9Zwr8D/IH0Ss8ZDY4ZXGXQskhZjGqKBqWtbR8JvAdg+3XS858QQlg89FBCVkkjgD0pK+Vg+9ayWkaTgBFVDt0AmGT7ndz2DmCfinML+Azw+058srpsX2D7ddt32F7L9sq2z2tw2AxJa5O/EUn7kd9ZbaToRIc5ebhZusBw2v795hBCKK4Ts++GSbq3bH18fqWl5GzgG6T3Mqs5DLi8yvaHgdMkrQS8C4wh3QIstwPwiu0nC/e2BknH1ttfZ/IapHLo44H1Jb0IPAMcWOS6RYPST4FrgZUlnUaac/7tgseGEEL7K/6f4TNsj662Q9JewHTbk3POz8r9J5Juc11auS9PCjuddKvvbVJhvspbYvtTcJQk6UPlJSyq6OoEt9Lsu10lDQGWsD2z6LFFZ99dKmky6QVXAZ+0XXdKYAgh9Bs9l5B1O2CspDGkd36GSrrE9oGSDiZlUNjFdtWr2b6Q9JoNkn5Aes+TvL4ksC91ctJV+C2L5rQrv1anM33XGl2lu4oNR1dA8dl35wCX247JDSGExVMPBCXbJ5AnMeSR0nE5IO1OKiG+o+13ah0vaWXb03MBvX1JE9BKdgUesz2t+tGLnq4rn6GB0uhqPWBL0sQISDML7yxygqK37+4Dvp3nnl9LClCV9zJDCKHfanJGh58DSwMT8qhiku0jJK1GendzTG53dX6mNAc4Mk86K/kcDW7dSfouKbwKWEXSSaV9tk/p7ocoja4k3QpsXrptJ+lk4Moi5yh6++5i4GJJKwKfAk6XNNL2ul3peAghtJ0eDkq2JwIT88/r1GjzEmlCQ2l9hzrnO6TAZZ8t+3kOsEhy1kqS1qxWT6lyW4WRpHeuSmbT+N0moPhIqWQdYP188kfrNw0hhP6jP+S+ywMMIL2IW75eR6frKZGeV90j6VpSON8HKHKtws+UTifdv/wXaariqdXeNg4hhH7J9MeXYOo+U+pOPSXbp+X0cdvnTYfavr9Ip4qOlJ4BtrE9o2D7EELoN0T/GClV2KXB/k7XU5J0n+3NAWxPBibXa1NN0aA0Hvi8pLVykaaRwPsb5b4LIYR+o58FJdv/brC/K/WUNpA0pc5+Ae+rd4KiQelc0uB1Z1Lq8pmk+4xbFjw+hBDamqq/OtQ2ciLtM4HVgVuAM23Pyfuus/3JGoc+lavFjqIsZtSop7R+ga7UrV5eNChtbXtzSffnzrwuKXLfhRAWD/2j8uxFpMHEJOCLwB2SPmH7NeADdY67Hvgr8GcaBJRqpdY7K3LfhRBCAe1e5A8YXpZI9WhJBwJ3ShpL/ZA72Pbxze9eErnvQgihgH4w0WGgpEG2S9UeLpH0f6SCfUPqHHejpDG2b+6NTkbuuxBCKKL9g9IFwNakkhcA2P6zpE9Tvz7SOOBbkmaTXoJVOtRDm9HJwi/P2n6MVKc9hBAWLz2XkLXP2P5Jje33S7qpznFdzhbeFUWL/HWJpDUk/UXSVEmP5FK+tdpuKWleLgYVQgitpYeK/LWomrWTlBwo6Tt5fQ1JWzWrI00NSqRaH1+3vQHwEeBISRtWNsqTKE4n3dsMIYSWUnp5tsjSpupld/gFKRv55/P626TXhJqiqUHJ9su278s/zyTVpF+9StOjSVMVpzezPyGE0FXqcKGlTdXr+Na2jwRKEyReB5r2SlBnE7J2maRRwGbA3RXbVycl69uZOi/jSjocOBxg5MiRzepmCCEsqr1vzQEgaSbVP4WAZeoc2quvBPVKUJK0LGkkdIzttyp2nw0cb3teqTphNbnG/XiA0aNHt/mvRwih3bT7e0rdmLDQq68ENT0oSRpICkiX2r6mSpPRwGU5IA0Dxkiaa/u6ZvcthBAKW0z/U7i3XwlqalBSijQXAlNr1Wa3vWZZ+18DN0ZACiG0mjaexNAtks4hVRtv2uSGcs2efbcdcBCws6QH8jJG0hGSjmjytUMIoWe4Zyc6SBog6X5JN+b1MyU9JmmKpGslLV/juHGSHs6v2BxTse9oSY/nffVehu2s+4BvS3oq93N0D557EU0dKdm+iwaFpCraH9K83oQQQjf07EhpHGk2cikrwgTgBNtzc1HVE4CF8s1J2ohUx2grUmaFP0q6yfaTkj4G7A1sbHuWpJV7qqO5Ou3FklYEPgWcLmmk7XV76hrlmj1SCiGEtteT7ylJGgHsSUr7A4DtW23PzauTgBFVDt0AmGT7ndz2DtLMZYCvAD+0PSufb5HXayTNlPRW2TKz/N8CX8M6pNIUo2hidp8ISiGE0IhdfGnsbOAb1J5WfRip3lGlh4GPSlpJ0mBgDLBG3vdBYAdJd0u6Q1K112tuAx4Fvg9sZHs520NL/9bqrKTTJT1JqqX3MLCF7U/Uat9dvfaeUgghtLNOTHQYJunesvXx+ZUWJO0FTLc9WdJOi1xDOpGUCefSyn22p+ZbexNIWRUezG0h/S1fgZQ5Z0vgilwp3GXHf1LS+4B9gfMlDQIuBy5rUIX2GWAb2zOKffzuiaAUQghFFA9KM2zXmgywHTBW0hhgEDBU0iW2D5R0MLAXsEt5MFmoC/aFpBnNSPoBMC3vmgZck4+7R1IH6RWbVyuOfxP4X0kXA58Ffpb7UXV2dDYe+HwOcqdIGgm83/Y9Db6HLonbdyGE0IhB81xoqXsa+wTbI2yPAj4H3J4D0u6kiQ1jbb9T6/jSBIYcGPYFfp93XUfKioOkD5LSAC0yspG0raSfkWbUbQfsU+t1nTLnknLf7Z/XZ9LE3HcxUgohhCKa+57Sz4GlgQk5kcAk20dIWg24wPaY3O5qSSsBc4Ajcx46SKXOL5L0MGlm3sGVoy1JzwJvAJeRUrbNzds3ByjlKa1ia9ubS7o/t3tdUvvnvgshhHbW0y/P2p4ITMw/r1OjzUukCQ2l9R1qtJsNHNjgks+SQutuwMdZ+HUdk0daVfS/3HchhND2is2sa1m2d6q1T9JH6hzav3LfhRBCf9DP0wxdAVQtv9Cvct+FEEK/0A9KVzRQN/OO7cdo4guz5SIohRBCA4KGM+vaXMt8uAhKIYRQgNr8mZKkG6hd5G+lXu5OTRGUQgihkf5x++6sLu7rVRGUQgihocJ57VqW7Tv6ug9FREaHEEIooKeyhPcVSXtLOrJs/W5JT+dlv77sW7kYKYUQQiPuFxMdvkFKbVSyNCl56xDgf4Gr+qJTlSIohRBCEW1++w5YyvYLZet32X4NeE3SkL7qVKUISiGEUETbxyRWKF+xfVTZ6vBe7ktNTX2mJGkNSX+RNDXXjR9Xpc0BuS79FEl/l7RJM/sUQghdIbvQ0sLulvTlyo2S/gtoShmKrmj2SGku8HXb90laDpgsaYLtR8vaPAPsmDPP7kGq3bF1k/sVQgid09oBp4ivAddJ+jypdAXAFqRnS5/ss15VaGpQsv0y8HL+eaakqcDqpJK8pTZ/LzukVm36EELoO6aJebF7h+3pwLaSdgY+lDffZPv2PuzWInrtmZKkUcBmwN11mn2R6rXpkXQ4qQYII0dWzRsYQghNIYw62jwqZTkItVQgKtcr7ylJWha4GjjG9ls12nyMFJSOr7bf9njbo22PHj68ZZ7JhRAWF3axJXRL00dKkgaSAtKltq+p0WZj4AJgjzxFMYQQWkc/uH3XLpo9+07AhcDUWnXgc635a4CDbD/RjH7YxrPuouPNk+mYeRae+1QzLhNC6Md6cvadpAGS7pd0Y14/U9JjeRbytZKWr3HcOEkP59nMx5RtP1nSi5IeyMuYase3g2aPlLYDDgIekvRA3vYtcjEp2+cBJ5Ey1P4i16afa3t0T3XA7sBvHA2z/wZ+B1gS/+c3eOh3WGLwp3vqMiGE/q5nb82NA6YCQ/P6BOAE23MlnQ6cQMWjDEkbAV8GtgJmA3+UdJPtJ3OTn9humcSqXdXs2Xd30bh41JeALzWtE7P+UhaQIM1SnwtvnYIH7YaWGFrv6BBCoCcTskoaAewJnAYcC2D71rImk0glxyttAEyy0x8zSXcA+wBn9EjHWkS/T8jq924qC0hltCTM/vui20MIoZKBeS62NHY2KQ9dradUh1F9FvLDwEclrSRpMDAGWKNs/1H59t9Fklaocnxb6PdBCQ2i+mBNpHfGQgihsU48Uxom6d6y5fD555D2Aqbbnlz1GtKJpNs5l1busz0VOJ10q++PwIO5LcAvgbWBTUnvhv6oxz54L+v3ue+0zH743ZuAdxfdufS2vd6fEEKbKn77bkad5+LbAWPzRIRBwFBJl9g+UNLBwF7ALnb1i9m+kDR5DEk/AKbl7a+U2kg6H7ixaGdbTb8fKWmpzWHZLwNLAcuAhoAGoxXOQ4qRUgihAAMdLrbUO419gu0RtkeRykjcngPS7qSJDWNLz4yqkbRy/ncksC/w+7y+almzfUi3+tpSvx8pASyx7FF4mU/BrLtAg2Hpj6ElBvd1t0IIbaPpL8b+nPQ8YUKehTzJ9hGSVgMusF2a4n21pJWAOcCRtl/P28+QtGnqKM8C/9XMzjbTYhGUADRgVYgp4CGErurhNEO2JwIT88/r1GjzEmlCQ2l9hxrtDurRzvWhxSYohRBCl5Vu34Wmi6AUQggNGRx5hnpDBKUQQigikq32ighKIYTQSNy+6zURlEIIoYgYKfWKCEohhNCQe3z2XahusQlKHR0dTHviZQYNWZqV1xjW190JIbQTE0GplywWQeneWx/kjIN/xrtvv0fHvA7W/PBITrrquAhOIYTi4vZdr+j3aYZe+tf/cfK+Z/L6K2/y3n9mMfu9OTx53zMct/PJdMR/+YQQiopy6L2i3welG867lblz5i60rWNeB29Mf5OH73qsj3oVQmgvBfPexQy9buv3t+9eefZV5s2ZV3Xfay+9XnV7CCEsxKmKdWi+fj9S2nzXjVl68KLZwOfNmccGH1m3D3oUQmhL8zqKLaFbmhqUJK0h6S+Spkp6RNK4Km0k6aeSnspVEzfvyT7setBHWWm1FRi49IJB4aDBS7PrgR/l/aNW7slLhRD6K+cp4UWW0C3Nvn03F/i67fskLQdMljTB9qNlbfYA1s3L1qQKilv3VAcGDV6ac+/5IVee9QfuvOofLLPsMux91O58/OCdeuoSIYTFQUxi6BVNDUq2XyaV5sX2TElTgdWB8qC0N/CbXGlxkqTlJa2aj+0Ryy4/hEO/vz+Hfn//njplCGEx4xgF9Ypee6YkaRSwGXB3xa7VgRfK1qflbZXHH16qef/qq682q5shhFBFwengMZrqtl4JSpKWBa4GjrH9VuXuKocs8r+s7fG2R9sePXz48GZ0M4QQqjMwb16xJXRL06eESxpICkiX2r6mSpNpwBpl6yOAl5rdrxBCKMqA4x2kXtHs2XcCLgSm2v5xjWZ/AL6QZ+F9BHizJ58nhRBCtzkX+SuyhG5p9khpO+Ag4CFJD+Rt3wJGAtg+D7iZVIP+KeAd4NAm9ymEEDotRkq9Q27DB3OSXgWea+IlhgEzmnj+dhPfxwLxXSzQLt/FB2x360G0pD+SPm8RM2zv3p3rLc7aMig1m6R7bY/u6360ivg+FojvYoH4LkIz9Ps0QyGEENpHBKUQQggtI4JSdeP7ugMtJr6PBeK7WCC+i9Dj4plSCCGElhEjpRBCCC0jglIIIYSW0VJBSdIgSfdIejDXX/pe2b6jJT2et59R4/hnJT0k6QFJ95ZtPzXXanpA0q2SVuvktVeUNEHSk/nfFcr2nZBrQT0uabey7VvkvjyV60Upb19a0uV5+905UW3pmIPzNZ6U9KUW/S5OlvRiPv4BSWN64bs4uC9/N8raDpB0v6Qby7YtVr8bDb6LPvndqNXH0KZst8xCSs66bP55ICmj+EeAjwF/BpbO+1aucfyzwLAq24eW/fxV4Lyi187rZwDfzD9/Ezg9/7wh8CCwNLAm8C9gQN53D7BNPu8twB55+3+Xrg98Drg8/7wi8HT+d4X884gW/C5OBo6rckyzv4sV+up3o2z/scDvgBvLti1WvxsNvos++93o6b9FsfTd0lIjJSdv59WBeTHwFeCHtmfldtM7ed7yzORDqJ6FvNa1IdV8ujj/fDHwybLtl9meZfsZUqqkrSStSvo/+D9sG/hNxTGlc10F7JL/63A3YILtf9t+HZgA7NCC30Utzf4udu+r3w0ASSOAPYELqnzuxeZ3A+p+F7U0/Xej8IcMLa+lghLMvy3wADCd9Mt3N/BBYIc8jL9D0pa57WqSbi473MCtkiZLOrzivKdJegE4ADipE9cGWMU5SWz+t1RHvVYtqNXzz5XbFzrG9lzgTWClGuca0YLfBcBR+TbPRWW3q5r9Xazel78bwNnAN4DKjJuL3e9Gne8C+uh3o0Y/QxtquaBke57tTUklLLaStBEpcewKpFsU/wNcIUm2X7I9puzw7WxvTiqxfqSkj5ad90TbawCXAkd14tr11KoFVa9GVGeO6WjB7+KXwNrApqSqwj/qwufqynfhvvrdkLQXMN325Cr9qqVf/m40+C767HejyrbQplouKJXYfgOYSBqaTwOuybeV7iH9F9oiyRFtv5T/nQ5cC2xV5dS/Az7ViWsDvJJvNZD/Ld0WqVULalr+uXL7QsdIWhJ4H/DvOudqqe/C9is5OHQA55edt1e+iyp96o3vYztgrKRngcuAnSVdkvctbr8bNb+LVvjdCO2vpYKSpOGSls8/LwPsCjwGXAfsnLd/EFiKiuzEkoZIWq70M/Bx4OG8vm5Z07H5nEWvDanmU2mWz8HA9WXbP5dnCq0JrAvck2/jzJT0kXwf/AsVx5TOtR9we76f/ifg45JWyLc9dgf+0WrfRekPcLZP6bxN/i4+DtzbV78btk+wPcL2KNJD99ttH1jlM/T7341630Uf/m78qbKfoY25BWZblBZgY+B+YArpF/qkvH0p4JK87T5g57x9NeDm/PNapBk+DwKPACeWnffqfOwU4AZg9SrHV7123rcScBvwZP53xbJ9J5JmEz1OnjmUt4/O5/kX8HMWZM8YBFxJeth7D7BW2TGH5e1PAd9p0e/it8BDed8fgFV74bs4tC9/Nyp+R3di4Rlni9XvRoPvok9+N/r671YsPbtEmqEQQggto6Vu34UQQli8RVAKIYTQMiIohRBCaBkRlEIIIbSMCEohhBBaRgSlNiBpFUm/k/R0Tg3zD0n75H07qSxTc9kxEyU9n9//KG27TtLblW3zvkW2SzpW0qM5bcxtkj7Qxf7/WtJ+FdtWk3RVgWNr9feTkjYscPxoST8t3tu65yrPgv2kpGsK9uEQ1cm43eDYUZI+X7beY58nhFYUQanF5aByHXCn7bVsb0F6aXFE/SMBeIP0Bj75xdNV6zdfxP3AaNsbk5JiLlIKIf/BPbmT58Up9c1+jVvW9ElS9ulG17nX9le7cZ1KP7G9qe11gcuB2yUNb3DMIaR3fbpiFDA/KDXh84TQUiIotb6dgdm2zyttsP2c7Z8VOPYyUgAD2Be4pjMXtv0X2+/k1UkUC4SF5BFAKZPAYElX5BHZ5UoJRUeXtT1NqXbQpDxq3JaUceDMPGpZO48MT1eqM/SEpB3ysfNHknmkc1Fu+7Skr5Zd4zuSHlOqifR7SccV+H4uB24lBw2l2kB35NHsnyStmkeIo4FLc1+XqdYuH7+OpD/nz3qfpLWBH5KSrD4g6WsVn2fFPPqdkr+bjRt9zhBaXQSl1vch0tv5XXEb8FFJA8g1abrRjy+S6t00w38Dr+cR2anAFmX7hgCTbG8C3Al82fbfSRkD/iePWv6V2y5peyvgGOC7Na61Pqn8wVbAdyUNzAHwU8BmpOA9usax1dwHrC9pIPAzYL88mr0IOM32VcC9wAFOCVTnVmuXz3UpcG7+rNuSkpp+E/hr/pw/qbj294D78/f2LVLph5qfE0DSzV29lRhCb1iyrzsQOkfSucD2pNHTlg2azwPuAj4LLGP72bJHTJ255oGkP9Q75vVSah1IxdaWklSqg3OQ7Yc6eYntgXMAbD8saUrZvtlA6ZnZZOD/1TnPNWXtRtVoc5NTvaFZkqYDq+TrX2/7XQBJN3Si76UvdD1gI2BC/o4HkIJKpartlPLRrW77WgDb7+W+1Lv29uSkqbZvl7SSpPfV+ZzTvHC28BBaTgSl1vcIZdmabR8paRjpv76LuIyUCfrkrlxc0q6kvGU7ekHxuNdI5QmQdAgwynaXzl+6TJ19c7wgF9Y86v/OzirQblbZz6V2nY/UC2xG+t9CwCO2t2nQvmo7SUO7cO16ZRyqfc4QWl7cvmt9twODJH2lbNvgThz/V+D/A37f2QtL2gz4FTDWnaxi2kl3AZ/J19wQ+HCBY2YCy/Xg9T8haZCkZUlVVRuS9ClSlurfkxKNDpe0Td43UNKHqvS1ajunqq/TSiNOpYzag6n/Oe8kFeND0k7ADC9cPTaEthNBqcXlUcIngR0lPSPpHlKZ6OPLmu0iaVrZsk358bbPsj2D+gZXnONY4ExgWeDK/KD9D934KL8qO/c/Kvb9gvSHekr+XFNIlUbruQz4H0n35wkBXWb7n6RnVA+SbgHeW+f6X8vfxZPAgaRM3K/ank0qsXC6pAeBB0jPhQB+DZynVCl2QJ12BwFfzd/D34H3k76LuXnyw9cq+nIyMDq3/yELSj3UFM+UQquLLOGhz+WJGANtv5cDzG3AB/Mf+t7qw7K2386jkzuBw213dYJJCKGL4j5zaAWDgb/kGWICvtKbASkbn28dDgIujoAUQt+IkVIIIYSWEc+UQkOqSOmjlDZop4LH7qT0smtp/QhJX2hCN2tdfwdJj5ReXO2t64YQuiaCUiiiUEqfGnZiwYN8bJ9n+ze1m/e4A4Cz8sun7/bideeTtGS99RDCAhGU+gFJByql13lA0q8kDZD0FUlnlLU5RNLParXP299WgZQ+pJlps/MxP9SCpK1nVfRrFHAEC2as7ZBT4ByX90+U9BNJd0qaKmlLpSSnT0r6fr3PV+U72CXPxHtIKcXO0pK+RJpqfpKkS6scc6ykh/NyTNn2L+TP86Ck3+Ztq0i6Nm97UNK2KkuVlNscp5wHMH+2H0i6AxhXZb1WqqFa6ZIGSDorf74pko7O26ueJ4S2ZTuWNl6ADYAbSLPXIE2v/gIwHHiqrN0tpAwAVdvnnw18Iv98BvDt/POvSWlxKq+9Ium9m9KzyeWrtDkZOK7aOjAROD3/PA54iZQ0dmlgGrBSvf6WnXMQ8AJpxh6kdDvHNOj7FsBDpDRGy5JeUt6MlNbpcWBY6TPmfy8vO+cA4H2krBEPl53zOODkss/2i7J989eBgaQp38Pz+meBi8ra/Sj/PAb4c/75K8DVpFRKpe++5nliiaVdl7iN0P52If2B/adSSpplgOm2X1VKxvkR4ElSepu/AUdWa5/P1ZmUw3xrYwAAAhtJREFUPgBvAe8BF0i6qezYzii9+/QQKdPBywCSngbWIAXSWv0tWQ94xvYTef1i0uc8u851tweutf2ffL1rgB1Igfkq5/e6bP87t9+ZFOyxPQ94U9IKDT5bZa7B0nqjlETV0iXtCpxne26pX5I2anCeENpOBKX2J9IU5hOq7LucdPvqMdIfYCv99arVvjMpfbA9V9JWpMD4OeAo0h/vziilw+lg4dQ4HSxIAVSrvyVdSRNU6xixIFVPI3NZ+Bb4oIr9/6mx3iglUbV0SdX6VTS1UQhtI54ptb/bgP0krQzzyxmUivFdQ5qksD8L/iu9Xvtaqqa6UUrJ8z7bN5Myc29a9NhOKNLfx4BRktbJ6wcBdzQ4753AJ5XKZgwB9iGlZLoN+IxS0lkkrVjWj6/kbQOUctW9AqyslAh1aWCvgp+pXkqiWm4FjlCeJJH71ZXzhNDSIii1OduPAt8GblVKNzOBXMzP9uvAo8AHbN/TqH0dtVL6LAfcmM9zB1CZBgfS86B9ShMdevLzlbV5DziUlA7pIdIo67zKc1Uccx/pedM9wN3ABbbvt/0IqZTEHUppgH6cDxkHfCyffzLwIdtzgFPy8TeSgmORz1QvJVEtFwDPA1PyMZ/v4nlCaGnx8mwIIYSWESOlEEIILSOCUgghhJYRQSmEEELLiKAUQgihZURQCiGE0DIiKIUQQmgZEZRCCCG0jAhKIYQQWsb/D0SMnBswoX1pAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"glmsub[second].plot.scatter('event_time_offset','event_energy', hue='event_lat')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "20e1410e-dcd0-4973-b7b9-5ccb46d9d57f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:glmval]",
"language": "python",
"name": "conda-env-glmval-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment