Skip to content

Instantly share code, notes, and snippets.

View dpoulopoulos's full-sized avatar
Work from home

Dimitris Poulopoulos dpoulopoulos

Work from home
View GitHub Profile
from torch import package
path = "/tmp/dcgan.pt"
package_name = "dcgan"
resource_name = "model.pkl"
with package.PackageExporter(path) as exp:
exp.save_pickle(package_name, resource_name, model)
def run_model(model):
num_images = 64
noise, _ = model.buildNoiseData(num_images)
with torch.no_grad():
generated_images = model.test(noise)
# let's plot these images using torchvision and matplotlib
import matplotlib.pyplot as plt
import torchvision
plt.imshow(torchvision.utils.make_grid(generated_images).permute(1, 2, 0).cpu().numpy())
import torch
use_gpu = True if torch.cuda.is_available() else False
model = torch.hub.load('facebookresearch/pytorch_GAN_zoo:hub', 'DCGAN', pretrained=True, useGPU=use_gpu)
from _libmath import lib
x = lib.sqrt(4.5)
print(F"The square root of 4.5 is {x}.")
from cffi import FFI
ffibuilder = FFI()
ffibuilder.cdef("""
double sqrt(double x);
""")
ffibuilder.set_source("_libmath",
import ctypes
import pathlib
if __name__ == "__main__":
# load the lib
libname = pathlib.Path().absolute() / "libcadd.so"
c_lib = ctypes.CDLL(libname)
x, y = 6, 2.3
#include <stdio.h>
float cadd(int x, float y) {
float res = x + y;
printf("In cadd: int %d float %.1f returning %.1f\n", x, y, res);
return res;
}
input_tensor = tf.keras.layers.Input(shape=(224, 224, 3), name="image")
model = tf.keras.applications.EfficientNetB0(
input_tensor=input_tensor, weights=None, classes=91
)
model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
train_filenames = tf.io.gfile.glob(f"{tfrecords_dir}/*.tfrec")
batch_size = 32
epochs = 1
steps_per_epoch = 50
AUTOTUNE = tf.data.AUTOTUNE
def prepare_sample(features):
image = tf.image.resize(features["image"], size=(224, 224))
return image, features["category_id"]
for tfrec_num in range(num_tfrecods):
samples = annotations[(tfrec_num * num_samples) : ((tfrec_num + 1) * num_samples)]
with tf.io.TFRecordWriter(
tfrecords_dir + "/file_%.2i-%i.tfrec" % (tfrec_num, len(samples))
) as writer:
for sample in samples:
image_path = f"{images_dir}/{sample['image_id']:012d}.jpg"
image = tf.io.decode_jpeg(tf.io.read_file(image_path))
example = create_example(image, image_path, sample)