Created
July 26, 2017 14:51
-
-
Save denadai2/428115f42891964e278faae6b557bd8a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"%matplotlib inline\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 68, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"marco = [\n", | |
" [0.34, 0.34, 0.32], #frequenza\n", | |
" [(0,0), (100,100), (100,100)] #posizioni\n", | |
"]\n", | |
"\n", | |
"laura = [\n", | |
" [0.34, 0.34, 0.32], #frequenza\n", | |
" [(0,0), (0,0), (100,100)] #posizioni\n", | |
"]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 62, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def f_radius_gyration(positions, frequencies):\n", | |
" frequencies = np.array(frequencies)\n", | |
" s = frequencies.sum()\n", | |
" mass = np.mean(positions)\n", | |
" distances = frequencies*np.array([np.linalg.norm(x-mass) for x in positions])\n", | |
" \n", | |
" return 1/s * distances.sum(axis=-1) \n", | |
"\n", | |
"def k_radius_gyration(positions, frequencies, k):\n", | |
" return f_radius_gyration(positions[:k], frequencies[:k])\n", | |
"\n", | |
"is_returner = lambda r_g_ks, k: r_g_ks[k-1]>r_g_ks[-1]/2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 63, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"63.168205786\n", | |
"[70.710678118654755, 63.168205785998246]\n", | |
"s2 [ 1.11940299 1. ]\n", | |
"Marco is returner: True\n" | |
] | |
} | |
], | |
"source": [ | |
"r_g_marco = f_radius_gyration(marco[1], marco[0])\n", | |
"r_ks_marco = [k_radius_gyration(marco[1], marco[0], x) for x in range(2,4)]\n", | |
"print(r_g_marco)\n", | |
"print(r_ks_marco)\n", | |
"print(\"s2\", r_ks_marco/r_g_marco)\n", | |
"print(\"Marco is returner:\", is_returner(r_ks_marco, 2))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 64, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"62.2253967444\n", | |
"[70.710678118654755, 63.168205785998246]\n", | |
"s2 [ 1.13636364 1.01515152]\n", | |
"Laura is returner: True\n" | |
] | |
} | |
], | |
"source": [ | |
"r_g_laura = f_radius_gyration(laura[1], laura[0])\n", | |
"r_ks_laura = [k_radius_gyration(marco[1], marco[0], x) for x in range(2,4)]\n", | |
"print(r_g_laura)\n", | |
"print(r_ks_laura)\n", | |
"print(\"s2\", r_ks_laura/r_g_laura)\n", | |
"print(\"Laura is returner:\", is_returner(r_ks_laura, 2))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 67, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.text.Text at 0x10d7999e8>" | |
] | |
}, | |
"execution_count": 67, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAFuCAYAAACY6YGRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW9//H3LNkmeyCBBAiQkJBglD2AIoiCCGitFiva\nYhG6+cPatLZKsYAWbtF6L9WH3l6tolYQpW51AdSKCgKCEEUlCQSQNQkhIYEkk5DMcn5/qGmtIIRM\ncmZ5Pf8iEzjzfnyY5D3fc86cYzEMwxAAAAh4VrMDAAAA36DUAQAIEpQ6AABBglIHACBIUOoAAAQJ\nSh0AgCBBqQMAECQodQAAggSlDkCSNHbsWBUXF5sdA0A7UOoAdOLECVVVVSkzM9Mn22tpadHcuXM1\nbtw4DR48WFdffbXWrVvnk20DOD1KHYBKS0uVnp6uiIgIn2zP7XYrNTVVy5YtU2FhoQoKClRQUKDD\nhw/7ZPsATo1SB6Bdu3YpOztbktTU1KTbb79dt956q5xO5zltz+Fw6Be/+IV69uwpq9WqcePGqWfP\nnioqKvJlbAD/wW52AADmKy0tVXZ2tg4dOqRf/OIXGj9+vGbPni2LxdL6d372s5+psLDwlP9+6NCh\nevTRR0+7/erqau3fv1/9+vXzeXYA/2LhLm0Arr/+evXv318bNmzQ3LlzNX78eJ9t2+Vy6Sc/+YnS\n09P1hz/8wWfbBfBNrNSBEGcYhkpLS3Xo0CHNmDHDp4Xu9Xp1xx13KCwsTPPmzfPZdgGcGqUOhLiv\nTl578sknNWPGDI0aNUrnn3/+N/7ej3/842/d/f74449/7THDMHTXXXepurpajz32mMLCwnwfHsDX\nUOpAiNu1a5f69++v/v37a+HChbr11lv1/PPPKyUl5Wt/7z9L+0wWLFigvXv36sknn1RkZKQvIwM4\nDc5+B0LcV6UuSePHj9f3v/99zZ49W83Nzee8zbKyMq1cuVIlJSUaPXq0Bg8erMGDB+vVV1/1VWwA\np8CJcgAABAlW6gAABAlKHQCAIEGpAwAQJCh1AACCRMB/pK2qqt6n20tMdKi2ttGn2ww1zLD9mGH7\nMUPfYI7t5+sZJifHnvZ7rNT/g91uMztCwGOG7ccM248Z+gZzbL/OnCGlDgBAkKDUAQAIEpQ6AABB\nglIHACBIUOoAAAQJSh0AgCBBqQMAECQodQAAggSlDgBAkOi0Uv/kk080ffp0SdKBAwd0ww036MYb\nb9SCBQvk9XolSQ8//LCmTp2qadOm6dNPP+2saAAABIVOKfXHHntMv//979Xc3CxJWrx4sQoKCrRi\nxQoZhqG1a9eqqKhIH374oZ5//nktWbJE99xzT2dEAwAgaHRKqaenp+uhhx5q/bqoqEj5+fmSpDFj\nxmjTpk0qLCzU6NGjZbFYlJaWJo/Ho5qams6IBwCAz+0+fFxbdx7t1OfslLu0TZw4UYcPH2792jAM\nWSwWSVJ0dLTq6+vV0NCghISE1r/z1eNJSUnfuu3ERIfPL5b/bXfAwdlhhu3HDNuPGfoGc2ybZpdH\ny9eU6JX1e+WIsOuS4emdNkNTbr1qtf5rB4HT6VRcXJxiYmLkdDq/9nhs7JmH4OtbAiYnx/r8dq6h\nhhm2HzNsP2boG8yxbfaUndDSVSWqrGlUSmKUZk3JlSMyzKcz9Ltbrw4YMEBbtmyRJK1fv17Dhg3T\nkCFDtGHDBnm9XpWXl8vr9Z5xlQ4AgL9Y9cF+LV5eqKM1jZowrJfumZmvrJ4JZ/x3vmTKSv3OO+/U\nvHnztGTJEmVkZGjixImy2WwaNmyYrr/+enm9Xs2fP9+MaAAAnJO0LtFKjo/SzCm5yu7VuWX+FYth\nGIYpz+wjvt4txK6m9mOG7ccM248Z+gZzPD2X26PVmw9q3JAeinOEf/mYV2H2r+8E9/UMv233uykr\ndQAAAtm+ijotXVWi8mqnGppc+sGEbEn6RqF3NkodAICz5HJ79erGfVqz+aC8hqHLhvTU1LGZZsdq\nRakDAHAWDh9t0KOvFamsyqmu8ZG6eXKucnsnmh3rayh1AADOgs1mUVVtk8YN7qHrxmUqMtz/KtT/\nEgEA4CcOHKmXxSKld4tVapdoLf7ZKCXGRpgd67S4SxsAAP/B7fHqH+9/roV/26bHXy+W1/vFB8X8\nudAlVuoAAHzNwcp6LV1VokNHG5QUF6HrL82S1WoxO9ZZodQBANAXq/NVHxzQ65v2y+M1NGZgqq6/\nNEtREYFTlYGTFACADuRye/X+p+WKiw7XzZNylJfRxexIbUapAwBCltvjVXm1U+ndYhUVYddt37tA\nXeOj5IgMzHoMzNQAALTT4aoGLX29RFXHm7TwxyOUGBuh9G6BfZtZSh0AEFI8Xq/WbD6oVzbsk8dr\n6KLzuysiLDg+DEapAwBCRlm1U0tfL9b+I/WKjwnXjCtyNLBfV7Nj+QylDgAIGSvX7tb+I/UadV53\n3TghS9GRYWZH8ilKHQAQ1OobWxT75a1Rfzixv8qqGjQ4K9nkVB0jOA4iAADwH7xeQ2u2HNBv/7JJ\npYeOS5JSEqKCttAlVuoAgCBUccypJ1aVaG95neIcYWpxe8yO1CkodQBA0PB6Db219ZBefv9zudxe\n5eem6AcTslt3vwc7Sh0AEDTe3nZIf393j2IdYfrJlQM0LCfF7EidilIHAAQ0r2HIIslisWjsoB6q\nrjupKy/so7gQWZ3/O06UAwAErMraRt33zEd6b3u5JCki3KYbx2eHZKFLrNQBAAHIaxhau+2wXly3\nVy1ur1ISozRucA+zY5mOUgcABJSjtY16YvVOlR46rpioMM2ckqvhIXbs/HQodQBAwKg45tQ9T21V\ni8urIdnJmj6xv+KjQ3NX+6lQ6gCAgNE9yaGh2Sk6PzNJI3K7yWKxmB3Jr1DqAAC/5TUMrfu4TEeP\nN+n6S7NksVj0k6sGmB3Lb1HqAAC/VH28SU+u2amSA7WKjrRr0sjeIXtW+9mi1AEAfsUwDK3bXq6V\n7+5Rc4tHg/p11U1X9KfQzwKlDgDwG17D0APPf6Idn9fIEWHXrCm5ujCvO8fOzxKlDgDwG1aLRb27\nxcpqsehHV+QoMTbC7EgBhVIHAJiqpu6k3t52WFMvyZTVatF3L+4rq8XC6vwcUOoAAFMYhqH3P63Q\nynd2q6nZo75pcRqekyKblSuYnytKHQDQ6WrqTuqpN3Zqx+c1ioqwacakHA3rn2x2rIBHqQMAOtWH\nJZX62xu71NTs1nl9k3TzpBwlxUWaHSsoUOoAgE5nGIZ+dEV/jRmYxrFzH6LUAQAdyjAMbSmp1PkZ\nXRQdGabhOSnKSU9UHNds9znORgAAdJjjDc166MXP9NdXi/X8u3skSRaLhULvIKzUAQA+ZxiGNhdX\nasU/S+U86VZu70RdOaqP2bGCHqUOAPCpEw3NevrNXfp4d7Uiwmz64eXZumRwD1k5dt7hKHUAgE/V\nNbr06d5jyklP0IzJuUpJiDI7Usig1AEA7XbC2aKTLW51S3SoV0qM5k4fqt7dY1mddzJKHQBwzgzD\n0NadR7X8rVJ1iYvUXTcNld1mVd/UOLOjhSRKHQBwTuqcLVr21i4V7qpSuN2qC8/vLquVlbmZKHUA\nQJtt3XlUy97cpYYml/r1jNesybnqluQwO1bIo9QBAG1yssWtFf8sVbPLo2mX9tP4Yb1YofsJSh0A\ncFaONzQrISZCkeF2/fzq8xQXHa7ULtFmx8K/4YpyAIBv1dDk0qOvFmn+0g91wtkiSeqfnkih+yHT\nVuoul0tz5sxRWVmZrFarFi5cKLvdrjlz5shisSgrK0sLFiyQlfvqAoBpNu+o0EN/3646Z4sy0+LU\n4vKYHQnfwrRSX7dundxut5577jlt3LhRDzzwgFwulwoKCjRixAjNnz9fa9eu1YQJE8yKCAAhq6HJ\npRVvl2pzUaXsNquuG5epicPTOXbu50wr9b59+8rj8cjr9aqhoUF2u13bt29Xfn6+JGnMmDHauHHj\nGUs9MdEhu93m02zJybE+3V4oYobtxwzbjxmeu78+uUWbiyqVnZ6ggmlD1Ksbs2yPznotmlbqDodD\nZWVlmjRpkmpra/XII49o69atrffVjY6OVn19/Rm3U1vb6NNcycmxqqo68/Pi9Jhh+zHD9mOGbef2\neGW3fXHI8zsX9lHPrtH64eQBqqlxMst28PVr8dveIJh2wPqpp57S6NGj9eabb+qVV17RnDlz5HK5\nWr/vdDoVF8cViQCgM3yyp1q/e/QD7auokyR1T3Jo8sjestk4rymQmPa/FRcXp9jYL95txMfHy+12\na8CAAdqyZYskaf369Ro2bJhZ8QAgJDSedGnpqmI9+MKnOt7QokNHG8yOhHYwbff7jBkzNHfuXN14\n441yuVz61a9+pby8PM2bN09LlixRRkaGJk6caFY8AAh6n31+TE+t2ana+mb17harWVNy1TMlxuxY\naAfTSj06OloPPvjgNx5fvny5CWkAILR8sOOIHnu9WDarRddc3FeTRvZuPZ6OwMUV5QAgBA3K6qrB\nWV119ei+SufM9qBBqQNACGhqdmvlO3vUr0e8Rl+QqqgIu37xvQvMjgUfo9QBIMgV7avRU2tKdKyu\nWZU1jbro/O6tHx9GcKHUASBINTW79fy7e/Te9nJZLRZ956I+uvLCPhR6EKPUASAI1dSd1OLlH+lY\n3Un1TI7WrCkD1Ls7x86DHaUOAEEoITZCqV0cGpXXTVdd2Fdhds5sDwWUOgAEiZ0HarW3/ISmjOoj\nq8WigusGcgOWEEOpA0CAa27x6IX39mrtR4dls1o0ckB3dYmPpNBDEKUOAAFs18FaPbG6RFXHTyq1\ni0OzpgxQl/hIs2PBJJQ6AAQgwzC08p09emvrIVks0qSR6fru6L4K8/GtqBFYKHUACEAWi0WG8cXd\n1GZNyVVmj3izI8EPUOoAECCaXR5t+LRC44b0kNVi0ffGZuh7YzMUHsbqHF+g1AEgAOw+fFxPrCpR\nZW2TIsJsGn1BKmWOb6DUAcCPtbg8evn9z/XWh4ckSZcP76XhuSkmp4K/otQBwE/tLTuhpatKdKSm\nUSmJUZo5OVfZvRLMjgU/RqkDgJ86UtOoyppGjR/WU98bm6kIdrfjDCh1APAj+yrq1D3JoagIuy7M\n6670brHqlRJjdiwECC4GDCDkRbz8ghLHjlLX1EQljh2liJdf6PQMLrdXL7y3V4ue3qaV7+yR9MXH\n1ih0tAUrdQAhLeLlFxT3s5mtX9tLihT3s5mqk9R8zdROybCvok5LV5WovNqprvGRGjmgW6c8L4IP\npQ4gpDke+J9TP/7gkg4vdZfbq1c37tOazQflNQxdOqSHpl6SqchwfjXj3PDKARDSbKU72/S4L1Uc\nc2rN5oNKiovQzZNzlds7scOfE8GNUgcQ0jzZObKXFJ3y8Y7g9njV0ORSQkyE0rvF6tZrz1f/9ARF\nRfDrGO3HiXIAQlpjwe2nfvyXv/b5cx04Uq8/PLVN//vSZ/J6DUnSoKyuFDp8hlcSgJDWfM1U1emL\nY+i20p3yZOeo8Ze/9unxdLfHq9c37deqDw7I4zU0dlCa3B6vwq187hy+RakDCHnN10ztsJPiDlbW\na+mqEh062qCkuAjNmJSjvL5dOuS5AEodADqI2+PVgy98qtr6Zo0ZmKrvj8uSI5Jfu+g4vLoAwMdc\nbo/C7DbZbVZNn9hfNqtF52ewOkfH40Q5APARt8er1zbu09y/blZDk0uSNKhfVwodnYaVOgD4wOGq\nBi1dVaIDR+qVEBOuquNNiokKMzsWQgylDgDt4PF69caWg3plwz65PYYuyuuuaeOzFB1JoaPzUeoA\n0A7L3tyl9Z9UKD4mXD+6IkeD+nU1OxJCGKUOAG1kGIYsFoskafywXvJ4DV1/aRa722E6TpQDgDao\nOObUfc98pIOV9ZKknskxmjVlAIUOv8BKHQDOgtdr6M2tB/Xy+n1ye7z6qLRK6d1izY4FfA2lDgBn\nUHHMqSdWl2hvWZ3iHGGaPvE8De2fbHYs4BsodQD4Fjs+P6aHXvpMLrdX+bkp+sGEbMU6ws2OBZwS\npQ4A36JvWpxSkxy68sI+GpaTYnYc4FtR6gDwb7yGobe3HVZibISG56QoOjJMC24e3nq2O+DPKHUA\n+FJlbaOeXFWi0sMn1D3JoaHZybJaLRQ6AgalDiDkeQ1DawsP68X39qrF7dXQ/smafnl/Wa2UOQIL\npQ4gpDU0ufTwS5+p9NBxRUfadfPkXOXnprA6R0Ci1AGENEeEXYZhaHBWV900sb/iYyLMjgScM0od\nQMipOt6knQdqdfHANFmtFhVcN1CR4TZW5wh4lDqAkOE1DK37uEx/f3evWtweZfaIV1rXaEVF8KsQ\nwYFXMoCQUH2iSU+u3qmSA7VyRNj14ykDlNrFYXYswKcodQBBb932Mj33zh41t3g0MLOLbroiR4mx\nHDtH8DG11B999FG98847crlcuuGGG5Sfn685c+bIYrEoKytLCxYskNXKjeQAtM/BygZZLRbNmpKr\nC/O6c+wcQcu0xtyyZYs+/vhjPfvss1q2bJmOHDmixYsXq6CgQCtWrJBhGFq7dq1Z8QAEMMMwtLX4\niAzDkCRdNy5TC2fl66LzUyl0BDXTSn3Dhg3Kzs7W7Nmz9fOf/1yXXHKJioqKlJ+fL0kaM2aMNm3a\nZFY8AAGqpu6k/vz8J/rD0i3a8GmFJCky3K6kuEiTkwEdz7Td77W1tSovL9cjjzyiw4cP65ZbbpFh\nGK3voqOjo1VfX3/G7SQmOmS323yaLTmZeyS3FzNsP2bYNoZhaO3Wg3r8lR1ynnRrSP8UXTw0XcmJ\nUWZHC3i8Ftuvs2ZoWqknJCQoIyND4eHhysjIUEREhI4cOdL6fafTqbi4uDNup7a20ae5kpNjVVV1\n5jcTOD1m2H7MsG1q65v1tzd26tO9xxQZbtOMSTm69rJsVVc3MMd24rXYfr6e4be9QTBt9/vQoUP1\n/vvvyzAMVVZWqqmpSaNGjdKWLVskSevXr9ewYcPMigcggHz2+TF9uveYzuuTqIWzRmjMwDSOnSMk\nmbZSHzdunLZu3aqpU6fKMAzNnz9fPXv21Lx587RkyRJlZGRo4sSJZsUD4Odq65vliLArItymiy9I\nVawjTIP6daXMEdJM/UjbHXfc8Y3Hli9fbkISAIHCMAx9UHREK/65W6PyuusHE7JlsVg0OCvZ7GiA\n6bj4DICAcbyhWU+/sUvb91QrIsymHl2jzY4E+BVKHYDfMwxDm4srteKfpXKedCsnPUE3T85VcgJn\ntgP/jlIH4PcqjjXq8deKFR5m0w8vz9Ylg3vIyrFz4BsodQB+yTAMNbs8igy3K61rtG66or9y+yQp\nhdU5cFqUOgC/U+ds0bI3d6m+yaU7bhwsq8WisYN6mB0L8HuUOgC/snXnUS17c5camlzK7hmvxpNu\nxUSFmR0LCAiUOgC/UNfYouVvlWrbzqMKt1t1w2VZumxYT46dA21AqQMwnddr6N7lH+lITaP69YzX\nrMm56pbkMDsWEHAodQCm+eomTlarRd8Z3UcnGlo0YVgvWa2szoFzQakDMEXhriq9/sF+/XbaYDki\n7Ro5oLvZkYCAR6kD6FQNTS49889SbSmulN1m1d7yEzo/o4vZsYCgQKkD6DQfl1bpb2/uUp2zRX1T\n4zRrSq7SuNQr4DOUOoBO8cqGfXplwz7ZbRZNvSRTE/N7yWY17e7PQFCi1AF0ikH9uqpoX41+NCmH\nG7EAHYS3yQA6RONJl55cXaKyaqckqXf3WP3uh0ModKADsVIH4HOf7q3WU2t26nhDiywWacakXEmS\nhQvJAB2KUgfgM40nXXp27W5t/OyIbFaLrhmToUkj0s2OBYQMSh2AT+w/UqeHXvxMtfXNSu8Wo1lT\nBqhXSozZsYCQQqkD8IkucZGSpO+O7qvJo3rLbuOUHaCztanUt27dquHDh3dUFgABZse+Y/J6pQsy\nuyjWEa7FPx2p8DCb2bGAkNWmt9IvvfSSdu/eLUlyOp363e9+1yGhAPi3pma3nlqzU0tWfqK/vbFT\nbo9Xkih0wGRntVJvaWlReHi47r77bt1xxx265ppr9Mwzz+i2227r6HwA/EzR/ho9tbpEx+qa1TM5\nWrOmDGBXO+AnzqrU586dq6amJtlsNkVHR+v3v/+97rvvPmVmZnZ0PgB+osXl0XPv7NF7H5fJarHo\nqgv76KqL+lDogB85Y6kbhqHi4mKtXr1aXq9XBw8e1GWXXaYdO3botdde07333tsZOQGYzGaz6MCR\nevXoGq1ZV+aqT/c4syMB+A9nLHWLxaLU1NTWXfB9+vRRnz59NH78+M7IB8BEJ1vcKj10XBdkdpXN\natWt156vmKgwhdlZnQP+6Kx+Mrt3765bb71Vhw4d6ug8APzEroO1mr/0Qz304mc6dLRBkpQYG0Gh\nA37srI6pJyYmqqKiQtddd50cDofy8vKUl5enn/70px2dD0Ana27x6IV1e7W28LAsFmnSiN7qnhRl\ndiwAZ+GsSv03v/lN65/Ly8tVXFysoqKiDgsFwBylh47riVUlOnq8SaldHJo5JVeZafFmxwJwltp8\nRbm0tDSlpaVxTB0IQhs+q1DViSZNGpGu717cV2F2PncOBBIuEwuEuLKqBqV1jZbFYtG0S7M0dmCa\nMnuwOgcCEWe8ACGqxeXRc2t3a/7SD7W5uFKS5Ii0U+hAAGOlDoSgPYdPaOnqElXWNKpbYpSS4zkR\nDggGlDoQQlpcHv3j/X1688ODkqTLh/fSNWMyFME124GgQKkDIWRLcaXe+PCgUhKjNHNyrrJ7JZgd\nCYAPUepAkHO5PZKkMLtNF12QqpMuj8YMTGN1DgQhTpQDgtjn5XW6+8mtevn9fZIkq8WiCcN6UehA\nkGKlDgQhl9urVzbs05otB2QY0nl9vDIMQxaLxexoADoQpQ4EmX0VdVq6qkTl1U51jY/UzZNzlds7\n0exYADoBpQ4EkeoTTfrjskJ5vIbGDe6h68ZlKjKcH3MgVPDTDgQBr2HIarGoa3yUvnNRH2X2iNeA\nPklmxwLQySh1IIC5PV69tnG/DlTW65dTL5DFYtFVF/U1OxYAk1DqQIA6WFmvx18v0eGqBnWJi1Bt\nfbOS4iLNjgXARJQ6EGDcHq9WfXBAr2/aL4/X0JiBabr+0n6KiuDHGQh1/BYAAohhGPqf57Zr16Hj\nSoyN0M2TcpSX0cXsWAD8BKUOBBCLxaJRed2VnBilaZdmyRHJjzCAf+GKcoCfO1zVoP996TOdbHFL\nksYMTNPMybkUOoBvML3Ujx07prFjx2rv3r06cOCAbrjhBt14441asGCBvF6v2fEA03i8Xr2+ab/u\neXKrCkur9FFpldmRAPg5U0vd5XJp/vz5ioz84ozdxYsXq6CgQCtWrJBhGFq7dq2Z8QDTHDhSp/96\nulAvrf9cMY4w/XLqBbowL9XsWAD8nKmlft9992natGlKSUmRJBUVFSk/P1+SNGbMGG3atMnMeIAp\n3v+0XAVL1mn/kXpdmNddi348QgP7dTU7FoAAYNpBuZdeeklJSUm6+OKL9de//lWSvnbDiejoaNXX\n159xO4mJDtntvr3jVHJyrE+3F4qY4bk7r1+yEjbu1y3fG6j887qbHSeg8Tr0DebYfp01Q9NK/cUX\nX5TFYtEHH3ygkpIS3XnnnaqpqWn9vtPpVFxc3Bm3U1vb6NNcycmxqqo685sJnB4zbBuv19BbWw9p\ncHZXdUt0KMkRpr/OHa/jtY3MsR14HfoGc2w/X8/w294gmFbqzzzzTOufp0+frrvvvlv333+/tmzZ\nohEjRmj9+vUaOXKkWfGATlFxzKknVpVob3md9pad0Oxrz5ckhfl47xOA0GD62e//7s4779RDDz2k\n66+/Xi6XSxMnTjQ7EtAhvF5Db2w5qAVPbNXe8jqNHNBNP5qUY3YsAAHOLz7oumzZstY/L1++3MQk\nQMerPt6kv75WrD1lJxTnCNP0iedpaP9ks2MBCAJ+UepAKAmzW1VxzKn83BT9YEK2Yh3hZkcCECQo\ndaATVNY0qq6xRVk9ExQfE6E/zBqhxNgIs2MBCDKUOtCBvIahtdsO68V1e+WItOuPPx2pyHA7hQ6g\nQ1DqQAc5WtuoJ1bvVOmh44qJCtO0y7IUGc6PHICOw28YwMe8hqF3PyrT8+/tUYvLq6HZyfrhxP6K\nj+bYOYCORakDPub1Glr/SbnCbFbdPClX+bkprVdKBICORKkDPuA1DB2qbFDv7rGy26z6+dXnyRFh\nV3wMx84BdB6/uvgMEIiqjzfpv5/9WP+1bJsOVzVIklK7RFPoADodK3XgHBmGofe2l+vv7+5Rc4tH\ng/p1VUxUmNmxAIQwSh04B9UnmvTUmp0q3l8rR4Rds6bk6sK87hw7B2AqSh04B69u3K/i/bW6ILOL\nfnRFDp87B+AXKHXgLDU0uVp3r39/XD/lpCdo1HmszgH4D06UA87AML74iNqdj2zStp1HJUkxUWG6\nMC+VQgfgV1ipA9+ipu6knnpjp3Z8XqOoCJvcXq/ZkQDgtCh14BQMw9CGzyr03No9amp267y+Sbp5\nUo6S4iLNjgYAp0WpA6ewdedRPbl6pyLDbZoxKUcXX8CudgD+j1IHvmQYhgxDslotGtY/RZcPr9OE\nYb3UJZ7VOYDAQKkDkmrrm/X0GzvVq1usrh2TIavVommXZZkdCwDahFJHSDMMQ5uLKrXi7VI5T7rl\n8RryGoas7GoHEIAodYSsEw3NevrNXfp4d7Uiwmyafnm2xg7uQaEDCFiUOkJSXWOL5i39UA1NLuWk\nJ+jmyblKTogyOxYAtAuljpAU5wjXyPO6qVuiQ+OGsDoHEBwodYQEwzC0dedRffb5Mc2cnCuLxaIb\nx2ebHQsAfIpSR9Crc7Zo2Vu7VLirSuF2qyaP7K3ULtFmxwIAn6PUEdS27jyqZW/uUkOTS1k94zVz\nSq66JTrMjgUAHYJSR9B6YnWJNnxaoTC7VdMuy9L4oT1ltXLsHEDwotQRtHp3i9WRHo2aOSVX3ZNY\nnQMIfpQ6gkZDk0uvb9qva8dkKDzMpnFDemjc4B6szgGEDEodQeGj0io9/eYu1TlblBQbocvz07/4\nmBp9DiBgsiJFAAAROklEQVSEUOoIaA1NLq14u1Sbiyplt1l13bhMjR/Wy+xYAGAKSh0Bq2hfjR5/\nvVgnnC3qmxqnWVNyldaVj6oBCF2UOgKW3WZRY7NbUy/J1MT8XrJZrWZHAgBTUeoIKJ/sqVaP5Gh1\njY9S//RE3X/LhYqLDjc7FgD4BZY2CAiNJ11a+nqxHnzhUy17s7T1cQodAP6FlTr83qd7q/XUmp06\n3tCi3t1idd0lmWZHAgC/RKnDbzWedOu5tbu14bMK2awWXXNxX00a2Vt2GzuYAOBUKHX4rZMtbhWW\nVik9JUazrhygXikxZkcCAL9GqcOvNDW7dezESfVMiVFSXKTuuGGweiRHszoHgLNAqcNvFO2r0ZNr\nSmSR9IdZIxQVYVfv7rFmxwKAgEGpw3RNzW79/d09Wre9XDarRVNG9VaYnZU5ALQVpQ5TFe+v0ZOr\nd+pY3Un1TI7WrCkDWJ0DwDmi1GEar9fQs2/vVm19s668sI++c1Efjp0DQDtQ6uh0JxqaFR8TIavV\noh9fOUBew1Df1DizYwFAwGNZhE7T3OLRM2+V6s5HP9CRmkZJUu/usRQ6APgIK3V0il0Ha/XE6hJV\nHT+p1C4Otbg8ZkcCgKBDqaNDNbd49OK6vXq78LAsFmnSyHR9d3RfhdltZkcDgKBDqaNDvfDeXq39\n6LBSuzg0c0quMtPizY4EAEHLtFJ3uVyaO3euysrK1NLSoltuuUX9+vXTnDlzZLFYlJWVpQULFsjK\nPbIDjtvjbf3zVRf1UVSkXVeO6q3wMFbnANCRTGvMV199VQkJCVqxYoUef/xxLVy4UIsXL1ZBQYFW\nrFghwzC0du1as+LhHO0+fFyz//SOtu+plvTFrVGvHZNBoQNAJzBtpX7FFVdo4sSJkiTDMGSz2VRU\nVKT8/HxJ0pgxY7Rx40ZNmDDhW7eTmOiQ3cfHZ5OTufhJWzW7PFq+pkSvrN8rSap1uphjOzG/9mOG\nvsEc26+zZmhaqUdHR0uSGhoadNttt6mgoED33XefLBZL6/fr6+vPuJ3a2kaf5kpOjlVV1ZmfF/+y\np+yElq4qUWVNo7olRunXPxiq5Jhw5tgOvA7bjxn6BnNsP1/P8NveIJh6wLqiokI33XSTrr76al11\n1VVfO37udDoVF8fnl/1d0f4aLV5eqKM1jbp8eC/dPTNfA/p2MTsWAIQk01bq1dXVmjlzpubPn69R\no0ZJkgYMGKAtW7ZoxIgRWr9+vUaOHGlWPJyl/r0SNDQ7WeOH9VJ2rwSz4wBASDOt1B955BHV1dXp\nL3/5i/7yl79Iku666y4tWrRIS5YsUUZGRusxd/gPl9ujf2zYJ0eEXVNGfXGt9v93zflmxwIASLIY\nhmGYHaI9fH2sh+NHp7evok5LV5WovNqp1C4O3TMz/5Q3YGGG7ccM248Z+gZzbL/OPKbOxWdwRi63\nV69u3Kc1mw/Kaxi6dEgPTb0kkzuqAYCfodTxrZqa3frj8kKVVTnVNT5SN0/OVW7vRLNjAQBOgVLH\nt4qKsCs9JVbZPRM09ZJMRUXwkgEAf8VvaHzDgSP12rbrqL43NlOSNGtKrqxWi8mpAABnQqmjldvj\n1eub9uv1TQfkNQwNyU5W39Q4Ch0AAgSlDknSwcp6LV1VokNHG5QUF6EZk3LUN5WL/wBAIKHUodWb\nD+jl9Z/L4zU0ZmCqvj8uS45IXhoAEGj4zQ1ZLRbFRYdrxqQcnZ/BJV4BIFBR6iHI7fFq3fZyjRmY\npjC7VZcP76UxA9NYnQNAgOO3eIg5XNWgpatKdOBIvRpPunTVRX1ltVoodAAIAvwmDxEer1drNh/U\nqxv3ye0xdFFed106tKfZsQAAPkSph4CyaqeWvl6s/UfqFR8TrhlX5Ghgv65mxwIA+BilHgKONzRr\n/5F6jTqvu26ckKXoyDCzIwEAOgClHqQqjjkVGW5XYmyEzuuTpHtm5qtXSozZsQAAHYjbbAUZr9fQ\nmi0HtOCJrfrbGzv11Z11KXQACH6s1INIxTGnnlhVor3ldYpzhGnMwDRZLFziFQBCBaUeBLxeQ29t\nPaSX3/9cLrdX+bkp+sGEbMU6ws2OBgDoRJR6EDje0KxXNuxTZLhNP7lygIblpJgdCQBgAko9QHkN\nQ8frm5UUF6mkuEjNvjZP6d1iFcfqHABCFqUegCprG/XEqhKdcLbonpn5igizKa8v12wHgFBHqQcQ\nr2FobeFhvfjeXrW4vRraP1kut1cRYTazowEA/AClHiCOHm/SE6tKVHrouGKiwjRzSq6G56RwdjsA\noBWlHgAMw9BfXvpMB482aEh2sqZP7K/4aI6dAwC+jlL3Yy63R2F2mywWi35webaOnTipEQO6sToH\nAJwSV5TzQ17D0LsfHdYd//eBqo43SZKyeiZo5HndKXQAwGmxUvcz1ceb9OSanSo5UCtHhF2VtY1K\nTogyOxYAIABQ6n7CMAyt216ule/uUXOLRwMzu+imK3KUGBthdjQAQICg1P3EKxv26dWN++WIsGvW\nlFxdmMeudgBA21DqJjIMo7W4xw7qoSM1jbr+0ixW5wCAc8KJciapqTupPz//iYr21UiSEmMj9POr\n8yh0AMA5Y6XeyQzD0PufVmjlO7vV1OxRYkyEzuubZHYsAEAQoNQ7UU3dST31xk7t+LxGkeE2zZiU\no4svSDU7FgAgSFDqnWT/kTrd/+x2NTW7dV6fRM2YlKsu8ZFmxwIABBFKvZP06BqjtK4OXXR+qsYO\nTOPMdgCAz1HqHcQwDH1QdETNLR6NG9JTYXar5v5wKGUOAOgwlHoHON7QrKff2KXte6oVExWmC/NS\nFRFuo9ABAB2KUvchwzC0ubhSK/5ZKudJt3J7J+rmSTmKCOd+5wCAjkep+4jL7dEjrxTp493Vigiz\n6YeXZ+uSwT1kZXUOAOgklLqP2G1W2awW9e+VoJun5CqFm7AAADoZpd4Odc4Wbd15VJcN7SmLxaKZ\nU3IVHmZjdQ4AMAWlfo4+LKnU8rdK1dDkUlrXaOX2TlRkOOMEAJiHFmqjusYWLX+rVNt2HlW43aob\nLstS//QEs2MBAECpt0XhrqN6+s1dqm90qV/PeM2anKtuSQ6zYwEAIIlSb5PyY4062eLRtEv7afyw\nXrJaOXYOAPAflPoZ7Pj8mHJ6J8pus2ryyHTl56aoWyKrcwCA/+F+6qfR0OTSo68WacnfP9HqzQck\nSTarlUIHAPgtv1upe71e3X333dq1a5fCw8O1aNEi9e7du1MzfFxapb+9uUt1zhZlpMVpeE5Kpz4/\ngI718u4X9EDh/6i0dqeyE3NUMPR2XZM11exYQLv5Xam//fbbamlp0cqVK7V9+3bde++9+r//+79O\nee6GJpeefqZQ7310WHabVdddkqmJ+ekcOweCyMu7X9DP/jmz9euSmqLWryl2BDq/2/1eWFioiy++\nWJI0aNAg7dixo9Oe+/PyOr330WH1TY3T3TcP16SRvSl0IMg8UPg/p3z8wY+WdHISwPf8bqXe0NCg\nmJiY1q9tNpvcbrfs9lNHTUx0yG73zQ1TLkuOVWxcpIb2T5HN5nfvdwJKcnKs2RECHjNsv1PNsLR2\n5yn/bmntTmZ+Gsyl/Tprhn5X6jExMXI6na1fe73e0xa6JNXWNvr0+fMHdFdVVb1PtxlqkpNjmWE7\nMcP2O90MsxNzVFJTdMrHmfk38VpsP1/P8NveIPjdcnTIkCFav369JGn79u3Kzs42ORGAYFIw9PZT\nPv7LIb/u5CSA7/ndSn3ChAnauHGjpk2bJsMw9Mc//tHsSACCyFcnwz340ZLWs99/OeTXnCSHoGAx\nDMMwO0R7+Hq3ELua2o8Zth8zbD9m6BvMsf1Cevc7AAA4N5Q6AABBglIHACBIUOoAAAQJSh0AgCBB\nqQMAECQodQAAggSlDgBAkAj4i88AAIAvsFIHACBIUOoAAAQJSh0AgCBBqQMAECQodQAAggSlDgBA\nkKDUAQAIEnazA/gLr9eru+++W7t27VJ4eLgWLVqk3r17mx3L77lcLs2dO1dlZWVqaWnRLbfcon79\n+mnOnDmyWCzKysrSggULZLXy/vFMjh07pmuvvVZPPPGE7HY7M2yjRx99VO+8845cLpduuOEG5efn\nM8M2cLlcmjNnjsrKymS1WrVw4UJeh230ySef6L//+7+1bNkyHThw4JSze/jhh/Xee+/Jbrdr7ty5\nuuCCC3yagf+dL7399ttqaWnRypUrdfvtt+vee+81O1JAePXVV5WQkKAVK1bo8ccf18KFC7V48WIV\nFBRoxYoVMgxDa9euNTum33O5XJo/f74iIyMliRm20ZYtW/Txxx/r2Wef1bJly3TkyBFm2Ebr1q2T\n2+3Wc889p9mzZ+uBBx5ghm3w2GOP6fe//72am5slnfpnuKioSB9++KGef/55LVmyRPfcc4/Pc1Dq\nXyosLNTFF18sSRo0aJB27NhhcqLAcMUVV+iXv/ylJMkwDNlsNhUVFSk/P1+SNGbMGG3atMnMiAHh\nvvvu07Rp05SSkiJJzLCNNmzYoOzsbM2ePVs///nPdckllzDDNurbt688Ho+8Xq8aGhpkt9uZYRuk\np6froYceav36VLMrLCzU6NGjZbFYlJaWJo/Ho5qaGp/moNS/1NDQoJiYmNavbTab3G63iYkCQ3R0\ntGJiYtTQ0KDbbrtNBQUFMgxDFoul9fv19fUmp/RvL730kpKSklrfVEpihm1UW1urHTt26MEHH9Q9\n99yj3/zmN8ywjRwOh8rKyjRp0iTNmzdP06dPZ4ZtMHHiRNnt/zqifarZ/WfPdMRMOab+pZiYGDmd\nztavvV7v1/6DcHoVFRWaPXu2brzxRl111VW6//77W7/ndDoVFxdnYjr/9+KLL8piseiDDz5QSUmJ\n7rzzzq+9e2eGZ5aQkKCMjAyFh4crIyNDEREROnLkSOv3meGZPfXUUxo9erRuv/12VVRU6Ec/+pFc\nLlfr95lh2/z7uQdfze4/e8bpdCo2Nta3z+vTrQWwIUOGaP369ZKk7du3Kzs72+REgaG6ulozZ87U\nb3/7W02dOlWSNGDAAG3ZskWStH79eg0bNszMiH7vmWee0fLly7Vs2TLl5ubqvvvu05gxY5hhGwwd\nOlTvv/++DMNQZWWlmpqaNGrUKGbYBnFxca0FEx8fL7fbzc9yO5xqdkOGDNGGDRvk9XpVXl4ur9er\npKQknz4vd2n70ldnv5eWlsowDP3xj39UZmam2bH83qJFi7RmzRplZGS0PnbXXXdp0aJFcrlcysjI\n0KJFi2Sz2UxMGTimT5+uu+++W1arVfPmzWOGbfCnP/1JW7ZskWEY+tWvfqWePXsywzZwOp2aO3eu\nqqqq5HK5dNNNNykvL48ZtsHhw4f161//Wn//+9+1b9++U87uoYce0vr16+X1evW73/3O52+UKHUA\nAIIEu98BAAgSlDoAAEGCUgcAIEhQ6gAABAlKHQCAIEGpAwAQJCh1AACCBKUOoM28Xq+4xAXgf7i4\nOYCzcv/996u2tlaVlZUqLy/Xa6+9xv0RAD/DTySAs1JcXCybzaaHH35YUVFRZscBcAqUOoCzUlxc\nrJUrV7YW+p///Gdt27ZNubm5CgsL05133mlyQgAcUwdwRmVlZXI4HOrTp48kqbCwUM3NzXrmmWcU\nExOjfv36mRsQgCRKHcBZKC4uVl5eXuvX7777rq677jpJkt1u546GgJ+g1AGcUVFR0ddKva6uTpLU\n1NSk1atXs1IH/AS3XgXQZtu2bdM999yjvLw87d+/X88++6zZkQCIE+UAnINBgwbptdde02effaZ/\n/OMfZscB8CVKHUCb/elPf1JxcbGio6O1ePFis+MA+BK73wEACBKcKAcAQJCg1AEACBKUOgAAQYJS\nBwAgSFDqAAAECUodAIAgQakDABAkKHUAAIIEpQ4AQJD4/ybFwtaX0AflAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x10d6b45f8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"#plt.scatter([r_g_marco, r_g_laura], [k_radius_gyration(marco[1], marco[0], 2), k_radius_gyration(laura[1], laura[0], 2)])\n", | |
"plt.plot(r_g_marco, k_radius_gyration(marco[1], marco[0], 2), 'o', c='red')\n", | |
"plt.plot(r_g_laura, k_radius_gyration(laura[1], laura[0], 2), 'o', c='green')\n", | |
"plt.plot([0,100], [0,100], ls='--')\n", | |
"\n", | |
"plt.title(r\"$k = 2$\")\n", | |
"plt.xlabel(r\"$r_g$\")\n", | |
"plt.ylabel(r\"$r_k$\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.4.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment