Created
May 16, 2018 09:28
-
-
Save dennissergeev/e2fa7af9726123da0c7f5746191a9af7 to your computer and use it in GitHub Desktop.
Masked_Arrays_Gradient_MetPy.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import metpy.calc as metcalc\nimport numpy as np", | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "from collections import namedtuple", | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "def deriv_2d_data():\n \"\"\"Return 2-dimensional data for analytic function for testing derivative functions.\"\"\"\n ret = namedtuple('D_2D_Test_Data', 'x y x0 y0 a b f')(\n np.array([0., 2., 7.]), np.array([1., 5., 11., 13.]), 3, 1.5, 0.5, 0.25, 0)\n\n # Makes a value array with y changing along rows (axis 0) and x along columns (axis 1)\n return ret._replace(f=ret.a * (ret.x - ret.x0)**2 + ret.b * (ret.y[:, None] - ret.y0)**2)", | |
"execution_count": 3, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "res = metcalc.kinematics.gradient(deriv_2d_data().f, x=(deriv_2d_data().y, deriv_2d_data().x))", | |
"execution_count": 4, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "res", | |
"execution_count": 5, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "(<Quantity([[-0.25 -0.25 -0.25]\n [ 1.75 1.75 1.75]\n [ 4.75 4.75 4.75]\n [ 5.75 5.75 5.75]], 'dimensionless')>, <Quantity([[-3. -1. 4.]\n [-3. -1. 4.]\n [-3. -1. 4.]\n [-3. -1. 4.]], 'dimensionless')>)" | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "def deriv_2d_data_masked():\n \"\"\"Return 2-dimensional data for analytic function for testing derivative functions.\"\"\"\n ret = namedtuple('D_2D_Test_Data', 'x y x0 y0 a b f')(\n np.array([0., 2., 7.]), np.array([1., 5., 11., 13.]), 3, 1.5, 0.5, 0.25, 0)\n\n # Makes a value array with y changing along rows (axis 0) and x along columns (axis 1)\n return ret._replace(f=np.ma.masked_outside(ret.a * (ret.x - ret.x0)**2 + ret.b * (ret.y[:, None] - ret.y0)**2, 5, 30))", | |
"execution_count": 6, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "res_masked = metcalc.kinematics.gradient(deriv_2d_data_masked().f, x=(deriv_2d_data().y, deriv_2d_data().x))", | |
"execution_count": 7, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "deriv_2d_data_masked().f", | |
"execution_count": 8, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "masked_array(\n data=[[--, --, 8.0625],\n [7.5625, --, 11.0625],\n [27.0625, 23.0625, --],\n [--, --, --]],\n mask=[[ True, True, False],\n [False, True, False],\n [False, False, True],\n [ True, True, True]],\n fill_value=1e+20)" | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "res_masked", | |
"execution_count": 9, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "(<Quantity([[ -0.35 -0.35 1.7875 ]\n [ -0.15 -0.15 -0.2875 ]\n [ -9.3359375 -0.04166667 -0.4609375 ]\n [-17.7265625 0.04166667 0.4609375 ]], 'dimensionless')>,\n <Quantity([[-0.64285714 -0.35714286 0.35714286]\n [-4.86160714 -2.70089286 2.70089286]\n [-1.25357143 -2.74642857 -6.47857143]\n [-0.64285714 -0.35714286 0.35714286]], 'dimensionless')>)" | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "res_masked[0].m", | |
"execution_count": 10, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "masked_array(\n data=[[ -0.35 , -0.35 , 1.7875 ],\n [ -0.15 , -0.15 , -0.2875 ],\n [ -9.3359375 , -0.04166667, -0.4609375 ],\n [-17.7265625 , 0.04166667, 0.4609375 ]],\n mask=False,\n fill_value=1e+20)" | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "So instead of having half of the values masked, the result has erroneous values like -0.35..." | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "conda-env-phd-py", | |
"display_name": "Python [conda env:phd]", | |
"language": "python" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.6.5", | |
"mimetype": "text/x-python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"pygments_lexer": "ipython3", | |
"nbconvert_exporter": "python", | |
"file_extension": ".py" | |
}, | |
"gist": { | |
"id": "", | |
"data": { | |
"description": "Masked_Arrays_Gradient_MetPy.ipynb", | |
"public": true | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment