Created
February 2, 2021 19:12
-
-
Save domvwt/8dee71dcf26a721ce42464e0809b034e to your computer and use it in GitHub Desktop.
vaex-catboost.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "vaex-catboost.ipynb", | |
"provenance": [], | |
"collapsed_sections": [], | |
"toc_visible": true, | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/domvwt/8dee71dcf26a721ce42464e0809b034e/vaex-catboost.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "ywOOu8YGu0Mj" | |
}, | |
"source": [ | |
"# Out-of-Core Gradient Boosting with Vaex and Catboost" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "mM2JrQ4VpJaY", | |
"outputId": "38cc7c04-c096-4ad0-fab2-0f3d8ab19b5a" | |
}, | |
"source": [ | |
"%%shell\r\n", | |
"echo \"Setting up environment...\"\r\n", | |
"if [ ! -e \"data/yellow_tripdata_2019-12.csv\" ]\r\n", | |
" then \r\n", | |
" echo \"...Downloading data...\" \r\n", | |
" wget -q \\\r\n", | |
" https://nyc-tlc.s3.amazonaws.com/trip+data/yellow_tripdata_2019-{10..12}.csv \\\r\n", | |
" -P data/\r\n", | |
"fi\r\n", | |
"echo \"...Installing libraries...\"\r\n", | |
"pip install -Uqq vaex catboost optuna \"ipython>=7.0.0\" &> /dev/null\r\n", | |
"echo \"Setup Complete!\"\r\n", | |
"echo \"Runtime restart may be required to load new packages.\"" | |
], | |
"execution_count": 3, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Setting up environment...\n", | |
"...Installing libraries...\n", | |
"Setup Complete!\n", | |
"Runtime restart may be required to load new packages.\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 3 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "tO6_1lOhugqt" | |
}, | |
"source": [ | |
"import gc\n", | |
"import vaex as vx\n", | |
"import vaex.ml.catboost as cb\n", | |
"\n", | |
"from pathlib import Path" | |
], | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "8Xulcfa3zyLa" | |
}, | |
"source": [ | |
"data_files = Path(\"data\").iterdir()" | |
], | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "t13hPzuV0PfH", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "2042d7f4-957f-4724-97ab-80f55646ab59" | |
}, | |
"source": [ | |
"# Vaex can read in multiple files and combine them\r\n", | |
"if not Path(\"data/taxi-data-combined.hdf5\").is_file():\r\n", | |
" for f in data_files:\r\n", | |
" df_temp = vx.from_csv(str(f), copy_index=False, convert=True)\r\n", | |
"\r\n", | |
" # Slight performance gains made by converting files and reloading as one \r\n", | |
" df00 = vx.open(\"data/*.hdf5\")\r\n", | |
" df00.export(\"data/taxi-data-combined.hdf5\")\r\n", | |
" \r\n", | |
"df00 = vx.open(\"data/taxi-data-combined.hdf5\")" | |
], | |
"execution_count": 3, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py:3343: DtypeWarning: Columns (6) have mixed types.Specify dtype option on import or set low_memory=False.\n", | |
" exec(code_obj, self.user_global_ns, self.user_ns)\n" | |
], | |
"name": "stderr" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 885 | |
}, | |
"id": "4N3ft6K2l_CK", | |
"outputId": "1cdc67bb-8962-4000-f176-1f3d80bb0f3f" | |
}, | |
"source": [ | |
"# Very fast summary\r\n", | |
"df00.info()" | |
], | |
"execution_count": 4, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/html": [ | |
"<style>.vaex-description pre {\n", | |
" max-width : 450px;\n", | |
" white-space : nowrap;\n", | |
" overflow : hidden;\n", | |
" text-overflow: ellipsis;\n", | |
" }\n", | |
"\n", | |
" .vex-description pre:hover {\n", | |
" max-width : initial;\n", | |
" white-space: pre;\n", | |
" }</style>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/html": [ | |
"<div><h2>taxi-data-combined</h2> <b>rows</b>: 20,988,319</div><div><b>path</b>: <i>/content/data/taxi-data-combined.hdf5</i></div><div><b>Description</b>: file exported by vaex, by user root, on date 2021-02-02 19:11:58.646962, from source /has/no/path/arrays-/has/no/path/arrays-/has/no/path/arrays</div><h2>Columns:</h2><table class='table-striped'><thead><tr><th>column</th><th>type</th><th>unit</th><th>description</th><th>expression</th></tr></thead><tr><td>VendorID</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>tpep_pickup_datetime</td><td>str</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>tpep_dropoff_datetime</td><td>str</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>passenger_count</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>trip_distance</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>RatecodeID</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>store_and_fwd_flag</td><td>str</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>PULocationID</td><td>int64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>DOLocationID</td><td>int64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>payment_type</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>fare_amount</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>extra</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>mta_tax</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>tip_amount</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>tolls_amount</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>improvement_surcharge</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>total_amount</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr><tr><td>congestion_surcharge</td><td>float64</td><td></td><td ><pre></pre></td><td></td></tr></table><h2>Data:</h2><table>\n", | |
"<thead>\n", | |
"<tr><th># </th><th>VendorID </th><th>tpep_pickup_datetime </th><th>tpep_dropoff_datetime </th><th>passenger_count </th><th>trip_distance </th><th>RatecodeID </th><th>store_and_fwd_flag </th><th>PULocationID </th><th>DOLocationID </th><th>payment_type </th><th>fare_amount </th><th>extra </th><th>mta_tax </th><th>tip_amount </th><th>tolls_amount </th><th>improvement_surcharge </th><th>total_amount </th><th>congestion_surcharge </th></tr>\n", | |
"</thead>\n", | |
"<tbody>\n", | |
"<tr><td><i style='opacity: 0.6'>0</i> </td><td>1.0 </td><td>2019-10-01 00:19:55 </td><td>2019-10-01 00:23:57 </td><td>1.0 </td><td>0.4 </td><td>1.0 </td><td>N </td><td>48 </td><td>163 </td><td>2.0 </td><td>4.5 </td><td>3.0 </td><td>0.5 </td><td>0.0 </td><td>0.0 </td><td>0.3 </td><td>8.3 </td><td>2.5 </td></tr>\n", | |
"<tr><td><i style='opacity: 0.6'>1</i> </td><td>1.0 </td><td>2019-10-01 00:40:19 </td><td>2019-10-01 00:55:17 </td><td>2.0 </td><td>4.3 </td><td>1.0 </td><td>N </td><td>144 </td><td>141 </td><td>1.0 </td><td>14.5 </td><td>3.0 </td><td>0.5 </td><td>2.0 </td><td>0.0 </td><td>0.3 </td><td>20.3 </td><td>2.5 </td></tr>\n", | |
"<tr><td><i style='opacity: 0.6'>2</i> </td><td>1.0 </td><td>2019-10-01 00:06:52 </td><td>2019-10-01 00:21:23 </td><td>1.0 </td><td>5.0 </td><td>1.0 </td><td>N </td><td>137 </td><td>80 </td><td>1.0 </td><td>17.0 </td><td>3.0 </td><td>0.5 </td><td>5.2 </td><td>0.0 </td><td>0.3 </td><td>26.0 </td><td>2.5 </td></tr>\n", | |
"<tr><td><i style='opacity: 0.6'>3</i> </td><td>2.0 </td><td>2019-10-01 00:36:08 </td><td>2019-10-01 00:36:15 </td><td>1.0 </td><td>0.0 </td><td>1.0 </td><td>N </td><td>25 </td><td>25 </td><td>4.0 </td><td>-2.5 </td><td>-0.5 </td><td>-0.5 </td><td>0.0 </td><td>0.0 </td><td>-0.3 </td><td>-3.8 </td><td>0.0 </td></tr>\n", | |
"<tr><td><i style='opacity: 0.6'>4</i> </td><td>2.0 </td><td>2019-10-01 00:36:08 </td><td>2019-10-01 00:36:15 </td><td>1.0 </td><td>0.0 </td><td>1.0 </td><td>N </td><td>25 </td><td>25 </td><td>2.0 </td><td>2.5 </td><td>0.5 </td><td>0.5 </td><td>0.0 </td><td>0.0 </td><td>0.3 </td><td>3.8 </td><td>0.0 </td></tr>\n", | |
"<tr><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td><td>... </td></tr>\n", | |
"<tr><td><i style='opacity: 0.6'>20,988,314</i></td><td>nan </td><td>2019-12-31 00:07:00 </td><td>2019-12-31 00:46:00 </td><td>nan </td><td>12.78 </td><td>nan </td><td>None </td><td>230 </td><td>72 </td><td>nan </td><td>32.32 </td><td>2.75 </td><td>0.5 </td><td>0.0 </td><td>6.12 </td><td>0.3 </td><td>41.99 </td><td>0.0 </td></tr>\n", | |
"<tr><td><i style='opacity: 0.6'>20,988,315</i></td><td>nan </td><td>2019-12-31 00:20:00 </td><td>2019-12-31 00:47:00 </td><td>nan </td><td>18.52 </td><td>nan </td><td>None </td><td>219 </td><td>32 </td><td>nan </td><td>51.63 </td><td>2.75 </td><td>0.5 </td><td>0.0 </td><td>6.12 </td><td>0.3 </td><td>61.3 </td><td>0.0 </td></tr>\n", | |
"<tr><td><i style='opacity: 0.6'>20,988,316</i></td><td>nan </td><td>2019-12-31 00:50:00 </td><td>2019-12-31 01:21:00 </td><td>nan </td><td>13.13 </td><td>nan </td><td>None </td><td>161 </td><td>76 </td><td>nan </td><td>38.02 </td><td>2.75 </td><td>0.5 </td><td>0.0 </td><td>6.12 </td><td>0.3 </td><td>47.69 </td><td>0.0 </td></tr>\n", | |
"<tr><td><i style='opacity: 0.6'>20,988,317</i></td><td>nan </td><td>2019-12-31 00:38:19 </td><td>2019-12-31 01:19:37 </td><td>nan </td><td>14.51 </td><td>nan </td><td>None </td><td>230 </td><td>21 </td><td>nan </td><td>41.86 </td><td>2.75 </td><td>0.0 </td><td>0.0 </td><td>6.12 </td><td>0.3 </td><td>51.03 </td><td>0.0 </td></tr>\n", | |
"<tr><td><i style='opacity: 0.6'>20,988,318</i></td><td>nan </td><td>2019-12-31 00:21:00 </td><td>2019-12-31 00:56:00 </td><td>nan </td><td>-17.16 </td><td>nan </td><td>None </td><td>193 </td><td>219 </td><td>nan </td><td>44.62 </td><td>2.75 </td><td>0.5 </td><td>0.0 </td><td>0.0 </td><td>0.3 </td><td>48.17 </td><td>0.0 </td></tr>\n", | |
"</tbody>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "3TiEihMuvtxi" | |
}, | |
"source": [ | |
"# Efficient shuffle and train / test split\r\n", | |
"df_train, df_test = df00.sample(frac=1).ml.train_test_split(verbose=False)" | |
], | |
"execution_count": 5, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "-7vln7ogxvwJ" | |
}, | |
"source": [ | |
"target = \"tip_amount\"\r\n", | |
"features = [x for x in df00.get_column_names() if x != target]" | |
], | |
"execution_count": 6, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "co7rL9rJwIM6" | |
}, | |
"source": [ | |
"# Collect garbage because Python leaves trash everywhere\r\n", | |
"gc.collect()\r\n", | |
"\r\n", | |
"# Catboost model parameters\r\n", | |
"cbm_params = dict(\r\n", | |
" loss_function=\"MAE\",\r\n", | |
" early_stopping_rounds=10,\r\n", | |
" verbose=10,\r\n", | |
" used_ram_limit=\"8gb\"\r\n", | |
")\r\n", | |
"\r\n", | |
"# Vaex wrapper parameters\r\n", | |
"vcb_params = dict(\r\n", | |
" features=features,\r\n", | |
" target=target,\r\n", | |
" params=cbm_params\r\n", | |
") \r\n", | |
"\r\n", | |
"cbm = cb.CatBoostModel(**vcb_params)" | |
], | |
"execution_count": 7, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "TMO2QjHewgC5", | |
"outputId": "0e2242ef-4e2d-47ef-b2ba-874e957275e1" | |
}, | |
"source": [ | |
"# ~1.3hrs for 1000 iterations over 21 million records (on CPU only!)\r\n", | |
"cbm.fit(df_train, evals=[df_test])" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"0:\tlearn: 1.6928684\ttest: 1.7053601\tbest: 1.7053601 (0)\ttotal: 7.29s\tremaining: 2h 1m 23s\n", | |
"10:\tlearn: 1.4139167\ttest: 1.4291894\tbest: 1.4291894 (10)\ttotal: 1m 12s\tremaining: 1h 48m 22s\n", | |
"20:\tlearn: 1.2024777\ttest: 1.2196115\tbest: 1.2196115 (20)\ttotal: 2m 16s\tremaining: 1h 45m 53s\n", | |
"30:\tlearn: 1.0537415\ttest: 1.0723423\tbest: 1.0723423 (30)\ttotal: 3m 15s\tremaining: 1h 42m 4s\n", | |
"40:\tlearn: 0.9571214\ttest: 0.9773547\tbest: 0.9773547 (40)\ttotal: 4m 15s\tremaining: 1h 39m 46s\n", | |
"50:\tlearn: 0.8716443\ttest: 0.8923921\tbest: 0.8923921 (50)\ttotal: 5m 14s\tremaining: 1h 37m 37s\n", | |
"60:\tlearn: 0.8136729\ttest: 0.8348873\tbest: 0.8348873 (60)\ttotal: 6m 16s\tremaining: 1h 36m 33s\n", | |
"70:\tlearn: 0.7546232\ttest: 0.7754324\tbest: 0.7754324 (70)\ttotal: 7m 13s\tremaining: 1h 34m 32s\n", | |
"80:\tlearn: 0.7132797\ttest: 0.7339606\tbest: 0.7339606 (80)\ttotal: 8m 9s\tremaining: 1h 32m 31s\n", | |
"90:\tlearn: 0.6653240\ttest: 0.6850152\tbest: 0.6850152 (90)\ttotal: 9m 3s\tremaining: 1h 30m 28s\n", | |
"100:\tlearn: 0.6309959\ttest: 0.6501066\tbest: 0.6501066 (100)\ttotal: 9m 55s\tremaining: 1h 28m 20s\n", | |
"110:\tlearn: 0.5908915\ttest: 0.6087920\tbest: 0.6087920 (110)\ttotal: 10m 46s\tremaining: 1h 26m 15s\n", | |
"120:\tlearn: 0.5475404\ttest: 0.5639261\tbest: 0.5639261 (120)\ttotal: 11m 33s\tremaining: 1h 23m 59s\n", | |
"130:\tlearn: 0.5162067\ttest: 0.5315280\tbest: 0.5315280 (130)\ttotal: 12m 20s\tremaining: 1h 21m 54s\n", | |
"140:\tlearn: 0.4870182\ttest: 0.5014272\tbest: 0.5014272 (140)\ttotal: 13m 8s\tremaining: 1h 20m 5s\n", | |
"150:\tlearn: 0.4645559\ttest: 0.4782631\tbest: 0.4782631 (150)\ttotal: 13m 56s\tremaining: 1h 18m 21s\n", | |
"160:\tlearn: 0.4503989\ttest: 0.4636278\tbest: 0.4636278 (160)\ttotal: 14m 44s\tremaining: 1h 16m 48s\n", | |
"170:\tlearn: 0.4363300\ttest: 0.4491676\tbest: 0.4491676 (170)\ttotal: 15m 31s\tremaining: 1h 15m 18s\n", | |
"180:\tlearn: 0.4284812\ttest: 0.4410726\tbest: 0.4410726 (180)\ttotal: 16m 19s\tremaining: 1h 13m 51s\n", | |
"190:\tlearn: 0.4223071\ttest: 0.4347403\tbest: 0.4347403 (190)\ttotal: 17m 5s\tremaining: 1h 12m 21s\n", | |
"200:\tlearn: 0.4151820\ttest: 0.4274432\tbest: 0.4274432 (200)\ttotal: 17m 51s\tremaining: 1h 10m 59s\n", | |
"210:\tlearn: 0.4102676\ttest: 0.4223745\tbest: 0.4223745 (210)\ttotal: 18m 39s\tremaining: 1h 9m 47s\n", | |
"220:\tlearn: 0.4066448\ttest: 0.4186316\tbest: 0.4186316 (220)\ttotal: 19m 27s\tremaining: 1h 8m 35s\n", | |
"230:\tlearn: 0.4049713\ttest: 0.4169115\tbest: 0.4169115 (230)\ttotal: 20m 17s\tremaining: 1h 7m 33s\n", | |
"240:\tlearn: 0.4031656\ttest: 0.4150495\tbest: 0.4150495 (240)\ttotal: 21m 5s\tremaining: 1h 6m 25s\n", | |
"250:\tlearn: 0.4019513\ttest: 0.4138107\tbest: 0.4138107 (250)\ttotal: 21m 53s\tremaining: 1h 5m 18s\n", | |
"260:\tlearn: 0.3997633\ttest: 0.4115344\tbest: 0.4115344 (260)\ttotal: 22m 40s\tremaining: 1h 4m 12s\n", | |
"270:\tlearn: 0.3987803\ttest: 0.4105182\tbest: 0.4105182 (270)\ttotal: 23m 28s\tremaining: 1h 3m 9s\n", | |
"280:\tlearn: 0.3973583\ttest: 0.4090556\tbest: 0.4090556 (280)\ttotal: 24m 17s\tremaining: 1h 2m 10s\n", | |
"290:\tlearn: 0.3945904\ttest: 0.4062663\tbest: 0.4062663 (290)\ttotal: 25m 6s\tremaining: 1h 1m 9s\n", | |
"300:\tlearn: 0.3928638\ttest: 0.4044957\tbest: 0.4044957 (300)\ttotal: 25m 54s\tremaining: 1h 9s\n", | |
"310:\tlearn: 0.3915851\ttest: 0.4031730\tbest: 0.4031730 (310)\ttotal: 26m 42s\tremaining: 59m 9s\n", | |
"320:\tlearn: 0.3885112\ttest: 0.4001099\tbest: 0.4001099 (320)\ttotal: 27m 31s\tremaining: 58m 13s\n", | |
"330:\tlearn: 0.3875525\ttest: 0.3991172\tbest: 0.3991172 (330)\ttotal: 28m 17s\tremaining: 57m 11s\n", | |
"340:\tlearn: 0.3864145\ttest: 0.3979384\tbest: 0.3979384 (340)\ttotal: 29m 3s\tremaining: 56m 10s\n", | |
"350:\tlearn: 0.3845533\ttest: 0.3960163\tbest: 0.3960163 (350)\ttotal: 29m 54s\tremaining: 55m 17s\n", | |
"360:\tlearn: 0.3825845\ttest: 0.3939411\tbest: 0.3939411 (360)\ttotal: 30m 44s\tremaining: 54m 24s\n", | |
"370:\tlearn: 0.3806977\ttest: 0.3919765\tbest: 0.3919765 (370)\ttotal: 31m 32s\tremaining: 53m 28s\n", | |
"380:\tlearn: 0.3789194\ttest: 0.3901907\tbest: 0.3901907 (380)\ttotal: 32m 22s\tremaining: 52m 36s\n", | |
"390:\tlearn: 0.3776134\ttest: 0.3888039\tbest: 0.3888039 (390)\ttotal: 33m 13s\tremaining: 51m 45s\n", | |
"400:\tlearn: 0.3757225\ttest: 0.3868742\tbest: 0.3868742 (400)\ttotal: 34m 3s\tremaining: 50m 51s\n", | |
"410:\tlearn: 0.3744337\ttest: 0.3855392\tbest: 0.3855392 (410)\ttotal: 34m 54s\tremaining: 50m 1s\n", | |
"420:\tlearn: 0.3731948\ttest: 0.3842706\tbest: 0.3842706 (420)\ttotal: 35m 45s\tremaining: 49m 10s\n", | |
"430:\tlearn: 0.3720340\ttest: 0.3830637\tbest: 0.3830637 (430)\ttotal: 36m 35s\tremaining: 48m 18s\n", | |
"440:\tlearn: 0.3712737\ttest: 0.3822671\tbest: 0.3822671 (440)\ttotal: 37m 25s\tremaining: 47m 26s\n", | |
"450:\tlearn: 0.3693821\ttest: 0.3803382\tbest: 0.3803382 (450)\ttotal: 38m 15s\tremaining: 46m 33s\n", | |
"460:\tlearn: 0.3670183\ttest: 0.3778983\tbest: 0.3778983 (460)\ttotal: 39m 3s\tremaining: 45m 40s\n", | |
"470:\tlearn: 0.3657383\ttest: 0.3765788\tbest: 0.3765788 (470)\ttotal: 39m 57s\tremaining: 44m 53s\n", | |
"480:\tlearn: 0.3642693\ttest: 0.3750727\tbest: 0.3750727 (480)\ttotal: 40m 49s\tremaining: 44m 2s\n", | |
"490:\tlearn: 0.3633873\ttest: 0.3741619\tbest: 0.3741619 (490)\ttotal: 41m 40s\tremaining: 43m 11s\n", | |
"500:\tlearn: 0.3615285\ttest: 0.3722460\tbest: 0.3722460 (500)\ttotal: 42m 31s\tremaining: 42m 21s\n", | |
"510:\tlearn: 0.3606710\ttest: 0.3713726\tbest: 0.3713726 (510)\ttotal: 43m 24s\tremaining: 41m 31s\n", | |
"520:\tlearn: 0.3596970\ttest: 0.3703828\tbest: 0.3703828 (520)\ttotal: 44m 17s\tremaining: 40m 42s\n", | |
"530:\tlearn: 0.3592577\ttest: 0.3699641\tbest: 0.3699641 (530)\ttotal: 45m 5s\tremaining: 39m 49s\n", | |
"540:\tlearn: 0.3576823\ttest: 0.3683441\tbest: 0.3683441 (540)\ttotal: 45m 53s\tremaining: 38m 56s\n", | |
"550:\tlearn: 0.3569612\ttest: 0.3676098\tbest: 0.3676098 (550)\ttotal: 46m 41s\tremaining: 38m 2s\n", | |
"560:\tlearn: 0.3561434\ttest: 0.3667715\tbest: 0.3667715 (560)\ttotal: 47m 29s\tremaining: 37m 9s\n", | |
"570:\tlearn: 0.3553208\ttest: 0.3659301\tbest: 0.3659301 (570)\ttotal: 48m 17s\tremaining: 36m 16s\n", | |
"580:\tlearn: 0.3550750\ttest: 0.3656863\tbest: 0.3656863 (580)\ttotal: 49m 4s\tremaining: 35m 23s\n", | |
"590:\tlearn: 0.3546644\ttest: 0.3652726\tbest: 0.3652726 (590)\ttotal: 49m 50s\tremaining: 34m 29s\n", | |
"600:\tlearn: 0.3539238\ttest: 0.3645131\tbest: 0.3645131 (600)\ttotal: 50m 37s\tremaining: 33m 36s\n", | |
"610:\tlearn: 0.3532087\ttest: 0.3637667\tbest: 0.3637667 (610)\ttotal: 51m 23s\tremaining: 32m 43s\n", | |
"620:\tlearn: 0.3530105\ttest: 0.3635677\tbest: 0.3635677 (620)\ttotal: 52m 10s\tremaining: 31m 50s\n", | |
"630:\tlearn: 0.3524065\ttest: 0.3629561\tbest: 0.3629561 (630)\ttotal: 52m 59s\tremaining: 30m 59s\n", | |
"640:\tlearn: 0.3517995\ttest: 0.3623343\tbest: 0.3623343 (640)\ttotal: 53m 47s\tremaining: 30m 7s\n", | |
"650:\tlearn: 0.3515637\ttest: 0.3621173\tbest: 0.3621173 (650)\ttotal: 54m 37s\tremaining: 29m 17s\n", | |
"660:\tlearn: 0.3512135\ttest: 0.3617793\tbest: 0.3617793 (660)\ttotal: 55m 26s\tremaining: 28m 26s\n", | |
"670:\tlearn: 0.3509650\ttest: 0.3615207\tbest: 0.3615207 (670)\ttotal: 56m 16s\tremaining: 27m 35s\n", | |
"680:\tlearn: 0.3503143\ttest: 0.3608640\tbest: 0.3608640 (680)\ttotal: 57m 3s\tremaining: 26m 43s\n", | |
"690:\tlearn: 0.3470166\ttest: 0.3575298\tbest: 0.3575298 (690)\ttotal: 57m 49s\tremaining: 25m 51s\n", | |
"700:\tlearn: 0.3454248\ttest: 0.3559151\tbest: 0.3559151 (700)\ttotal: 58m 37s\tremaining: 25m\n", | |
"710:\tlearn: 0.3442789\ttest: 0.3547381\tbest: 0.3547381 (710)\ttotal: 59m 25s\tremaining: 24m 9s\n", | |
"720:\tlearn: 0.3432498\ttest: 0.3536738\tbest: 0.3536738 (720)\ttotal: 1h 13s\tremaining: 23m 18s\n", | |
"730:\tlearn: 0.3424126\ttest: 0.3528033\tbest: 0.3528033 (730)\ttotal: 1h 1m 5s\tremaining: 22m 28s\n", | |
"740:\tlearn: 0.3422675\ttest: 0.3526594\tbest: 0.3526594 (740)\ttotal: 1h 1m 53s\tremaining: 21m 37s\n", | |
"750:\tlearn: 0.3420059\ttest: 0.3523926\tbest: 0.3523926 (750)\ttotal: 1h 2m 40s\tremaining: 20m 46s\n", | |
"760:\tlearn: 0.3418179\ttest: 0.3522006\tbest: 0.3522006 (760)\ttotal: 1h 3m 28s\tremaining: 19m 55s\n", | |
"770:\tlearn: 0.3410647\ttest: 0.3514332\tbest: 0.3514332 (770)\ttotal: 1h 4m 13s\tremaining: 19m 4s\n", | |
"780:\tlearn: 0.3403482\ttest: 0.3506930\tbest: 0.3506930 (780)\ttotal: 1h 4m 59s\tremaining: 18m 13s\n", | |
"790:\tlearn: 0.3399770\ttest: 0.3502981\tbest: 0.3502981 (790)\ttotal: 1h 5m 47s\tremaining: 17m 22s\n", | |
"800:\tlearn: 0.3389604\ttest: 0.3492594\tbest: 0.3492594 (800)\ttotal: 1h 6m 35s\tremaining: 16m 32s\n", | |
"810:\tlearn: 0.3384936\ttest: 0.3487687\tbest: 0.3487687 (810)\ttotal: 1h 7m 21s\tremaining: 15m 41s\n", | |
"820:\tlearn: 0.3383249\ttest: 0.3485931\tbest: 0.3485931 (820)\ttotal: 1h 8m 7s\tremaining: 14m 51s\n", | |
"830:\tlearn: 0.3381256\ttest: 0.3483885\tbest: 0.3483885 (830)\ttotal: 1h 8m 53s\tremaining: 14m\n", | |
"840:\tlearn: 0.3378507\ttest: 0.3481054\tbest: 0.3481054 (840)\ttotal: 1h 9m 38s\tremaining: 13m 10s\n", | |
"850:\tlearn: 0.3376397\ttest: 0.3478904\tbest: 0.3478904 (850)\ttotal: 1h 10m 24s\tremaining: 12m 19s\n", | |
"860:\tlearn: 0.3374103\ttest: 0.3476592\tbest: 0.3476592 (860)\ttotal: 1h 11m 11s\tremaining: 11m 29s\n", | |
"870:\tlearn: 0.3370881\ttest: 0.3473417\tbest: 0.3473417 (870)\ttotal: 1h 11m 56s\tremaining: 10m 39s\n", | |
"880:\tlearn: 0.3367286\ttest: 0.3469834\tbest: 0.3469834 (880)\ttotal: 1h 12m 42s\tremaining: 9m 49s\n", | |
"890:\tlearn: 0.3361878\ttest: 0.3464304\tbest: 0.3464304 (890)\ttotal: 1h 13m 28s\tremaining: 8m 59s\n", | |
"900:\tlearn: 0.3361126\ttest: 0.3463604\tbest: 0.3463604 (900)\ttotal: 1h 14m 13s\tremaining: 8m 9s\n", | |
"910:\tlearn: 0.3357000\ttest: 0.3459066\tbest: 0.3459066 (910)\ttotal: 1h 15m\tremaining: 7m 19s\n", | |
"920:\tlearn: 0.3354891\ttest: 0.3456804\tbest: 0.3456804 (920)\ttotal: 1h 15m 47s\tremaining: 6m 30s\n", | |
"930:\tlearn: 0.3353045\ttest: 0.3454820\tbest: 0.3454820 (930)\ttotal: 1h 16m 34s\tremaining: 5m 40s\n", | |
"940:\tlearn: 0.3350048\ttest: 0.3451632\tbest: 0.3451632 (940)\ttotal: 1h 17m 21s\tremaining: 4m 50s\n", | |
"950:\tlearn: 0.3348775\ttest: 0.3450330\tbest: 0.3450330 (950)\ttotal: 1h 18m 8s\tremaining: 4m 1s\n", | |
"960:\tlearn: 0.3348215\ttest: 0.3449749\tbest: 0.3449749 (960)\ttotal: 1h 18m 54s\tremaining: 3m 12s\n", | |
"970:\tlearn: 0.3346815\ttest: 0.3448349\tbest: 0.3448349 (970)\ttotal: 1h 19m 40s\tremaining: 2m 22s\n", | |
"980:\tlearn: 0.3346708\ttest: 0.3448275\tbest: 0.3448275 (980)\ttotal: 1h 20m 26s\tremaining: 1m 33s\n", | |
"990:\tlearn: 0.3346314\ttest: 0.3447902\tbest: 0.3447902 (990)\ttotal: 1h 21m 12s\tremaining: 44.2s\n", | |
"999:\tlearn: 0.3345737\ttest: 0.3447316\tbest: 0.3447316 (999)\ttotal: 1h 21m 54s\tremaining: 0us\n", | |
"\n", | |
"bestTest = 0.3447316114\n", | |
"bestIteration = 999\n", | |
"\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "M0RmUPCUzNhP" | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment