Skip to content

Instantly share code, notes, and snippets.

View dpoulopoulos's full-sized avatar
Work from home

Dimitris Poulopoulos dpoulopoulos

Work from home
View GitHub Profile
def create_example(image, path, example):
feature = {
"image": image_feature(image),
"path": bytes_feature(path),
"area": float_feature(example["area"]),
"bbox": float_feature_list(example["bbox"]),
"category_id": int64_feature(example["category_id"]),
"id": int64_feature(example["id"]),
"image_id": int64_feature(example["image_id"]),
}
def image_feature(value):
"""Returns a bytes_list from a string / byte."""
return tf.train.Feature(
bytes_list=tf.train.BytesList(value=[tf.io.encode_jpeg(value).numpy()])
)
def bytes_feature(value):
"""Returns a bytes_list from a string / byte."""
return tf.train.Feature(
num_samples = 4096
num_tfrecods = len(annotations) // num_samples
if len(annotations) % num_samples:
num_tfrecods += 1 # add one record if there are any remaining samples
if not os.path.exists(tfrecords_dir):
os.makedirs(tfrecords_dir) # creating TFRecords output folder
with tracer.start_span("get-price") as span:
coins = {}
res = requests.get("https://api.coincap.io/v2/assets")
span.set_tag("count", len(res.json()['data']))
for coin in res.json()['data']:
with tracer.start_span(coin['id'], child_of=span) as coin_span:
print(f"Getting info for {coin['id']}")
try:
res = requests.get(f"https://api.coincap.io/v2/assets?search={coin['id']}")
print(f"The price of {coin['id']} is {coin['priceUsd']}")
import logging
import requests
from jaeger_client import Config
def init_tracer(service):
logging.getLogger('').handlers = []
logging.basicConfig(format='%(message)s', level=logging.DEBUG)
for epoch in range(15):
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
for images, labels in train_ds:
train_step(images, labels)
for test_images, test_labels in test_ds:
loss_fn = keras.losses.CategoricalCrossentropy()
optimizer = keras.optimizers.Adam()
train_loss = keras.metrics.Mean(name='train_loss')
train_accuracy = keras.metrics.CategoricalAccuracy(name='train_accuracy')
test_loss = keras.metrics.Mean(name='test_loss')
test_accuracy = keras.metrics.CategoricalAccuracy(name='test_accuracy')
def train_step(images, labels):
class MNIST(keras.Model):
def __init__(self):
super().__init__()
self.conv_1 = layers.Conv2D(32, kernel_size=(3, 3), activation="relu")
self.conv_2 = layers.Conv2D(64, kernel_size=(3, 3), activation="relu")
self.max_pool = layers.MaxPooling2D(pool_size=(2, 2))
self.flatten = layers.Flatten()
self.dropout = layers.Dropout(0.5)
self.out = layers.Dense(num_classes, activation="softmax")
train_ds = tf.data.Dataset.from_tensor_slices(
(x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
input = layers.Input(input_shape)
x_1 = layers.Conv2D(32, kernel_size=(3, 3), activation="relu")(input)
x_1 = layers.MaxPooling2D(pool_size=(2, 2))(x_1)
x_1 = layers.Conv2D(64, kernel_size=(3, 3), activation="relu")(x_1)
x_1 = layers.MaxPooling2D(pool_size=(2, 2))(x_1)
x_1 = layers.Flatten()(x_1)
x_2 = layers.Conv2D(16, kernel_size=(3, 3), activation="relu")(input)
x_2 = layers.MaxPooling2D(pool_size=(2, 2))(x_2)