Created
November 14, 2018 21:51
-
-
Save dennissergeev/064ec64ce912ee90cb6db8ad0c90dd2b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "slide" | |
| } | |
| }, | |
| "source": [ | |
| "# Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets\n", | |
| "## Yang, Cowan, Abbot\n", | |
| "## 2013" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "slide" | |
| } | |
| }, | |
| "source": [ | |
| "## Introduction\n", | |
| "* Previous HZ studies - mostly based on 1D models\n", | |
| "* 1D models cannot predict cloud coverage or altitude, which is essential for radiative effects, such as **albedo (A)**\n", | |
| "* The impact of 3D cloud behaviour on the inner edge of HZ has not been considered" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "Add figures from Joshi 2003 or smth" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "slide" | |
| } | |
| }, | |
| "source": [ | |
| "## Global climate models" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "* Community Atmospheric Model: CAM3, CAM4, and CAM5 coupled with slab ocean (d=50m)\n", | |
| "* Fully coupled model: CCSM3 (d=4000m)\n", | |
| "* Simulated clouds: marine stratus, layered clouds, shallow and deep convective clouds in both liquid and ice phases\n", | |
| "* CAM4: new convection scheme\n", | |
| "* CAM5: new cloud scheme, attempt at aerosol-cloud interactions" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "check the schemes" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "* Radiation scheme: accurate for CO2 concentrations < 0.1 bar and WV column content < 1200 kg/m2\n", | |
| "* Cloud infrared scattering: not included (negligible)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "fragment" | |
| } | |
| }, | |
| "source": [ | |
| "* Star spectra: M-star (K-star) with Teff=3400K (4500K)\n", | |
| "* Stellar flux: 1000-2600 W/m2\n", | |
| "* Geothermal flux: 0" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "### Planetary constants\n", | |
| "* $R= 2 R_E$\n", | |
| "* $g= 1.4 g_E$\n", | |
| "* Orbital period: 60 days\n", | |
| "* Obliquity and eccentricity are zero\n", | |
| "* 3 rotation periods: 1:1, 2:1, 6:1" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "fragment" | |
| } | |
| }, | |
| "source": [ | |
| "### Atmospheric composition\n", | |
| "* p = 1 bar\n", | |
| "* N2 and H2O only\n", | |
| "* Tests with CO2 (?)\n", | |
| "* CAM5 aerosols: set to 20th century Earth" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "### Land-sea set-up in CCSM3 simulations (with slightly different planet parameters)\n", | |
| "\n", | |
| "* aqua-planet\n", | |
| "* one ridge on the eastern terminator\n", | |
| "* two ridges on terminators" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "slide" | |
| } | |
| }, | |
| "source": [ | |
| "## The stabilizing cloud feedback" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "<img style=\"float: center;\" width=\"80%\" src=\"figures/YangEtAl2013-fig1.png\">" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "<img style=\"float: center;\" width=\"40%\" src=\"figures/YangEtAl2013-fig1.png\">\n", | |
| "\n", | |
| "### Non-TL\n", | |
| "* Planetary albedo is similar to Earth\n", | |
| "* Contr. to TL, A decreases when solar flux increases => destabilising feedback" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "<img style=\"float: center;\" width=\"40%\" src=\"figures/YangEtAl2013-fig1.png\">\n", | |
| "\n", | |
| "### TL\n", | |
| "* Most of the day side is covered in clouds\n", | |
| "* Thick clouds where the insolation is greatest -> higher planetary albedo\n", | |
| "* this effect is greater for M- and K-star spectra\n", | |
| "* Surface temperature on planets such as HD 85512b and GJ 163c can be moderate due to such high albedo" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "#### with cloud scheme switched off\n", | |
| "* Big drop in albedo, increase in temperature\n", | |
| "* Thus, clouds account for 73 K of cooling" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "fragment" | |
| } | |
| }, | |
| "source": [ | |
| "#### greenhouse effect\n", | |
| "* Diff. between upward LW flux at sfc. and TOA:\n", | |
| " - $G = T _ { \\mathrm { em } } ^ { \\mathrm { sff } } - T _ { \\mathrm { ef } }$,\n", | |
| " - $T _ { \\mathrm { ef } } = \\left( F _ { \\uparrow } ^ { \\mathrm { top } } / \\sigma \\right) ^ { ( 1 / 4 ) }$,\n", | |
| " - $T^{srf} _ { \\mathrm { em } } = \\left( F _ { \\uparrow } ^ { \\mathrm { srf } } / \\sigma \\right) ^ { ( 1 / 4 ) }$\n", | |
| "* smaller on TL planets due to low-level temp. inversion on the nightside" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "<img style=\"float: center;\" width=\"60%\" src=\"figures/YangEtAl2013-fig2.png\">" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "slide" | |
| } | |
| }, | |
| "source": [ | |
| "## Thermal phase curves\n", | |
| "<img style=\"float: center;\" width=\"80%\" src=\"figures/YangEtAl2013-fig3.png\">" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "fragment" | |
| } | |
| }, | |
| "source": [ | |
| "Clouds create a significant dayside OLR minimum.\n", | |
| "\n", | |
| "Can there be a false positive? - A planet without clouds would have to have A ~ 0.8, which is implausible for planets around M-stars" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "slide" | |
| } | |
| }, | |
| "source": [ | |
| "## Sensitivity tests" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "fragment" | |
| } | |
| }, | |
| "source": [ | |
| "* cloud particle size\n", | |
| "* cloud fraction parameters\n", | |
| "* surface pressure\n", | |
| "* CO2 concentration\n", | |
| "* planetary radius, rotation rate\n", | |
| "* surface gravity\n", | |
| "* oceanic mixed layer depth\n", | |
| "* convective scheme\n", | |
| "* model resolution\n", | |
| "* land-sea distribution, ocean heat transport" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "fragment" | |
| } | |
| }, | |
| "source": [ | |
| "Robust results across different simulations. Similar albedo of ~0.5 (except for the one with dynamical ocean)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "* **cloud particle size**\n", | |
| "* cloud fraction parameters\n", | |
| "* surface pressure\n", | |
| "* CO2 concentration\n", | |
| "* **planetary radius**, **rotation rate**\n", | |
| "* surface gravity\n", | |
| "* oceanic mixed layer depth\n", | |
| "* convective scheme\n", | |
| "* model resolution\n", | |
| "* land-sea distribution, **ocean heat transport**\n", | |
| "\n", | |
| "\n", | |
| "Robust results across different simulations. Similar albedo of ~0.5 (except for the one with dynamical ocean)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "<img style=\"float: center;\" width=\"70%\" src=\"figures/YangEtAl2013-fig4.png\">" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "<img style=\"float: center;\" width=\"80%\" src=\"figures/YangEtAl2013-tab1.png\">" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "subslide" | |
| } | |
| }, | |
| "source": [ | |
| "### Three main parameters that reduce albedo" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "fragment" | |
| } | |
| }, | |
| "source": [ | |
| "1. Liquid droplet size" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "fragment" | |
| } | |
| }, | |
| "source": [ | |
| "2. Small orbital period or large planetary radius => smaller Rossby deformation radius => rapidly rotating regime => concentrated convection and fewer dayside clouds" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "slideshow": { | |
| "slide_type": "fragment" | |
| } | |
| }, | |
| "source": [ | |
| "3. Addition or increase of OHT => smaller day-night temperature gradient => weaker circulation => fewer clouds\n", | |
| " * OHT has to be large (x10 of Earth's)\n", | |
| " * Obstruction by continents weakens this effect" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.7.0" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment