- Install NCCL
git clone https://github.com/NVIDIA/nccl.git /home/ubuntu/nccl --recursive
make CUDA_HOME=/usr/local/cuda -j4
make install
| import java.util.ArrayList; | |
| import java.util.*; | |
| public class HelloWorld{ | |
| static List<String> list = new ArrayList<String>(); | |
| static String[] generate_all_expressions(String s, long target) | |
| { | |
| expressionRecurse("",0,0,0,target,s); | |
| // System.out.println("list:" + list.size()); | |
| String[] result =new String[list.size()]; | |
| int j =0; |
| def maximum_under_budget_1d(array, budget): | |
| st, max_sum, max_len = 0, 0, 0 | |
| #print(array) | |
| for ed in range(len(array)): | |
| max_sum += array[ed] | |
| while max_sum > budget and st <= ed: | |
| max_sum -= array[st] | |
| st += 1 | |
| max_len = max(max_len, ed - st + 1) | |
| return max_len |
| class Solution: | |
| def helper(self, candidates, target, curr_comb, result, curr_id, curr_sum): | |
| if curr_sum >= target: | |
| if curr_sum == target: | |
| result.append(curr_comb) | |
| return | |
| for i in range(curr_id, len(candidates)): | |
| curr_comb.append(candidates[i]) | |
| self.helper(candidates, target, curr_comb, result, i, curr_sum + candidates[i]) |
| from random import choice | |
| import string | |
| def compress_string(s): | |
| if len(s) < 3: | |
| return 0 | |
| max_len = len(s) - 2 | |
| str_list = [] | |
| for num in range(len(s), 2, -1): | |
| for i in range(1, len(s) - num): |
| # Copy files from one directory to another directory in the same S3 bucket | |
| all_tsvs = set([line.rstrip('\n') for line in open('all_files.log')]) | |
| processed_tsvs = set([line.rstrip('\n') for line in open('processed.log')]) | |
| to_do_tsvs = [elem.split('s3://psriniva/')[-1] for elem in list(all_tsvs - processed_tsvs)] | |
| to_do_tsvs[-1] | |
| import boto3 |
| import re | |
| def extract_url(cid, id32): | |
| chop_id = '/'.join(re.findall('..', '{:0>10}'.format(cid))[0:4]) | |
| size = '240' | |
| return (str(cid), 'https://t3.ftcdn.net/jpg/{}/{}_F_{}_{}_NW.jpg'.format(chop_id, size, cid, id32)) | |
| def extract_tags(rdd_record): | |
| j = json.loads(rdd_record) | |
| tags = [x.split('^')[0] for x in j['k']['eksrg']] |
| ''' | |
| Requirements: | |
| pip3 install elasticsearch | |
| pip3 install certifi | |
| ''' | |
| from elasticsearch import Elasticsearch | |
| import certifi | |
| import re |
| model { | |
| faster_rcnn { | |
| num_classes: 6 | |
| image_resizer { | |
| keep_aspect_ratio_resizer { | |
| min_dimension: 500 | |
| max_dimension: 500 | |
| } | |
| } | |
| feature_extractor { |
| # model settings | |
| model = dict( | |
| type='FasterRCNN', | |
| pretrained='modelzoo://resnet101', | |
| backbone=dict( | |
| type='ResNet', | |
| depth=101, | |
| num_stages=4, | |
| out_indices=(0, 1, 2, 3), | |
| frozen_stages=1, |