Skip to content

Instantly share code, notes, and snippets.

@dangkhoasdc
dangkhoasdc / lenet5.lua
Last active November 6, 2019 23:44
CNN with Torch: A simple example
-- LUA WARNINGS
-- Array starts from index 1
-- obj.func() is equivalent to obj:func()
-- Loop:
-- for start_, end_ do
-- end
-- Condition:
-- if <condition> then
-- end
-- Function:
@acamino
acamino / README.md
Last active August 30, 2025 22:21
Shortcuts to Improve Your Bash & Zsh Productivity

Shortcut — Action

  • CTRL + A — Move to the beginning of the line
  • CTRL + E — Move to the end of the line
  • CTRL + [left arrow] — Move one word backward (on some systems this is ALT + B)
  • CTRL + [right arrow] — Move one word forward (on some systems this is ALT + F)
  • CTRL + U — (bash) Clear the characters on the line before the current cursor position
  • CTRL + U —(zsh) If you're using the zsh, this will clear the entire line
  • CTRL + K — Clear the characters on the line after the current cursor position
  • ESC + [backspace] — Delete the word in front of the cursor
@nvnhat95
nvnhat95 / basedline
Last active December 12, 2016 16:17
#include <opencv\cv.h>
#include <opencv\highgui.h>
#include <iostream>
#include <string>
#include <cmath>
using namespace std;
// display video from array of frames, using left and right button.
void displayVideo(cv::Mat* frames, cv::Point2i* centralPoints, int numFrame, int FPS, string windowName) {
@naotokui
naotokui / audio_lstm_keras.ipynb
Last active July 15, 2025 08:25
Audio generation with LSTM in keras
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@mommi84
mommi84 / awesome-kge.md
Last active April 14, 2025 11:27
Awesome Knowledge Graph Embedding Approaches
@chirag1992m
chirag1992m / weight_transfer.py
Created December 1, 2017 21:36
weight_transfer
import numpy as np
import torch
import keras
def pyt_to_keras(pytorch_model, keras_model):
"""
Given a PyTorch model, this method transfers the weight to
a Keras Model (with backend TensorFlow) with the same architecture.
Assumptions:
1. The corresponding layer names in both the models will be the same
@MarvinT
MarvinT / black_code_prettify.json
Last active January 16, 2023 15:41
json you can paste into jupyter notebook's code prettify configuration that makes it use black to reformat your code instead of yapf.
{
"python": {
"library": "import json\ndef black_reformat(cell_text):\n import black\n import re\n cell_text = re.sub('^%', '#%#', cell_text, flags=re.M)\n try:\n reformated_text = black.format_str(cell_text, 88)\n except TypeError:\n reformated_text = black.format_str(cell_text, mode=black.FileMode(line_length=88))\n return re.sub('^#%#', '%', reformated_text, flags=re.M)",
"prefix": "print(json.dumps(black_reformat(u",
"postfix": ")))"
},
"r": {
"library": "library(formatR)\nlibrary(jsonlite)",
"prefix": "cat(toJSON(paste(tidy_source(text=",
"postfix": ", output=FALSE)[['text.tidy']], collapse='\n')))"
@thomwolf
thomwolf / top-k-top-p.py
Last active October 25, 2025 20:25
Sample the next token from a probability distribution using top-k and/or nucleus (top-p) sampling
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k >0: keep only top k tokens with highest probability (top-k filtering).
top_p >0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
"""
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
@thomwolf
thomwolf / gpt-2-wikitext-103.py
Last active October 25, 2025 13:45
A very small and self-contained gist to train a GPT-2 transformer model on wikitext-103
# Copyright (c) 2019-present, Thomas Wolf.
# All rights reserved. This source code is licensed under the MIT-style license.
""" A very small and self-contained gist to train a GPT-2 transformer model on wikitext-103 """
import os
from collections import namedtuple
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from ignite.engine import Engine, Events
@akashpalrecha
akashpalrecha / an-inquiry-into-matplotlib-figures.ipynb
Last active December 27, 2024 14:38
An Inquiry into Matplotlib's Figures, Axes, subplots and the very amazing GridSpec!
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.