Skip to content

Instantly share code, notes, and snippets.

@dmitriyshashkin
Created March 20, 2018 12:32
Show Gist options
  • Save dmitriyshashkin/6a4849bdcf882ba340cdfbc1990da401 to your computer and use it in GitHub Desktop.
Save dmitriyshashkin/6a4849bdcf882ba340cdfbc1990da401 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"import sqlalchemy\n",
"import pandas as pd\n",
"import io\n",
"import requests\n",
"from clickhouse_driver import Client"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"engine = sqlalchemy.create_engine('clickhouse+native://default:@localhost/default')\n",
"conn_yc = engine.connect()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"engine = sqlalchemy.create_engine('clickhouse://default:@localhost:8123/default')\n",
"conn_yc_http = engine.connect()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"client = Client('localhost')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[(2017, 4, 12, 1, 5, datetime.date(2017, 12, 1), 'OO', 20304, 'OO', 'N954SW', '5413', 12892, 1289206, 32575, 'LAX', 'Los Angeles, CA', 'CA', '06', 'California', 91, 14262, 1426204, 34262, 'PSP', 'Palm Springs, CA', 'CA', '06', 'California', 91, 1855, 1842, -13, 0, 0, '-1', '1800-1859', 14, 1856, 1924, 7, 1955, 1931, -24, 0, 0, -2, '1900-1959', 0, '', 0, 60, 49, 28, 1, 110, 1, 0, 0, 0, 0, 0, '', '', '', '0', '', '', '', '', '', 0, 0, '', '', '', '', '', '', 0, 0, '', '', '', '', '', '', 0, 0, '', '', '', '', '', '', 0, 0, '', '', '', '', '', '', 0, 0, '', '', '', '', '')]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conn_yc.execute('select * from ontime limit 1').fetchall()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 1min 13s, sys: 388 ms, total: 1min 14s\n",
"Wall time: 1min 14s\n"
]
},
{
"data": {
"text/plain": [
"464205"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%time df = conn_yc.execute('select * from ontime').fetchall()\n",
"len(df)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 33.4 s, sys: 612 ms, total: 34 s\n",
"Wall time: 34.2 s\n"
]
},
{
"data": {
"text/plain": [
"464203"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%time df = conn_yc_http.execute('select * from ontime').fetchall()\n",
"len(df)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 5.88 s, sys: 508 ms, total: 6.39 s\n",
"Wall time: 7.29 s\n"
]
},
{
"data": {
"text/plain": [
"464204"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%time df = pd.read_table(io.BytesIO(requests.get('http://localhost:8123', {'query': 'select * from ontime'}).content), low_memory=False)\n",
"len(df)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 50 s, sys: 249 ms, total: 50.3 s\n",
"Wall time: 50.4 s\n"
]
},
{
"data": {
"text/plain": [
"464205"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"client = Client('localhost')\n",
"%time df = client.execute('select * from ontime')\n",
"len(df)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 50.3 s, sys: 240 ms, total: 50.6 s\n",
"Wall time: 50.7 s\n"
]
},
{
"data": {
"text/plain": [
"464205"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"client = Client('localhost', compression=True)\n",
"%time df = client.execute('select * from ontime')\n",
"len(df)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment