Last active
November 17, 2022 13:52
-
-
Save drcjar/725c5e503d42c777b6dee8fb23e0af72 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "f6f70318", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "14c81e03", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import xlrd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "c2370d51", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df = pd.read_csv(\"gerd_instrument_snps_PhenoScanner_GWAS.tsv\", sep=\"\\t\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "1164f895", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>snp</th>\n", | |
" <th>rsid</th>\n", | |
" <th>hg19_coordinates</th>\n", | |
" <th>hg38_coordinates</th>\n", | |
" <th>a1</th>\n", | |
" <th>a2</th>\n", | |
" <th>trait</th>\n", | |
" <th>efo</th>\n", | |
" <th>study</th>\n", | |
" <th>pmid</th>\n", | |
" <th>...</th>\n", | |
" <th>beta</th>\n", | |
" <th>se</th>\n", | |
" <th>p</th>\n", | |
" <th>direction</th>\n", | |
" <th>n</th>\n", | |
" <th>n_cases</th>\n", | |
" <th>n_controls</th>\n", | |
" <th>n_studies</th>\n", | |
" <th>unit</th>\n", | |
" <th>dataset</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>rs2815749</td>\n", | |
" <td>rs2815749</td>\n", | |
" <td>chr1:72814783</td>\n", | |
" <td>chr1:72349100</td>\n", | |
" <td>G</td>\n", | |
" <td>A</td>\n", | |
" <td>Childhood BMI</td>\n", | |
" <td>EFO_0004340</td>\n", | |
" <td>EGGC</td>\n", | |
" <td>26604143</td>\n", | |
" <td>...</td>\n", | |
" <td>0.0579</td>\n", | |
" <td>0.0102</td>\n", | |
" <td>1.560000e-08</td>\n", | |
" <td>+</td>\n", | |
" <td>35661</td>\n", | |
" <td>0</td>\n", | |
" <td>35661</td>\n", | |
" <td>20</td>\n", | |
" <td>SDS</td>\n", | |
" <td>EGGC_Childhood-BMI_EUR_2016</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>1 rows × 22 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" snp rsid hg19_coordinates hg38_coordinates a1 a2 \\\n", | |
"0 rs2815749 rs2815749 chr1:72814783 chr1:72349100 G A \n", | |
"\n", | |
" trait efo study pmid ... beta se \\\n", | |
"0 Childhood BMI EFO_0004340 EGGC 26604143 ... 0.0579 0.0102 \n", | |
"\n", | |
" p direction n n_cases n_controls n_studies unit \\\n", | |
"0 1.560000e-08 + 35661 0 35661 20 SDS \n", | |
"\n", | |
" dataset \n", | |
"0 EGGC_Childhood-BMI_EUR_2016 \n", | |
"\n", | |
"[1 rows x 22 columns]" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df.head(1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "fc19eacd", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"thresh1 = 5e-8 # gwas threshold 1\n", | |
"thresh2 = 1e-5 # gwas threshold 2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"id": "02c3784f", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df.trait = df.trait.str.upper() # capitalize traits" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"id": "b095ada5", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df = df[df.trait.str.contains('BMI|FAT|MASS|BODY|OBESITY|HIP|CIRCUMFERENCE')] # select obesity related ones" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"id": "431aa376", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"38" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df.snp.nunique()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"id": "5284b343", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df = df[df.study != 'Neale B'] # lets not include 'Neale B'" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"id": "9c1dc257", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"9" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df.snp.nunique()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"id": "538499a4", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"6" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df[df.p < thresh1].snp.nunique()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"id": "7ec19f2d", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array(['rs2815749', 'rs13107325', 'rs205262', 'rs1716171', 'rs9940128',\n", | |
" 'rs9636202'], dtype=object)" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df[df.p < thresh1].snp.unique()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"id": "e11c157e", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"pd.DataFrame(df[df.p < thresh1]).to_csv('thresh1_snps_sans_neale_b.csv', index=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"id": "4108a863", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"9" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df[df.p < thresh2].snp.nunique()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"id": "828a813e", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array(['rs2815749', 'rs13107325', 'rs329122', 'rs205262', 'rs2396766',\n", | |
" 'rs1716171', 'rs9940128', 'rs7206608', 'rs9636202'], dtype=object)" | |
] | |
}, | |
"execution_count": 15, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df[df.p < thresh2].snp.unique()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"id": "2bf3e50b", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"pd.DataFrame(df[df.p < thresh2]).to_csv('thresh2_snps_sans_neale_b.csv', index=False)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.9.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment