-
-
Save dongso/43b1abdf53dbe63a04a6cf56113b61ad to your computer and use it in GitHub Desktop.
Load a TensorFlow graph in C++
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
==============================================================================*/ | |
#include <cstdio> | |
#include <functional> | |
#include <string> | |
#include <vector> | |
#include "tensorflow/cc/ops/standard_ops.h" | |
#include "tensorflow/core/framework/graph.pb.h" | |
#include "tensorflow/core/framework/tensor.h" | |
#include "tensorflow/core/graph/default_device.h" | |
#include "tensorflow/core/graph/graph_def_builder.h" | |
#include "tensorflow/core/lib/core/threadpool.h" | |
#include "tensorflow/core/lib/strings/stringprintf.h" | |
#include "tensorflow/core/platform/init_main.h" | |
#include "tensorflow/core/platform/logging.h" | |
#include "tensorflow/core/platform/types.h" | |
#include "tensorflow/core/public/session.h" | |
using tensorflow::string; | |
using tensorflow::int32; | |
namespace tensorflow | |
{ | |
namespace example | |
{ | |
/** | |
Load the graph from checkpoint and graph definition files. | |
Parameters: | |
model_path path to the graph definition file | |
checkpoint_name root checkpoint name. That is, if all | |
checkpoint files are called | |
"models/model_final.x", this should be | |
"models/model_final". | |
filename_tensor_name provided by the Python script. Probably | |
something like "save/Const". Strip any ":0" | |
off the end. | |
restore_op_name provided by the Python script. Probably | |
something like "save/restore_all". | |
session a TensorFlow session | |
scope a TensorFlow scope | |
**/ | |
void load(std::string model_path, std::string checkpoint_name, | |
std::string filename_tensor_name, std::string restore_op_name, | |
std::unique_ptr<Session> &session, tensorflow::Scope &scope) | |
{ | |
// First create the graph specified in the graph def file | |
GraphDef graph_def; | |
auto load_graph_status = ReadTextProto(tensorflow::Env::Default(), model_path, | |
&graph_def); | |
if (!load_graph_status.ok()) | |
{ | |
std::cout << load_graph_status.ToString() << std::endl; | |
} | |
auto session_status = session->Create(graph_def); | |
if (!session_status.ok()) | |
{ | |
std::cout << session_status.ToString() << std::endl; | |
} | |
// Now restore variable values using the Saver ops. | |
std::vector<std::pair<std::string, Tensor>> input; | |
Tensor filename_tensor = Tensor(DT_STRING, TensorShape({ 1 })); | |
filename_tensor.vec<string>()(0) = checkpoint_name; | |
input.emplace_back(filename_tensor_name, filename_tensor); | |
TF_CHECK_OK(session->Run(input, {}, { restore_op_name }, {})); | |
} | |
} | |
} | |
int main() | |
{ | |
tensorflow::SessionOptions options; | |
std::unique_ptr<tensorflow::Session> session(NewSession(options)); | |
tensorflow::Scope root = tensorflow::Scope::NewRootScope(); | |
std::cout << "loading..." << std::flush; | |
tensorflow::example::load("model/graph", "model/model_final", | |
"save/Const", "save/restore_all", session, root); | |
std::cout << "done." << std::endl; | |
// Test input | |
std::vector<std::pair<std::string, tensorflow::Tensor>> input; | |
std::vector<tensorflow::Tensor> output; | |
std::cout << "filling input tensor..." << std::flush; | |
auto input_tensor = tensorflow::Tensor(tensorflow::DT_FLOAT, | |
tensorflow::TensorShape({ 1, 72 })); | |
auto flat = input_tensor.flat<float>(); | |
for (int i = 0; i < 72; i++) | |
{ | |
flat(i) = 0; | |
} | |
flat(71) = 1; | |
std::cout << "done." << std::endl; | |
input.emplace_back("input", input_tensor); | |
std::cout << "running session..." << std::flush; | |
TF_CHECK_OK(session->Run(input, { "output" }, {}, &output)); | |
std::cout << "done." << std::endl; | |
std::cout << "printing result..." << std::endl; | |
std::cout << "[ "; | |
for (int i = 0; i < 72; i++) | |
{ | |
std::cout << output[0].flat<float>()(i) << " "; | |
} | |
std::cout << "]" << std::endl; | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment