Skip to content

Instantly share code, notes, and snippets.

@dfm
Created May 21, 2018 23:46
Show Gist options
  • Save dfm/77e58633afe7f612944e2b720284d2f1 to your computer and use it in GitHub Desktop.
Save dfm/77e58633afe7f612944e2b720284d2f1 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"from matplotlib import rcParams\n",
"rcParams[\"savefig.dpi\"] = 100\n",
"rcParams[\"figure.dpi\"] = 100"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import requests"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"token = \"ENTER A USER TOKEN HERE\"\n",
"url = \"https://api.github.com/search/code\"\n",
"search = \"filename:\\\"Untitled{0}.ipynb\\\"\".format\n",
"\n",
"r = requests.get(url, auth=(\"dfm\", token), params={\"q\": search(\"\")})\n",
"results = [r.json().get(\"total_count\", 0)]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1 11795\n",
"2 4410\n",
"3 2101\n",
"4 1263\n",
"5 799\n",
"6 547\n",
"7 394\n",
"8 307\n",
"9 217\n",
"10 194\n",
"11 153\n",
"12 117\n",
"13 97\n",
"14 77\n",
"15 69\n",
"16 54\n",
"17 46\n",
"18 53\n",
"19 38\n",
"20 31\n",
"21 0\n",
"22 0\n",
"23 0\n",
"24 0\n",
"25 0\n",
"26 0\n",
"27 0\n",
"28 0\n",
"29 0\n",
"30 0\n",
"31 0\n",
"32 0\n",
"33 0\n",
"34 0\n",
"35 0\n"
]
}
],
"source": [
"for i in range(1, 36):\n",
" r = requests.get(url, auth=(\"dfm\", token), params={\"q\": search(i)})\n",
" results.append(r.json().get(\"total_count\", 0))\n",
" print(i, results[-1])"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAFtCAYAAAC0iEhyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAHzlJREFUeJzt3c1vHFd67/HfIw5gUILZHJleMPEIEmV7AMNCbGloIDBg\nYMbUZE/o5SJrWxqAW0e0tAnuxjR9g+yEmFT+gEtT5n5GL3cTGIgpywPY8GZCUleThBuKUnMgEV5I\nTxZVTZdaTaq6+nTXS38/AEF2VbP70TRq+HOdc55j7i4AAIBQ9uVdAAAAqBbCBQAACIpwAQAAgiJc\nAACAoAgXAAAgKMIFAAAIinABAACCIlwAAICgCBcAACAowgUAAAiKcAEAAIL6Wd4FdJuZmaS/kvSX\nvGsBAKCEXpT0397GZmSVDRdmNiVpStG/8bWcywEAoMxekfRfaZ9sVd8V1cyGJNX//Oc/a2hoKO9y\nAAAoja2tLf3iF7+QpJq7b6X9vcreuWg2NDREuAAAoAeY0AkAAIIiXAAAgKAqGy7MbMrMfpD0dd61\nAADQTyobLtz9sru/IemdvGsBAKCfVDZcAACAfBAuAABAUIQLAAAQFOECAAAEVdlw0c3VIuv1bX21\nsqH1+nbolwYAoPT6pv13vV4P0qFzYfmuLi59pycu7TNpZvKYzo4f6rxQAAAKZmtrS7VaTWqz/Xdl\n71x0w3p9eydYSNITly4tfc8dDAAAEggXbVjbeLgTLBoeu+vOxqN8CgIAoIAIF204MnJA++zpYwNm\nOjyyP5+CAAAoIMJFG0Zrg5qZPKYBixLGgJk+mXxTo7XBnCsDAKA4mNCZwXp9W3c2HunwyH6CBQCg\nsrJO6PxZ90rKl5lNSZpSF+7OjNYGCRUAAOyissMibFwGAEA+KhsuAABAPggXAAAgKMIFAAAIinAB\nAACCIlwAAICgCBcAACCoyoaLbm65DgAAdlfZcEGfCwAA8lHZcAEAAPJBuAAAAEERLgAAQFCECwAA\nEBThAgAABEW4AAAAQREuAABAUIQLAAAQVGXDBR06AQDIR2XDBR06AQDIR2XDBQAAyAfhAgAABEW4\nAAAAQREuAABAUIQLAAAQFOECAAAERbgAAABBES4AAEBQhAsAABAU4QIAAARFuAAAAEERLgAAQFCE\nCwAAEFRlwwVbrgMAkI/Khgu2XAcAIB+VDRcAACAfhAsAABAU4QIAAARFuAAAAEERLgAAQFCECwAA\nEBThAgAABEW4AAAAQREuAABAUIQLAAAQFOECAAAERbgAAABBES4AAEBQhAsAABAU4QIAAARFuCiI\n9fq2vlrZ0Hp9O+9SAADoyM/yLiAtMxuTNOvup/OuJbSF5bu6uPSdnri0z6SZyWM6O34o77IAAMik\nTHcupvMuoBvW69s7wUKSnrh0ael77mAAAEorl3BhZrNmdrzF8Yn43Kmm4xckzfWswB5a23i4Eywa\nHrvrzsajfAoCAKBDPQ0XZnbOzK5JOiXpYPM5SYuSxiTNmtlcfPy4JLn77V7W2itHRg5onz19bMBM\nh0f251MQAAAd6mm4cPd5dz8pqVVQmJV0wt1Pu/tRSRNmNizprKSjcdg43ggdVTFaG9TM5DENWJQw\nBsz0yeSbGq0N5lwZAADZFGJCZzxZc9XdVxOHr0qacPfpxPMW3f18zwvssrPjh/Te6y/rzsYjHR7Z\nT7AAAJRaIcKFoqGQ1aZjK/HxvjBaGyRUAAAqIXO4MLPfSDqu6I7DUoBaNls8Ppo8kGYZqpm9IOmF\nxKEXOy8NAACk1facCzN728z+Q9JpSSbpt2b2JzP7dQd1rKppgmf8+F6G17ooqZ74+s8O6gIAAG3K\ncudiXtJpd/+2cSCeeHlN0njGOjYlDTcdG1briZ/PMyPpnxOPXxQBAwCAnsmyWuR+MlhIkrs/kLSW\ntYj495uNS7qV4bV+dPetxpekv2StCwAAtC9LuJg1s8nkATM7LOnr5/2imZ2K+1xMxK9zLXF62swu\nmNmwmU1IWtgldKRiZlNm9kOaugAAQDjm7s9/UjTHovFEUzQfIvmLJsnd/aWOC4qaZq12EiyaXm9I\nUr1er2toaCjESwIA0Be2trZUq9UkqRaPBqSSas6Fu7+atbB2VbUTJwAA/aJMG5cBAIASaHu1iJlt\nKhoSscT3mqKhjNfClgcAAMqm7XDh7s39KBqbjm0EqSgQM5uSNCXuzgAA0FOpJnSmeiGzZXfP2uei\na5jQCQBANlkndAb5r3ozO6KmVt0AAKA/dTLnomFT0gNJ061/AwAA9JMgcy4AAAAaKjvZkQ6dAADk\nI22Hzg/SvJi7/2vHFQXGhE4AALLpaodOSc0dOj+UdKXpWJhlJwAAoNTStv/+OPnYzCaajwEAAEjZ\n51xwlwIAALTEhE4AABBUZcOFu1929zckvZN3LQAA9JNUcy7MbLLp0HCLY3L3pSBVAQCA0kq7WuR/\nNT3+tsUxl0S4AACgz6VdLXKm24UAAIBqaHvORauGWmb2dqthEgAA0H+yTOg83XzA3b+VdLbzcgAA\nQNml3rgsvjNxVNKYmX3UdPqopJ+HLKxTZjYlaUoVXhEDAEARtfOH1xRtrW6S6k1f19XijkaeWIoK\nAEA+Ut+5cPcvJcnMjrp7874iKKj1+rbWNh7qyMgBjdYG8y4HANAHUoeLBvYUKY+F5bu6uPSdnri0\nz6SZyWM6O34o77IAABWXaljEzJYTP2+a2b2mr00zu9e9MtGu9fr2TrCQpCcuXVr6Xuv17XwLAwBU\nXto+F+OJnw92rxyEsrbxcCdYNDx2152NRwyPAAC6ipUUFXVk5ID22dPHBsx0eGR/PgUBAPpG2mGR\nt8zsraZj/2Jmv098vbXb76P3RmuDmpk8pgGLEsaAmT6ZfJO7FgCArjN3f/6TzH4v6by730kcuyXp\nw/jhS5I+dPfCNNJq6nPxy3q9rqGhoZyr6r31+rbubDzS4ZH9BAsAQFu2trZUq9UkqebuW2l/L+1q\nEUsGi4a4M2f0BLMPm8/nyd0vS7psZkOKenH0pdHaIKECANBTaedctLq9Md30eLjDWgAAQAWkDRfW\nfMDdb+ycNDssaS1MSQAAoMzShos5M1todSIedpiT9HmwqgAAQGmlChdx6+87ZrZsZh+Y2eH46x8k\nfSNp0d3/2NVKAQBAKbSzt8i0mb0t6byk3ymah/GNpDPJiZ0AAKC/tbW3SBwiftelWgAAQAXQoRMA\nAARFuAAAAEERLgAAQFCVDRdmNmVmP0j6Ou9aAADoJ5UNF+5+2d3fkPRO3rUAANBPKhsuAABAPtoO\nF2b2kZltmtm9xNemmd3rRoEAAKBc2upzEZuV9Kq7s5cIAAB4RpZhkTWCBQAA2E2WcDEdD40MBa8G\nAACUXtZhEUm6ZPbUTuzu7i91XhIAACiztsOFu7/ajUIAAEA1ZLlzoXhI5JykcUmrkj539/8fsjAA\nAFBOWZaiHpF0U9IDSfOSbkm6YmaTgWtDQa3Xt/XVyobW69t5lwIAKKAsdy4+l/S+u9cTx740s99L\nWgpTFopqYfmuLi59pycu7TNpZvKYzo4fyrssAECBZFktYk3BAn1ivb69Eywk6YlLl5a+5w4GAOAp\nWcLFqpm9lTxgZjVJrBSpuLWNhzvBouGxu+5sPMqnIABAIWUZFplWNMfinqJ5Fz+XdELS6ZCFoXiO\njBzQPtNTAWPATIdH9udXFACgcNq+c+HudXc/o2gy56qkRXcfL1rXTrZcD2+0NqiZyWMaiPubDJjp\nk8k3NVobzLkyAECRmLs//1klFi+brdfrdQ0N0VQ0hPX6tu5sPNLhkf0ECwCosK2tLdVqNUmquftW\n2t/L1OcC/W20NkioAADsKsuETgAAgF0RLgAAQFAdhwszO8wOqQAAoCFL+++FRpgwsw8kXZe0GP8M\nAAD6XJY7F0cTM0ZnJR13978TfS4AAICyhYt70s4GZmuJoHEwWFUAAKC0sixFrcdDIGckzUk77b8t\nZGEAAKCcsnToPKMoSHzu7lfiw2OSLoQsDAAAlFPW1SKbkn5nZguS5O7fSjofrCoAAFBaWVaLvC/p\njLv/VlJyP5FbZvabYJUBAIBSynLn4rikmRbHVxUNjwBtW69v66uVDa3Xt/MuBQDQoSwTOm9LOivp\nj5KSu56dE0MjyGBh+a4uLn2nJy7tM2lm8pjOjh/KuywAQEZZJnTekGRm9gdJE2Y2Y2Z/UrT1+p3Q\nBaLa1uvbO8FCkp64dGnpe+5gAECJZdoV1d0/jpefTsSHPnX3eriy0C/WNh7uBIuGx+66s/GInVcB\noKQyb7keh4kvA9ayKzObVTSfY1PStLs/6MX7ovuOjBzQPtNTAWPATIdH9udXFACgI6mGRcxs08zu\n7fG1aWb3ulGgmR2XdM3dTytq2nWxG++DfIzWBjUzeUwDFvVgGzDTJ5NvctcCAEos1Z0Ldw/a2ju+\nE7Hg7rebjk9IOilp2d2vxu+dfM6EpOWQtSB/Z8cP6b3XX9adjUc6PLKfYAEAJZd5WCQLMzunaIOz\nMUnXWpybVbTL6ikzO+nu5+NzY/G5YXc/2cua0RujtUFCBQBURKpwYWYfuPu/xj//g55egrrD3f9p\nr9dx93lJ82a22OL0rKQT7r4av8+KmQ27+4P42GkzGzOzxXiIBAAAFFDaOxf3Ez8Hn0wZ35lYbQSL\n2FVFS11vN467+6qZDYd+fwAAEE7acLGS+HnZ3f8YuI4xRR0+m99zTNJ1M7ugKNQMi0ZdAAAUWtpw\ncVFRV04pGr74uy7Ustni8dF42elnaV/EzF6Q9ELi0IsBagMAACmlDRdmZh8p2mp9LP75Gc+bc7GH\nVUnNK1IOSsqyvPWipH/MWAcAAOhQqj4X7n5G0Q6oDxQFjPouX1ltKhrySBpWtI9Ju2Yk1RJfr3RQ\nFwAAaFPqpaju/qUkmZnc/UrIItz9gcVNlBLGJc1neK0fJf3YeNzidQEAQBdl2bgsc7Aws1Nmdk1R\nM6zZ+OeGaTO7YGbDcTOtBdp8AwBQPubesmVFbuJ236udBgszm5I0pShA/bJer2toaChEiQAA9IWt\nrS3VajVJqrn7VtrfK1y4CM3MhiTVCRf9Z72+rbWNhzoycoDunwCQQdZw0dP230CvLCzf1cWl7/TE\npX0mzUwe09nxQ3mXBQB9oe05F0DRrde3d4KFFG3nfmnpe63Xt/MtDAD6RNot1xcSP5dibMHMpszs\nB0lf510Lemtt4+FOsGh47K47G4/yKQgA+kzaOxfJ9ZytNh0rHHe/7O5vSHon71rQW0dGDmhf0wrk\nATMdHtmfT0EA0GfSzrlYNrMZRR0zu9GhEwhmtDaomcljurT0vR67a8BMn0y+yaROAOiRVOHC3f+P\nmb2vaCOxRodOoLDOjh/Se6+/rDsbj3R4ZD/BAgB6qJ0OnTck3ehGh06gG0Zrg4QKAMhB20tR3f1K\nPKnzvKRfKdp0bM7d7wSurSNNTbQAAECPtP2H18yOSLop6b6ivT9uSZo3s8nAtXWECZ0AAOQjSxOt\nzyW97+7JeRdfmtnvJS2FKQsAAJRVliEDawoWAAAAO7KEi1Uzeyt5wMxqkl4KUxIAACizLMMi05Ku\nmNk9SQ8k/VzSCUmnQxYGAADKKctqkbqkM2b2tuLVIu7+u+CVdYjVIugGdloFgOdjy3UgJXZaBdBv\nsm65zn/VAymw0yoApEe4AFJgp1UASI9wAaTATqsAkB7hAkihsdPqgEUJg51WAWB3ba8WMbOPyrC1\nOqtFEBo7rQJAOm2vFjGzP0g61c6s0TyxWgQAgGx6uVrktKRZM/ubDL8LAAAqLkuHzm/i72fNbFOS\nSzJJ7u6vBasMAACUUpYOna92oxAAAFANmSY7mtmkmf3BzP5v4thCuLIAAEBZtR0uzOx9SWfd/beS\n7iRO3TKz34QqDOgX6/VtfbWyQbdPAJWRZc7FcUkzLY6vShqTdLOjioA+wn4lAKooy7DIbUln45+T\n61jPSbrecUVAn2C/EgBV1Xa4cPcbkizudzFhZjNm9idJi+5+J3SBWZnZlJn9IOnrvGsBWmG/EgBV\nlWVYRO7+sZnVJE3Ehz5193q4sjrn7pclXW400cq7HqBZY7+SZMBgvxIAVdBJa+wTko4o6m/BH2+g\nTexXAqCqsrT/flvSoqRriiZxHpX0vqRz7v7/glfYIdp/o+jW69vsVwKgkLK2/84yLDIv6bS7f9s4\nYGbDisLGeIbXA/raaG2QUAGgUrIMi9xPBgtJcvcHktbClAQAAMosS7iYNbPJ5AEzOyxWZQCFQWMu\nAHlKNSxiZv+hn3pamKSDZnYl+ZT4/D+FLQ9Au2jMBSBvqcIFm5UB5bBbY673Xn+ZeR0AeqaTpagA\nCobGXACKoO3VImb2oaRZSff003CIKep38VrY8rIzsylJUyJAoY/QmAtAEWT5w3tB0hF3f83dX01+\nD11cJ9z9sru/IemdvGsBeoXGXACKIEufixt05ASK6+z4Ib33+ss05gKQmyzhYs7MPpD0RTvdugD0\nDo25AOQpS7j4laI5F9MW33pVAedcAACAfGQJF405FwyNAACAZ2SZ0PktwQIAAOwmS7j43Mwm491G\nAQAAnpJ1V1QpagGebAnu7v5SmLIAAEBZtR0uaAUO9Kf1+rbWNh7qyMgBVqIA2FOWOxcA+gyboQFo\nR9tzLsxs08zuNX1/bGZ/6kaBAPK122ZobOcOYDdZhkUONh8zs3OSNoJUBKBQ9toMjeERAK0E2dTL\n3eclXQzxWgCKpbEZWlLIzdDW69v6amWDOyFAhQQJF2Z2RNLREK8FoFi6uRnawvJdvfvpTf39lX/X\nu5/e1MLy3Y5fE0D+zN2f/6zkL5htKtpmvWFT0gNJ8+5+JWBtHWnacv2X9XpdQ0O05gCyWq9vB90M\nbb2+rXc/vfnM9vD/9vGvGW4BCmJra0u1Wk2Sau3sJxZkzkURuftlSZfjZl90FAU6FHozNOZyANUV\nZFgEANrV7bkcAPKTZSnqR7ssR73XjQIBVFM353IAyFeWORePJb3q7mvdKSmsxrAIcy6AYgo9lwNA\nOD2bcyFprSzBAkDxhZ7LASB/WeZcTMdDI9wGAAAAz8hy52I2/n6JXVEBFBGbrAH5YldUAJXCJmtA\n/liKCqAy2GQNKAbCBYDK2KsxF4DeIVwAqAwacwHFQLgAUBk05gKKoe0mWmVDEy2g/9CYCwijl020\nAKDQaMwF5IthEQAAEBThAgAABEW4AIAU1uvb+mplg54ZQAqlmHNhZrOSxiRtSpp29wc5lwSgj9D1\nE2hP4e9cmNk5SQvuflrSnH7a2wQAuo6un0D7cgkXZjZrZsdbHJ+Iz51KHP7C3W9LUvx9rFd1AgBd\nP4H29TRcmNk5M7sm6ZSkg83nJC0qCg+zZjYnSckhkPg5c72rGEC/o+sn0L6ehgt3n3f3k5Jutzg9\nK+mEu59296OSJsxsuHEyvpux6e5Xe1QuAND1E8igEBM6zWxM0qq7ryYOX5U0IelqfMfiVmN4BAB6\n6ez4Ib33+st0/QRSKkS4UDQUstp0bEXSWHzH4rykkxb9l8Oqu0/v9kJm9oKkFxKHXgxcK4A+1I2u\nn+v1ba1tPNSRkQMEFlRKUcKFFC0zbX581N0/U3QXI62Lkv4xWFUA0AUsb0WVFWUp6qqaJnjGj+9l\neK0ZSbXE1yudlQYAYbG8FVVXlDsXm5KGm44Nq/XEzz25+4+Sfmw8jodSAKAw9lreyvAIqqAQdy52\n6bg5LulWr2sBgG5jeSuqrtd9Lk7FfS4mFPWyuJY4PW1mF8xs2MwmFHXlzNzm28ymzOwHSV93WDYA\nBMXyVlSdufvzn9VDcefO1VD7h5jZkKR6vV7X0NBQiJcEgCDW69ssb0WhbW1tqVarSVLN3bfS/l5R\n5lzsoJcFgH7RjeWtQBEUYs4FACAMtoZHERTuzgUAIBt6Z6AoKnvnggmdAPoJvTNQJJUNF+5+2d3f\nkPRO3rUAQLexNTyKpLLhAgD6STd7ZzCPA+0iXABABXSrd8bC8l29++lN/f2Vf9e7n97UwvLdEOWi\n4grX5yI0+lwA6Cche2es17f17qc3nxpuGTDTv338a5bQ9onK9LkIxcymJE2JuzMA+kjI3hnsgYKs\nKvuHlwmdANAZ9kBBVpUNFwCAzrAHCrJizgUAYE/sgdK/mHMBAOgK9kBBuyo7LEKHTgAA8lHZcMGE\nTgAoLhpzVRvDIgCAnirbBmvr9W2tbTzUkZEDDA+lRLgAAPTMbhusvff6y4X8w122IFQUlR0WAQAU\nT5k2WGOn2ewIFwCAnilTY64yBaGiIVwAAHqmTI25yhSEiqayTbSa9hb5JU20AKA4utWYK/Tky4Xl\nu7q09L0eu+8EoX6ac5G1iVZlw0UDHToBoD90a/JlP3cozRouGBYBAJReNydfjtYG9bdHX+q7YNEJ\nwgUAoPSYfFkshAsAQOkx+bJYCBcAgNIr0yqUfsCETgBAZfTz5MtuYMt1AEDfK8v28FXfr6Sy4aKp\nzwUAAIXQD/uVVPYPL1uuAwCKpl/2K6lsuAAAoGj6Zcks4QIAgB7plyWzhAsAAHqkX5bMshQVAIAe\nK8uSWZaiAgBQEt1YMluk5a2ECwAASq5oy1uZcwEAQIkVcXkr4QIAgBIr4vJWwgUAACVWxOWtlQ0X\nZjZlZj9I+jrvWgAA6JYiLm9lKSoAABXQjeWtLEUFAKCPFWlH2MoOiwAAgHwQLgAAQFCECwAAEBTh\nAgAABEW4AAAAQREuAABAUIQLAAAQFOECAAAE1TdNtLa2UjcWAwAAyv63sx/af/+1pP/Muw4AAErs\nFXf/r7RP7odwYZL+StJfAr7si4oCyyuBXxdh8TmVA59T8fEZlUO3PqcXJf23txEYKj8sEv+PkTpt\npWG2s7ftX9rZyAW9xedUDnxOxcdnVA5d/Jzafi0mdAIAgKAIFwAAICjCRTY/Svrf8XcUF59TOfA5\nFR+fUTkU5nOq/IROAADQW9y5AAAAQREuAABAUISLDMxswsxmzexU3rUAZRJfN8dbHOeaAtpgZsPx\nNXPNzObMbLjpfK7XFOGiTWZ2TtKipDFJs2Y2l3NJaGJmi2b2TfIr75r6nZmdM7Nrkk5JOth8TlxT\nhdIqBHJdFc4VSdcknZe0IumbRsAowjXFhM42mdl9SSfcfTV+vBI/fpBvZWiI/4id5jMpHjNblDTn\n7tcTx7imCiL+o3Ra0R+l802fE9dVQZjZhKQxd59PHJuT9I27zxfhmuLORRvMbEzSauMDi12VNJFT\nSUCpcU0Vi7vPu/tJSbfzrgW7c/fryWARW5E0XJRrinDRnjFJq03HVuLjKJaDZnYqTvgoLq6pcuG6\nKq6Tkq6rINcU4aJ9my0ev5RHIdjToqKx/ZOM4Rce11R5cF0VUDycdc3dG3eccr+mKr9xWWCrapqM\nFj++l0Mt2N1s01jxoplNJI+hMLimyoPrqoDiYDHs7p/FhwpxTXHnoj2bkoabjg2L8clCafF/dsuS\nnln+iELgmioJrqviMbMLkjYTwUIqyDVFuGjDLjNtxyXd6nUtaMtRScxwLyCuqVLjuspRHCxuu/vV\n5PGiXFOEi/ZNm9mFuIHJhKQFlmYVh5mNxcsdG4+HFc2S/iK/qhBPArym6LOYjX9u4JoqOK6rYol7\nkFxUdC0le4+ci5+S+zVFn4uM4g93lf8TLJ74YppOHDrftCwLBcQ1lb+4m+N5Sb9SNHa/GS9N5boq\noTyvKcIFAAAIimERAAAQFOECAAAERbgAAABBES4AAEBQhAsAABAU4QIAAARFuAAqJt7z4VSL49fi\nde9ZX/eb55y/n+E1V1oce+6GWM+rpVOt6gKQHuECwDPijppPBRR3P7HX+QDvORt3fnzQeLzbc5O1\nACgedkUF0MpBPbv5UTvns5hR1NJ4LA4WC4FfH0CPcOcC6FNmthLfgVgxM483QmrcMZiWdD4eSjkX\nH7+/1/kWrz8R728wkTg2HA/b7Pp7KWu/n/h5JX6fxfjnc4lzc8n3bzx/r39/U/3X4j0b2P0TaAN3\nLoD+NubuR81sTNI3kj5z9+n4D/Bw01bOkqTnnZeeGtJYkHTRzIbj3RtvSJpz9/n4PZPzKy4qvnsR\nv8es0m0TfVDSVXf/LB5WWTOzL+L9FObi170e1zUhKbmL5DP//sRrDrv7yThYLCraBRRACty5APrX\nQUnzkhRyA6r4D/xxd59299vuflrRXY4xRRthJd9zZ0Ol+PkPFA+3uPt0i5dvqVF//Pvzks7Ej28r\nGmZpDOGc10+BZs9/f2Mr6/g1rjffAQGwO+5cAH2sS7slTkg62DQh84GkMUU7bT6vpvMdvv89PT0f\nZE7SOUV3JcaSQaKNf/+KpOOK74AA2BvhAqieZUnjevr2vxT9YU0zzBDC9eY7D/HwwsEevPe4nh5u\n+ULSDTNbVfZJokclXeu0MKBfMCwCVM+8pFPJSYjxXYTmsLGXTcVzDHaZzLjX+euSnlmmGgeb440h\nivh76hUniaGNVudOJb6PufvOHYb47sQtRXMv5tt4v7HE+040hkkAPB/hAqiY+I/pCUUTKVfiyZf3\n2pnDoCggjJnZoqLhjNTn4/efjVdanGqs5IhPn5b0Tfz4jBJzLvYSh6Nd+15IemBm1ySdlPR+i/OL\niuZ7tDMMdCqu84aiuRoAUjJ3z7sGABUU/5f/hKTV5J2ELrzPfXf/+XOec0HS7W7WAeAnhAsApbZX\nuIh7XpyQdDBetQKgBwgXACorni9xMORSWwDPR7gAAABBMaETAAAERbgAAABBES4AAEBQhAsAABAU\n4QIAAARFuAAAAEERLgAAQFCECwAAEBThAgAABPU/sNFD2jZlTHwAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1127456d8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.semilogy(results[:21], \".\")\n",
"plt.locator_params(axis=\"x\", integer=True)\n",
"plt.xlabel(\"Untitled*.ipynb\")\n",
"plt.ylabel(\"number of files on GitHub\")\n",
"plt.savefig(\"meme.png\")"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"!open ."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment