Created
August 5, 2020 14:39
-
-
Save dominiquesydow/8491458bdd4024473d14d3c8a396cf9a to your computer and use it in GitHub Desktop.
Fit 3D point cloud to plane (PCA)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Fit 3D point cloud to plane (PCA)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Adapted from stackoverflow: [\"How can I draw 3D plane using PCA in python?\"](https://stackoverflow.com/questions/49957601/how-can-i-draw-3d-plane-using-pca-in-python), answered by kastaa" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Additional resources:\n", | |
"\n", | |
"- https://www.cs.tau.ac.il/~dcor/Graphics/cg-slides/3d_geometry_lesson2.pdf (slide 8)\n", | |
"- https://elliotnoma.wordpress.com/2015/09/29/using-principal-components-analysis-to-determine-the-best-fitting-plane-from-locations-in-a-point-cloud/\n", | |
"- http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/\n", | |
"- https://math.stackexchange.com/questions/99299/best-fitting-plane-given-a-set-of-points" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"from mpl_toolkits.mplot3d import Axes3D\n", | |
"from sklearn.decomposition import PCA" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Make plotting interactive: https://matplotlib.org/users/interactive.html" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib notebook" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Random data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[10, 36, 2],\n", | |
" [12, 15, 22],\n", | |
" [ 5, 2, 45],\n", | |
" [ 3, 4, 21],\n", | |
" [20, 27, 44],\n", | |
" [29, 20, 32],\n", | |
" [ 3, 6, 16],\n", | |
" [27, 7, 27],\n", | |
" [14, 46, 30],\n", | |
" [40, 41, 17],\n", | |
" [ 9, 20, 14],\n", | |
" [18, 35, 22]])" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"X = np.random.randint(0, 50, size=(12, 3))\n", | |
"X" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## PCA with 3 principle components (=eigenvectors)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"pca = PCA(n_components=3)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"PCA(n_components=3)" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"pca.fit(X)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0.42886165, 0.87112769, -0.23919496],\n", | |
" [-0.47892638, -0.00525937, -0.87783931],\n", | |
" [-0.76596815, 0.49102839, 0.41495049]])" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"eig_vec = pca.components_\n", | |
"eig_vec" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([0.55353786, 0.3061246 , 0.14033754])" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"pca.explained_variance_ratio_" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Percentage of variance is explained by last vector is less 0.2%." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[-0.76596815 0.49102839 0.41495049]\n", | |
"[15.83333333 21.58333333 24.33333333]\n" | |
] | |
} | |
], | |
"source": [ | |
"# This is the normal vector of minimum variance\n", | |
"normal = eig_vec[2, :] # (a, b, c)\n", | |
"centroid = np.mean(X, axis=0)\n", | |
"\n", | |
"print(normal)\n", | |
"print(centroid)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"-8.567328914882918\n" | |
] | |
} | |
], | |
"source": [ | |
"# Every point (x, y, z) on the plane should satisfy a*x+b*y+c*z = d\n", | |
"# Taking centroid as a point on the plane\n", | |
"d = -centroid.dot(normal)\n", | |
"\n", | |
"print(d)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Plotting with mplot3D\n", | |
"\n", | |
"- https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html#surface-plots\n", | |
"- https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html#line-plots\n", | |
"- https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html#scatter-plots" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Prepare plane data for plotting" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(44, 37)\n", | |
"(44, 37)\n", | |
"(44, 37)\n" | |
] | |
} | |
], | |
"source": [ | |
"xx, yy = np.meshgrid(\n", | |
" np.arange(\n", | |
" np.min(X[:, 0]), np.max(X[:, 0])\n", | |
" ), \n", | |
" np.arange(\n", | |
" np.min(X[:, 1]), np.max(X[:, 1])\n", | |
" )\n", | |
")\n", | |
"z = (-normal[0] * xx - normal[1] * yy - d) * 1. / normal[2]\n", | |
"print(xx.shape)\n", | |
"print(yy.shape)\n", | |
"print(z.shape)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Prepare eigenvector data for plotting" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"vec_start_list = [np.array([0,0,0])+centroid]*3\n", | |
"vec_end_list = [i*10+centroid for i in eig_vec]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Plot data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/javascript": [ | |
"/* Put everything inside the global mpl namespace */\n", | |
"/* global mpl */\n", | |
"window.mpl = {};\n", | |
"\n", | |
"mpl.get_websocket_type = function () {\n", | |
" if (typeof WebSocket !== 'undefined') {\n", | |
" return WebSocket;\n", | |
" } else if (typeof MozWebSocket !== 'undefined') {\n", | |
" return MozWebSocket;\n", | |
" } else {\n", | |
" alert(\n", | |
" 'Your browser does not have WebSocket support. ' +\n", | |
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", | |
" 'Firefox 4 and 5 are also supported but you ' +\n", | |
" 'have to enable WebSockets in about:config.'\n", | |
" );\n", | |
" }\n", | |
"};\n", | |
"\n", | |
"mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", | |
" this.id = figure_id;\n", | |
"\n", | |
" this.ws = websocket;\n", | |
"\n", | |
" this.supports_binary = this.ws.binaryType !== undefined;\n", | |
"\n", | |
" if (!this.supports_binary) {\n", | |
" var warnings = document.getElementById('mpl-warnings');\n", | |
" if (warnings) {\n", | |
" warnings.style.display = 'block';\n", | |
" warnings.textContent =\n", | |
" 'This browser does not support binary websocket messages. ' +\n", | |
" 'Performance may be slow.';\n", | |
" }\n", | |
" }\n", | |
"\n", | |
" this.imageObj = new Image();\n", | |
"\n", | |
" this.context = undefined;\n", | |
" this.message = undefined;\n", | |
" this.canvas = undefined;\n", | |
" this.rubberband_canvas = undefined;\n", | |
" this.rubberband_context = undefined;\n", | |
" this.format_dropdown = undefined;\n", | |
"\n", | |
" this.image_mode = 'full';\n", | |
"\n", | |
" this.root = document.createElement('div');\n", | |
" this.root.setAttribute('style', 'display: inline-block');\n", | |
" this._root_extra_style(this.root);\n", | |
"\n", | |
" parent_element.appendChild(this.root);\n", | |
"\n", | |
" this._init_header(this);\n", | |
" this._init_canvas(this);\n", | |
" this._init_toolbar(this);\n", | |
"\n", | |
" var fig = this;\n", | |
"\n", | |
" this.waiting = false;\n", | |
"\n", | |
" this.ws.onopen = function () {\n", | |
" fig.send_message('supports_binary', { value: fig.supports_binary });\n", | |
" fig.send_message('send_image_mode', {});\n", | |
" if (mpl.ratio !== 1) {\n", | |
" fig.send_message('set_dpi_ratio', { dpi_ratio: mpl.ratio });\n", | |
" }\n", | |
" fig.send_message('refresh', {});\n", | |
" };\n", | |
"\n", | |
" this.imageObj.onload = function () {\n", | |
" if (fig.image_mode === 'full') {\n", | |
" // Full images could contain transparency (where diff images\n", | |
" // almost always do), so we need to clear the canvas so that\n", | |
" // there is no ghosting.\n", | |
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", | |
" }\n", | |
" fig.context.drawImage(fig.imageObj, 0, 0);\n", | |
" };\n", | |
"\n", | |
" this.imageObj.onunload = function () {\n", | |
" fig.ws.close();\n", | |
" };\n", | |
"\n", | |
" this.ws.onmessage = this._make_on_message_function(this);\n", | |
"\n", | |
" this.ondownload = ondownload;\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype._init_header = function () {\n", | |
" var titlebar = document.createElement('div');\n", | |
" titlebar.classList =\n", | |
" 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", | |
" var titletext = document.createElement('div');\n", | |
" titletext.classList = 'ui-dialog-title';\n", | |
" titletext.setAttribute(\n", | |
" 'style',\n", | |
" 'width: 100%; text-align: center; padding: 3px;'\n", | |
" );\n", | |
" titlebar.appendChild(titletext);\n", | |
" this.root.appendChild(titlebar);\n", | |
" this.header = titletext;\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", | |
"\n", | |
"mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", | |
"\n", | |
"mpl.figure.prototype._init_canvas = function () {\n", | |
" var fig = this;\n", | |
"\n", | |
" var canvas_div = (this.canvas_div = document.createElement('div'));\n", | |
" canvas_div.setAttribute(\n", | |
" 'style',\n", | |
" 'border: 1px solid #ddd;' +\n", | |
" 'box-sizing: content-box;' +\n", | |
" 'clear: both;' +\n", | |
" 'min-height: 1px;' +\n", | |
" 'min-width: 1px;' +\n", | |
" 'outline: 0;' +\n", | |
" 'overflow: hidden;' +\n", | |
" 'position: relative;' +\n", | |
" 'resize: both;'\n", | |
" );\n", | |
"\n", | |
" function on_keyboard_event_closure(name) {\n", | |
" return function (event) {\n", | |
" return fig.key_event(event, name);\n", | |
" };\n", | |
" }\n", | |
"\n", | |
" canvas_div.addEventListener(\n", | |
" 'keydown',\n", | |
" on_keyboard_event_closure('key_press')\n", | |
" );\n", | |
" canvas_div.addEventListener(\n", | |
" 'keyup',\n", | |
" on_keyboard_event_closure('key_release')\n", | |
" );\n", | |
"\n", | |
" this._canvas_extra_style(canvas_div);\n", | |
" this.root.appendChild(canvas_div);\n", | |
"\n", | |
" var canvas = (this.canvas = document.createElement('canvas'));\n", | |
" canvas.classList.add('mpl-canvas');\n", | |
" canvas.setAttribute('style', 'box-sizing: content-box;');\n", | |
"\n", | |
" this.context = canvas.getContext('2d');\n", | |
"\n", | |
" var backingStore =\n", | |
" this.context.backingStorePixelRatio ||\n", | |
" this.context.webkitBackingStorePixelRatio ||\n", | |
" this.context.mozBackingStorePixelRatio ||\n", | |
" this.context.msBackingStorePixelRatio ||\n", | |
" this.context.oBackingStorePixelRatio ||\n", | |
" this.context.backingStorePixelRatio ||\n", | |
" 1;\n", | |
"\n", | |
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", | |
"\n", | |
" var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", | |
" 'canvas'\n", | |
" ));\n", | |
" rubberband_canvas.setAttribute(\n", | |
" 'style',\n", | |
" 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", | |
" );\n", | |
"\n", | |
" var resizeObserver = new ResizeObserver(function (entries) {\n", | |
" var nentries = entries.length;\n", | |
" for (var i = 0; i < nentries; i++) {\n", | |
" var entry = entries[i];\n", | |
" var width, height;\n", | |
" if (entry.contentBoxSize) {\n", | |
" width = entry.contentBoxSize.inlineSize;\n", | |
" height = entry.contentBoxSize.blockSize;\n", | |
" } else {\n", | |
" width = entry.contentRect.width;\n", | |
" height = entry.contentRect.height;\n", | |
" }\n", | |
"\n", | |
" // Keep the size of the canvas and rubber band canvas in sync with\n", | |
" // the canvas container.\n", | |
" canvas.setAttribute('width', width * mpl.ratio);\n", | |
" canvas.setAttribute('height', height * mpl.ratio);\n", | |
" canvas.setAttribute(\n", | |
" 'style',\n", | |
" 'width: ' + width + 'px; height: ' + height + 'px;'\n", | |
" );\n", | |
"\n", | |
" rubberband_canvas.setAttribute('width', width);\n", | |
" rubberband_canvas.setAttribute('height', height);\n", | |
"\n", | |
" // And update the size in Python. We ignore the initial 0/0 size\n", | |
" // that occurs as the element is placed into the DOM, which should\n", | |
" // otherwise not happen due to the minimum size styling.\n", | |
" if (width != 0 && height != 0) {\n", | |
" fig.request_resize(width, height);\n", | |
" }\n", | |
" }\n", | |
" });\n", | |
" resizeObserver.observe(canvas_div);\n", | |
"\n", | |
" function on_mouse_event_closure(name) {\n", | |
" return function (event) {\n", | |
" return fig.mouse_event(event, name);\n", | |
" };\n", | |
" }\n", | |
"\n", | |
" rubberband_canvas.addEventListener(\n", | |
" 'mousedown',\n", | |
" on_mouse_event_closure('button_press')\n", | |
" );\n", | |
" rubberband_canvas.addEventListener(\n", | |
" 'mouseup',\n", | |
" on_mouse_event_closure('button_release')\n", | |
" );\n", | |
" // Throttle sequential mouse events to 1 every 20ms.\n", | |
" rubberband_canvas.addEventListener(\n", | |
" 'mousemove',\n", | |
" on_mouse_event_closure('motion_notify')\n", | |
" );\n", | |
"\n", | |
" rubberband_canvas.addEventListener(\n", | |
" 'mouseenter',\n", | |
" on_mouse_event_closure('figure_enter')\n", | |
" );\n", | |
" rubberband_canvas.addEventListener(\n", | |
" 'mouseleave',\n", | |
" on_mouse_event_closure('figure_leave')\n", | |
" );\n", | |
"\n", | |
" canvas_div.addEventListener('wheel', function (event) {\n", | |
" if (event.deltaY < 0) {\n", | |
" event.step = 1;\n", | |
" } else {\n", | |
" event.step = -1;\n", | |
" }\n", | |
" on_mouse_event_closure('scroll')(event);\n", | |
" });\n", | |
"\n", | |
" canvas_div.appendChild(canvas);\n", | |
" canvas_div.appendChild(rubberband_canvas);\n", | |
"\n", | |
" this.rubberband_context = rubberband_canvas.getContext('2d');\n", | |
" this.rubberband_context.strokeStyle = '#000000';\n", | |
"\n", | |
" this._resize_canvas = function (width, height, forward) {\n", | |
" if (forward) {\n", | |
" canvas_div.style.width = width + 'px';\n", | |
" canvas_div.style.height = height + 'px';\n", | |
" }\n", | |
" };\n", | |
"\n", | |
" // Disable right mouse context menu.\n", | |
" this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", | |
" return false;\n", | |
" });\n", | |
"\n", | |
" function set_focus() {\n", | |
" canvas.focus();\n", | |
" canvas_div.focus();\n", | |
" }\n", | |
"\n", | |
" window.setTimeout(set_focus, 100);\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype._init_toolbar = function () {\n", | |
" var fig = this;\n", | |
"\n", | |
" var toolbar = document.createElement('div');\n", | |
" toolbar.classList = 'mpl-toolbar';\n", | |
" this.root.appendChild(toolbar);\n", | |
"\n", | |
" function on_click_closure(name) {\n", | |
" return function (_event) {\n", | |
" return fig.toolbar_button_onclick(name);\n", | |
" };\n", | |
" }\n", | |
"\n", | |
" function on_mouseover_closure(tooltip) {\n", | |
" return function (event) {\n", | |
" if (!event.currentTarget.disabled) {\n", | |
" return fig.toolbar_button_onmouseover(tooltip);\n", | |
" }\n", | |
" };\n", | |
" }\n", | |
"\n", | |
" fig.buttons = {};\n", | |
" var buttonGroup = document.createElement('div');\n", | |
" buttonGroup.classList = 'mpl-button-group';\n", | |
" for (var toolbar_ind in mpl.toolbar_items) {\n", | |
" var name = mpl.toolbar_items[toolbar_ind][0];\n", | |
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", | |
" var image = mpl.toolbar_items[toolbar_ind][2];\n", | |
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n", | |
"\n", | |
" if (!name) {\n", | |
" /* Instead of a spacer, we start a new button group. */\n", | |
" if (buttonGroup.hasChildNodes()) {\n", | |
" toolbar.appendChild(buttonGroup);\n", | |
" }\n", | |
" buttonGroup = document.createElement('div');\n", | |
" buttonGroup.classList = 'mpl-button-group';\n", | |
" continue;\n", | |
" }\n", | |
"\n", | |
" var button = (fig.buttons[name] = document.createElement('button'));\n", | |
" button.classList = 'mpl-widget';\n", | |
" button.setAttribute('role', 'button');\n", | |
" button.setAttribute('aria-disabled', 'false');\n", | |
" button.addEventListener('click', on_click_closure(method_name));\n", | |
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", | |
"\n", | |
" var icon_img = document.createElement('img');\n", | |
" icon_img.src = '_images/' + image + '.png';\n", | |
" icon_img.srcset = '_images/' + image + '_large.png 2x';\n", | |
" icon_img.alt = tooltip;\n", | |
" button.appendChild(icon_img);\n", | |
"\n", | |
" buttonGroup.appendChild(button);\n", | |
" }\n", | |
"\n", | |
" if (buttonGroup.hasChildNodes()) {\n", | |
" toolbar.appendChild(buttonGroup);\n", | |
" }\n", | |
"\n", | |
" var fmt_picker = document.createElement('select');\n", | |
" fmt_picker.classList = 'mpl-widget';\n", | |
" toolbar.appendChild(fmt_picker);\n", | |
" this.format_dropdown = fmt_picker;\n", | |
"\n", | |
" for (var ind in mpl.extensions) {\n", | |
" var fmt = mpl.extensions[ind];\n", | |
" var option = document.createElement('option');\n", | |
" option.selected = fmt === mpl.default_extension;\n", | |
" option.innerHTML = fmt;\n", | |
" fmt_picker.appendChild(option);\n", | |
" }\n", | |
"\n", | |
" var status_bar = document.createElement('span');\n", | |
" status_bar.classList = 'mpl-message';\n", | |
" toolbar.appendChild(status_bar);\n", | |
" this.message = status_bar;\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", | |
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", | |
" // which will in turn request a refresh of the image.\n", | |
" this.send_message('resize', { width: x_pixels, height: y_pixels });\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.send_message = function (type, properties) {\n", | |
" properties['type'] = type;\n", | |
" properties['figure_id'] = this.id;\n", | |
" this.ws.send(JSON.stringify(properties));\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.send_draw_message = function () {\n", | |
" if (!this.waiting) {\n", | |
" this.waiting = true;\n", | |
" this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", | |
" }\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n", | |
" var format_dropdown = fig.format_dropdown;\n", | |
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", | |
" fig.ondownload(fig, format);\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_resize = function (fig, msg) {\n", | |
" var size = msg['size'];\n", | |
" if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", | |
" fig._resize_canvas(size[0], size[1], msg['forward']);\n", | |
" fig.send_message('refresh', {});\n", | |
" }\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", | |
" var x0 = msg['x0'] / mpl.ratio;\n", | |
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", | |
" var x1 = msg['x1'] / mpl.ratio;\n", | |
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", | |
" x0 = Math.floor(x0) + 0.5;\n", | |
" y0 = Math.floor(y0) + 0.5;\n", | |
" x1 = Math.floor(x1) + 0.5;\n", | |
" y1 = Math.floor(y1) + 0.5;\n", | |
" var min_x = Math.min(x0, x1);\n", | |
" var min_y = Math.min(y0, y1);\n", | |
" var width = Math.abs(x1 - x0);\n", | |
" var height = Math.abs(y1 - y0);\n", | |
"\n", | |
" fig.rubberband_context.clearRect(\n", | |
" 0,\n", | |
" 0,\n", | |
" fig.canvas.width / mpl.ratio,\n", | |
" fig.canvas.height / mpl.ratio\n", | |
" );\n", | |
"\n", | |
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", | |
" // Updates the figure title.\n", | |
" fig.header.textContent = msg['label'];\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", | |
" var cursor = msg['cursor'];\n", | |
" switch (cursor) {\n", | |
" case 0:\n", | |
" cursor = 'pointer';\n", | |
" break;\n", | |
" case 1:\n", | |
" cursor = 'default';\n", | |
" break;\n", | |
" case 2:\n", | |
" cursor = 'crosshair';\n", | |
" break;\n", | |
" case 3:\n", | |
" cursor = 'move';\n", | |
" break;\n", | |
" }\n", | |
" fig.rubberband_canvas.style.cursor = cursor;\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_message = function (fig, msg) {\n", | |
" fig.message.textContent = msg['message'];\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", | |
" // Request the server to send over a new figure.\n", | |
" fig.send_draw_message();\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", | |
" fig.image_mode = msg['mode'];\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", | |
" for (var key in msg) {\n", | |
" if (!(key in fig.buttons)) {\n", | |
" continue;\n", | |
" }\n", | |
" fig.buttons[key].disabled = !msg[key];\n", | |
" fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", | |
" }\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", | |
" if (msg['mode'] === 'PAN') {\n", | |
" fig.buttons['Pan'].classList.add('active');\n", | |
" fig.buttons['Zoom'].classList.remove('active');\n", | |
" } else if (msg['mode'] === 'ZOOM') {\n", | |
" fig.buttons['Pan'].classList.remove('active');\n", | |
" fig.buttons['Zoom'].classList.add('active');\n", | |
" } else {\n", | |
" fig.buttons['Pan'].classList.remove('active');\n", | |
" fig.buttons['Zoom'].classList.remove('active');\n", | |
" }\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.updated_canvas_event = function () {\n", | |
" // Called whenever the canvas gets updated.\n", | |
" this.send_message('ack', {});\n", | |
"};\n", | |
"\n", | |
"// A function to construct a web socket function for onmessage handling.\n", | |
"// Called in the figure constructor.\n", | |
"mpl.figure.prototype._make_on_message_function = function (fig) {\n", | |
" return function socket_on_message(evt) {\n", | |
" if (evt.data instanceof Blob) {\n", | |
" /* FIXME: We get \"Resource interpreted as Image but\n", | |
" * transferred with MIME type text/plain:\" errors on\n", | |
" * Chrome. But how to set the MIME type? It doesn't seem\n", | |
" * to be part of the websocket stream */\n", | |
" evt.data.type = 'image/png';\n", | |
"\n", | |
" /* Free the memory for the previous frames */\n", | |
" if (fig.imageObj.src) {\n", | |
" (window.URL || window.webkitURL).revokeObjectURL(\n", | |
" fig.imageObj.src\n", | |
" );\n", | |
" }\n", | |
"\n", | |
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", | |
" evt.data\n", | |
" );\n", | |
" fig.updated_canvas_event();\n", | |
" fig.waiting = false;\n", | |
" return;\n", | |
" } else if (\n", | |
" typeof evt.data === 'string' &&\n", | |
" evt.data.slice(0, 21) === 'data:image/png;base64'\n", | |
" ) {\n", | |
" fig.imageObj.src = evt.data;\n", | |
" fig.updated_canvas_event();\n", | |
" fig.waiting = false;\n", | |
" return;\n", | |
" }\n", | |
"\n", | |
" var msg = JSON.parse(evt.data);\n", | |
" var msg_type = msg['type'];\n", | |
"\n", | |
" // Call the \"handle_{type}\" callback, which takes\n", | |
" // the figure and JSON message as its only arguments.\n", | |
" try {\n", | |
" var callback = fig['handle_' + msg_type];\n", | |
" } catch (e) {\n", | |
" console.log(\n", | |
" \"No handler for the '\" + msg_type + \"' message type: \",\n", | |
" msg\n", | |
" );\n", | |
" return;\n", | |
" }\n", | |
"\n", | |
" if (callback) {\n", | |
" try {\n", | |
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", | |
" callback(fig, msg);\n", | |
" } catch (e) {\n", | |
" console.log(\n", | |
" \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", | |
" e,\n", | |
" e.stack,\n", | |
" msg\n", | |
" );\n", | |
" }\n", | |
" }\n", | |
" };\n", | |
"};\n", | |
"\n", | |
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", | |
"mpl.findpos = function (e) {\n", | |
" //this section is from http://www.quirksmode.org/js/events_properties.html\n", | |
" var targ;\n", | |
" if (!e) {\n", | |
" e = window.event;\n", | |
" }\n", | |
" if (e.target) {\n", | |
" targ = e.target;\n", | |
" } else if (e.srcElement) {\n", | |
" targ = e.srcElement;\n", | |
" }\n", | |
" if (targ.nodeType === 3) {\n", | |
" // defeat Safari bug\n", | |
" targ = targ.parentNode;\n", | |
" }\n", | |
"\n", | |
" // pageX,Y are the mouse positions relative to the document\n", | |
" var boundingRect = targ.getBoundingClientRect();\n", | |
" var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", | |
" var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", | |
"\n", | |
" return { x: x, y: y };\n", | |
"};\n", | |
"\n", | |
"/*\n", | |
" * return a copy of an object with only non-object keys\n", | |
" * we need this to avoid circular references\n", | |
" * http://stackoverflow.com/a/24161582/3208463\n", | |
" */\n", | |
"function simpleKeys(original) {\n", | |
" return Object.keys(original).reduce(function (obj, key) {\n", | |
" if (typeof original[key] !== 'object') {\n", | |
" obj[key] = original[key];\n", | |
" }\n", | |
" return obj;\n", | |
" }, {});\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.mouse_event = function (event, name) {\n", | |
" var canvas_pos = mpl.findpos(event);\n", | |
"\n", | |
" if (name === 'button_press') {\n", | |
" this.canvas.focus();\n", | |
" this.canvas_div.focus();\n", | |
" }\n", | |
"\n", | |
" var x = canvas_pos.x * mpl.ratio;\n", | |
" var y = canvas_pos.y * mpl.ratio;\n", | |
"\n", | |
" this.send_message(name, {\n", | |
" x: x,\n", | |
" y: y,\n", | |
" button: event.button,\n", | |
" step: event.step,\n", | |
" guiEvent: simpleKeys(event),\n", | |
" });\n", | |
"\n", | |
" /* This prevents the web browser from automatically changing to\n", | |
" * the text insertion cursor when the button is pressed. We want\n", | |
" * to control all of the cursor setting manually through the\n", | |
" * 'cursor' event from matplotlib */\n", | |
" event.preventDefault();\n", | |
" return false;\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", | |
" // Handle any extra behaviour associated with a key event\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.key_event = function (event, name) {\n", | |
" // Prevent repeat events\n", | |
" if (name === 'key_press') {\n", | |
" if (event.which === this._key) {\n", | |
" return;\n", | |
" } else {\n", | |
" this._key = event.which;\n", | |
" }\n", | |
" }\n", | |
" if (name === 'key_release') {\n", | |
" this._key = null;\n", | |
" }\n", | |
"\n", | |
" var value = '';\n", | |
" if (event.ctrlKey && event.which !== 17) {\n", | |
" value += 'ctrl+';\n", | |
" }\n", | |
" if (event.altKey && event.which !== 18) {\n", | |
" value += 'alt+';\n", | |
" }\n", | |
" if (event.shiftKey && event.which !== 16) {\n", | |
" value += 'shift+';\n", | |
" }\n", | |
"\n", | |
" value += 'k';\n", | |
" value += event.which.toString();\n", | |
"\n", | |
" this._key_event_extra(event, name);\n", | |
"\n", | |
" this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", | |
" return false;\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", | |
" if (name === 'download') {\n", | |
" this.handle_save(this, null);\n", | |
" } else {\n", | |
" this.send_message('toolbar_button', { name: name });\n", | |
" }\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", | |
" this.message.textContent = tooltip;\n", | |
"};\n", | |
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", | |
"\n", | |
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", | |
"\n", | |
"mpl.default_extension = \"png\";/* global mpl */\n", | |
"\n", | |
"var comm_websocket_adapter = function (comm) {\n", | |
" // Create a \"websocket\"-like object which calls the given IPython comm\n", | |
" // object with the appropriate methods. Currently this is a non binary\n", | |
" // socket, so there is still some room for performance tuning.\n", | |
" var ws = {};\n", | |
"\n", | |
" ws.close = function () {\n", | |
" comm.close();\n", | |
" };\n", | |
" ws.send = function (m) {\n", | |
" //console.log('sending', m);\n", | |
" comm.send(m);\n", | |
" };\n", | |
" // Register the callback with on_msg.\n", | |
" comm.on_msg(function (msg) {\n", | |
" //console.log('receiving', msg['content']['data'], msg);\n", | |
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n", | |
" ws.onmessage(msg['content']['data']);\n", | |
" });\n", | |
" return ws;\n", | |
"};\n", | |
"\n", | |
"mpl.mpl_figure_comm = function (comm, msg) {\n", | |
" // This is the function which gets called when the mpl process\n", | |
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n", | |
"\n", | |
" var id = msg.content.data.id;\n", | |
" // Get hold of the div created by the display call when the Comm\n", | |
" // socket was opened in Python.\n", | |
" var element = document.getElementById(id);\n", | |
" var ws_proxy = comm_websocket_adapter(comm);\n", | |
"\n", | |
" function ondownload(figure, _format) {\n", | |
" window.open(figure.canvas.toDataURL());\n", | |
" }\n", | |
"\n", | |
" var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", | |
"\n", | |
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", | |
" // web socket which is closed, not our websocket->open comm proxy.\n", | |
" ws_proxy.onopen();\n", | |
"\n", | |
" fig.parent_element = element;\n", | |
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", | |
" if (!fig.cell_info) {\n", | |
" console.error('Failed to find cell for figure', id, fig);\n", | |
" return;\n", | |
" }\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_close = function (fig, msg) {\n", | |
" var width = fig.canvas.width / mpl.ratio;\n", | |
" fig.root.removeEventListener('remove', this._remove_fig_handler);\n", | |
"\n", | |
" // Update the output cell to use the data from the current canvas.\n", | |
" fig.push_to_output();\n", | |
" var dataURL = fig.canvas.toDataURL();\n", | |
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n", | |
" // the notebook keyboard shortcuts fail.\n", | |
" IPython.keyboard_manager.enable();\n", | |
" fig.parent_element.innerHTML =\n", | |
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", | |
" fig.close_ws(fig, msg);\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.close_ws = function (fig, msg) {\n", | |
" fig.send_message('closing', msg);\n", | |
" // fig.ws.close()\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", | |
" // Turn the data on the canvas into data in the output cell.\n", | |
" var width = this.canvas.width / mpl.ratio;\n", | |
" var dataURL = this.canvas.toDataURL();\n", | |
" this.cell_info[1]['text/html'] =\n", | |
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.updated_canvas_event = function () {\n", | |
" // Tell IPython that the notebook contents must change.\n", | |
" IPython.notebook.set_dirty(true);\n", | |
" this.send_message('ack', {});\n", | |
" var fig = this;\n", | |
" // Wait a second, then push the new image to the DOM so\n", | |
" // that it is saved nicely (might be nice to debounce this).\n", | |
" setTimeout(function () {\n", | |
" fig.push_to_output();\n", | |
" }, 1000);\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype._init_toolbar = function () {\n", | |
" var fig = this;\n", | |
"\n", | |
" var toolbar = document.createElement('div');\n", | |
" toolbar.classList = 'btn-toolbar';\n", | |
" this.root.appendChild(toolbar);\n", | |
"\n", | |
" function on_click_closure(name) {\n", | |
" return function (_event) {\n", | |
" return fig.toolbar_button_onclick(name);\n", | |
" };\n", | |
" }\n", | |
"\n", | |
" function on_mouseover_closure(tooltip) {\n", | |
" return function (event) {\n", | |
" if (!event.currentTarget.disabled) {\n", | |
" return fig.toolbar_button_onmouseover(tooltip);\n", | |
" }\n", | |
" };\n", | |
" }\n", | |
"\n", | |
" fig.buttons = {};\n", | |
" var buttonGroup = document.createElement('div');\n", | |
" buttonGroup.classList = 'btn-group';\n", | |
" var button;\n", | |
" for (var toolbar_ind in mpl.toolbar_items) {\n", | |
" var name = mpl.toolbar_items[toolbar_ind][0];\n", | |
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", | |
" var image = mpl.toolbar_items[toolbar_ind][2];\n", | |
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n", | |
"\n", | |
" if (!name) {\n", | |
" /* Instead of a spacer, we start a new button group. */\n", | |
" if (buttonGroup.hasChildNodes()) {\n", | |
" toolbar.appendChild(buttonGroup);\n", | |
" }\n", | |
" buttonGroup = document.createElement('div');\n", | |
" buttonGroup.classList = 'btn-group';\n", | |
" continue;\n", | |
" }\n", | |
"\n", | |
" button = fig.buttons[name] = document.createElement('button');\n", | |
" button.classList = 'btn btn-default';\n", | |
" button.href = '#';\n", | |
" button.title = name;\n", | |
" button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", | |
" button.addEventListener('click', on_click_closure(method_name));\n", | |
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", | |
" buttonGroup.appendChild(button);\n", | |
" }\n", | |
"\n", | |
" if (buttonGroup.hasChildNodes()) {\n", | |
" toolbar.appendChild(buttonGroup);\n", | |
" }\n", | |
"\n", | |
" // Add the status bar.\n", | |
" var status_bar = document.createElement('span');\n", | |
" status_bar.classList = 'mpl-message pull-right';\n", | |
" toolbar.appendChild(status_bar);\n", | |
" this.message = status_bar;\n", | |
"\n", | |
" // Add the close button to the window.\n", | |
" var buttongrp = document.createElement('div');\n", | |
" buttongrp.classList = 'btn-group inline pull-right';\n", | |
" button = document.createElement('button');\n", | |
" button.classList = 'btn btn-mini btn-primary';\n", | |
" button.href = '#';\n", | |
" button.title = 'Stop Interaction';\n", | |
" button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", | |
" button.addEventListener('click', function (_evt) {\n", | |
" fig.handle_close(fig, {});\n", | |
" });\n", | |
" button.addEventListener(\n", | |
" 'mouseover',\n", | |
" on_mouseover_closure('Stop Interaction')\n", | |
" );\n", | |
" buttongrp.appendChild(button);\n", | |
" var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", | |
" titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype._remove_fig_handler = function () {\n", | |
" this.close_ws(this, {});\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype._root_extra_style = function (el) {\n", | |
" el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", | |
" el.addEventListener('remove', this._remove_fig_handler);\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype._canvas_extra_style = function (el) {\n", | |
" // this is important to make the div 'focusable\n", | |
" el.setAttribute('tabindex', 0);\n", | |
" // reach out to IPython and tell the keyboard manager to turn it's self\n", | |
" // off when our div gets focus\n", | |
"\n", | |
" // location in version 3\n", | |
" if (IPython.notebook.keyboard_manager) {\n", | |
" IPython.notebook.keyboard_manager.register_events(el);\n", | |
" } else {\n", | |
" // location in version 2\n", | |
" IPython.keyboard_manager.register_events(el);\n", | |
" }\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype._key_event_extra = function (event, _name) {\n", | |
" var manager = IPython.notebook.keyboard_manager;\n", | |
" if (!manager) {\n", | |
" manager = IPython.keyboard_manager;\n", | |
" }\n", | |
"\n", | |
" // Check for shift+enter\n", | |
" if (event.shiftKey && event.which === 13) {\n", | |
" this.canvas_div.blur();\n", | |
" // select the cell after this one\n", | |
" var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", | |
" IPython.notebook.select(index + 1);\n", | |
" }\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n", | |
" fig.ondownload(fig, null);\n", | |
"};\n", | |
"\n", | |
"mpl.find_output_cell = function (html_output) {\n", | |
" // Return the cell and output element which can be found *uniquely* in the notebook.\n", | |
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", | |
" // IPython event is triggered only after the cells have been serialised, which for\n", | |
" // our purposes (turning an active figure into a static one), is too late.\n", | |
" var cells = IPython.notebook.get_cells();\n", | |
" var ncells = cells.length;\n", | |
" for (var i = 0; i < ncells; i++) {\n", | |
" var cell = cells[i];\n", | |
" if (cell.cell_type === 'code') {\n", | |
" for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", | |
" var data = cell.output_area.outputs[j];\n", | |
" if (data.data) {\n", | |
" // IPython >= 3 moved mimebundle to data attribute of output\n", | |
" data = data.data;\n", | |
" }\n", | |
" if (data['text/html'] === html_output) {\n", | |
" return [cell, data, j];\n", | |
" }\n", | |
" }\n", | |
" }\n", | |
" }\n", | |
"};\n", | |
"\n", | |
"// Register the function which deals with the matplotlib target/channel.\n", | |
"// The kernel may be null if the page has been refreshed.\n", | |
"if (IPython.notebook.kernel !== null) {\n", | |
" IPython.notebook.kernel.comm_manager.register_target(\n", | |
" 'matplotlib',\n", | |
" mpl.mpl_figure_comm\n", | |
" );\n", | |
"}\n" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Javascript object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<img src=\"\" width=\"600\">" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig = plt.figure(figsize=(6, 6))\n", | |
"ax = fig.add_subplot(111, projection='3d')\n", | |
"\n", | |
"# Plot the surface\n", | |
"ax.plot_surface(xx, yy, z, color='blue', alpha=0.3)\n", | |
"\n", | |
"# Plot the 3D cloud\n", | |
"ax.scatter(*(X.T))\n", | |
"\n", | |
"# Plot the eigenvectors\n", | |
"for vec_start, vec_end in zip(vec_start_list, vec_end_list):\n", | |
" ax.plot([vec_start[0], vec_end[0]], [vec_start[1], vec_end[1]], [vec_start[2], vec_end[2]])\n", | |
" \n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "pcatest", | |
"language": "python", | |
"name": "pcatest" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.5" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment