Skip to content

Instantly share code, notes, and snippets.

@drcjar
Created October 16, 2017 16:50
Show Gist options
  • Save drcjar/749781ef3897d8bc5d80e0c0188bec0e to your computer and use it in GitHub Desktop.
Save drcjar/749781ef3897d8bc5d80e0c0188bec0e to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{ "cells": [ { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "df = pd.read_csv('spiro.csv')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "df.year = df.year.map(lambda x: pd.to_datetime(str(x), format='%Y'))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [], "source": [ "df.index = df.year" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>year</th>\n", " <th>fvc</th>\n", " <th>fev1</th>\n", " </tr>\n", " <tr>\n", " <th>year</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2017-01-01</th>\n", " <td>2017-01-01</td>\n", " <td>5.07</td>\n", " <td>3.13</td>\n", " </tr>\n", " <tr>\n", " <th>2016-01-01</th>\n", " <td>2016-01-01</td>\n", " <td>5.21</td>\n", " <td>3.26</td>\n", " </tr>\n", " <tr>\n", " <th>2015-01-01</th>\n", " <td>2015-01-01</td>\n", " <td>4.79</td>\n", " <td>3.11</td>\n", " </tr>\n", " <tr>\n", " <th>2011-01-01</th>\n", " <td>2011-01-01</td>\n", " <td>4.99</td>\n", " <td>4.15</td>\n", " </tr>\n", " <tr>\n", " <th>2010-01-01</th>\n", " <td>2010-01-01</td>\n", " <td>4.85</td>\n", " <td>3.42</td>\n", " </tr>\n", " <tr>\n", " <th>2009-01-01</th>\n", " <td>2009-01-01</td>\n", " <td>4.92</td>\n", " <td>4.01</td>\n", " </tr>\n", " <tr>\n", " <th>2008-01-01</th>\n", " <td>2008-01-01</td>\n", " <td>5.37</td>\n", " <td>3.36</td>\n", " </tr>\n", " <tr>\n", " <th>2007-01-01</th>\n", " <td>2007-01-01</td>\n", " <td>5.24</td>\n", " <td>3.17</td>\n", " </tr>\n", " <tr>\n", " <th>2006-01-01</th>\n", " <td>2006-01-01</td>\n", " <td>5.50</td>\n", " <td>3.98</td>\n", " </tr>\n", " <tr>\n", " <th>2004-01-01</th>\n", " <td>2004-01-01</td>\n", " <td>4.87</td>\n", " <td>3.35</td>\n", " </tr>\n", " <tr>\n", " <th>2001-01-01</th>\n", " <td>2001-01-01</td>\n", " <td>5.38</td>\n", " <td>3.45</td>\n", " </tr>\n", " <tr>\n", " <th>1995-01-01</th>\n", " <td>1995-01-01</td>\n", " <td>5.60</td>\n", " <td>3.82</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " year fvc fev1\n", "year \n", "2017-01-01 2017-01-01 5.07 3.13\n", "2016-01-01 2016-01-01 5.21 3.26\n", "2015-01-01 2015-01-01 4.79 3.11\n", "2011-01-01 2011-01-01 4.99 4.15\n", "2010-01-01 2010-01-01 4.85 3.42\n", "2009-01-01 2009-01-01 4.92 4.01\n", "2008-01-01 2008-01-01 5.37 3.36\n", "2007-01-01 2007-01-01 5.24 3.17\n", "2006-01-01 2006-01-01 5.50 3.98\n", "2004-01-01 2004-01-01 4.87 3.35\n", "2001-01-01 2001-01-01 5.38 3.45\n", "1995-01-01 1995-01-01 5.60 3.82" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7f72e91fbc50>" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAFrCAYAAACnozH+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xec1NX1//HXoYMoVoKiIFLWLoKoWJGNvXdXxIqrfjUa\n7DUaxRYLMVFj+1lRNNbExG5UorijAtZdLCgWVEREVEBp9/fHmQnDurvszH5mPlPez8djH+POfObz\nOXsdZs7ce+69FkJAREREykuruAMQERGR/FMCICIiUoaUAIiIiJQhJQAiIiJlSAmAiIhIGVICICIi\nUoaUAIiIiJQhJQAiIiJlSAmAiIhIGVICICIiUoYySgDM7EIzW1zvp3YZz+liZjeY2ZdmNs/MJpvZ\nLi0LW0RERFqiTRbPeReoBCz5+8LGDjSztsBzwNfAfsCXQE/g+yyuKyIiIhHJJgFYGEKY0cxjjwFW\nBLYMISxK3vdZFtcUERGRCGVTA9DXzKaZ2RQzG2NmazVx7J7Aq8CNZva1mb1jZueYmWoPREREYpTp\nB3ENcCSwM3A80AsYZ2bLNXL8OsCByevsClwCnAacm02wIiIiEg0LIWT/ZLMuwKfAyBDCHQ08/j7Q\nHugVkhcys5HA6SGE7k2cdxU8yZgK/Jx1gCIiIuWnA7A28HQIYWZjB2VTA/A/IYTZZvYB0KeRQ74C\n5oels4w6oJuZtQkhNFZAuDNwb0tiExERKXPDgPsae7BFCYCZdQZ6A3c3csgrQFW9+yqAr5r48Af/\n5s+ee47h6afXo2NHGDECDjgA2rVrScTRGzlyJKNHj447jJKh9oye2jRaas/oqU2jVVdXx2GHHQbJ\nz9LGZJQAmNlVwON4t3934I/4NMCxycfvBr4IIaTG+P8GnGRm1wHXA/2Ac4A/L+NSPwNcdNF63Hjj\nAP74Rxg9Gh5+GEaNgqoqaFUgZYRdunRhwIABcYdRMtSe0VObRkvtGT21ac40OYSe6cfomnh3wmTg\nfmAGPsVvZtrj3VIHhxC+AHYCBgFv4R/8o4Erm33BNeHWW+Hdd2GTTeCww2DAAHj6aWhB+YKIiEhZ\ny6gHIIRQvzu//uNDG7gvAWyVYVy/st568Nhj8MorcNZZsMsuMHQoXHklbLZZS88uIiJSXgqkI735\ntt4a/vtf+Mc/4KuvYNAgOPhg+OijuCMTEREpHkWXAACYwV57wdtvw//7f94rsN56cNJJMH16fmOp\nqmqyU0QypPaMnto0WmrP6KlN49GidQByxcwGABMmTJjQrMKQuXPhr3+Fyy+HhQvh9NPhtNNg+eVz\nH6uIiEghmThxIgMHDgQYGEKY2NhxRdkDUF+nTl4X8PHHcMIJcMUV0Ls3XH89zJ8fd3QiIiKFpyQS\ngJSVV4arroIPPoDdd4eTT4b114cHHoDFi+OOTkREpHCUVAKQ0qMH3HEHvPWW1wYccghsvjk8/3zc\nkYmIiBSGkkwAUjbaCB5/HF56Cdq2hd/+FnbeGSZNijsyERGReJV0ApCy3XYwfryvJDh1qi8kdNhh\n8MkncUcmIiISj7JIAMCnDu63H7z3Htx8sw8HVFTA738PM2bEHZ2IiEh+lU0CkNKmDVRX+8JBF13k\ntQK9e/seA3PmxB2diIhIfpRdApCy3HJw7rkwZQoccwxcfDH06QM33QQLFsQdnYiISG6VbQKQsuqq\nvtPg++97keD//R9suKHXCxTgGkkiIiKRKPsEIKVXL7jnHpg4EdZZBw44ALbc0mcQiIiIlBolAPX0\n7w9PPulFgosWwZAhvqjQ22/HHZmIiEh0lAA0YuhQeO01X0Xw/fc9MTjiCPj007gjExERaTklAE1o\n1QoOOgjq6nxfgaeegn79fKOhmTPjjk5ERCR7SgCaoW1bLw6cMgXOOw9uucWnDl5xhe9EKCIiUmyU\nAGSgc2f4wx88ERg+HC64APr2hdtu822IRUREioUSgCx07Qp//StMnuzLDB97LGy8MfzjH5o6KCIi\nxUEJQAv07g1jx8Ibb8Aaa8A++8A228DLL8cdmYiISNOUAERg4EB47jl45hmYNw+23Rb23htqa+OO\nTEREpGFKACK0447eG3DvvfDOO74d8THHwBdfxB2ZiIjI0pQARKxVKzj0UJ86OHo0/POfXih41lkw\na1bc0YmIiDglADnSvj2cfLLPGDjjDF9HoHdvuPpq+PnnuKMTEZFypwQgx1ZYwXcanDIFDjkEzj7b\nFxO6805falhERCQOSgDypFs3uPFGLwzcYgs46ijYZBP41780dVCKy+jRPqQlIsVNCUCe9esHDz4I\nNTW+FfGee/qGQzU1cUcm0jx33QU33aTFr0SKnRKAmGyxBbzwAjzxhBcHDh4M++/vGw+JFKo5c3yG\nyw8/wIQJcUcjIi2hBCBGZrDrrjBpEtx9t08h3GADOO44+PLLuKMT+bUJE2DxYn/tPv983NGISEso\nASgArVv73gLvvw9/+hM89BD06eMbD82eHXd0IkskEtCpE+yyixIAkWKnBKCAdOgAp57qMwZ+/3sv\nturdG/78Z/jll7ijE/Falc02g512glde8ZUvRaQ4KQEoQCuuCJddBh9+CPvtB6edBhUVMGaMd7+K\nxCWRgC23hMpKT0rHj487IhHJlhKAAta9O9xyC7z7Lmy6qQ8TDBgATz2lqYOSf9Om+c8WW8CGG/qu\nmBoGECleSgCKwHrrwaOPepfr8st74WBlJbz+etyRSTlJJPx2iy28CHDoUPjPf+KNSUSypwSgiGy1\nFYwb5/sLTJ8Om28OBx3kQwUiuVZT471S3bv776kkVIWqIsVJCUCRMfPFg95+G26/HV59FdZfH048\n0ZMCkVxJjf+nDB3qNSkvvRRfTCKSPSUARap1a19O+IMPvGDwvvt8xsCFF8KPP8YdnZSahQt9nYot\ntlhy3zrrwNprqw5ApFgpAShyHTv6boMff+y9AFde6YnAX/8K8+fHHZ2Uivfeg7lzl04AwIcBlACI\nFCclACVipZX8w//DD2GPPXwdgfXWg/vv19RBabmaGu91Gjhw6fsrKz05+PrreOISkewpASgxa63l\ntQFvveXLCldVwaBB8NxzcUcmxSyRgI02guWWW/r+oUP99oUX8h+TiLSMEoASteGGPltg3Dho3x52\n3NFXb5s4Me7IpBglEr/u/gf4zW/8taZhAJHiowSgxG27ra8f8Mgj8Nln3oU7bJjXDIg0x+zZUFfX\ncAIA3gugBECk+CgBKANmsO++vqLgLbd4d+2668Ipp8CMGXFHJ4Xu9dd95cnGEoDKSpg6VUmlSLFR\nAlBG2rSBY4+Fjz6CP/4R7rzTZwxccgn89FPc0UmhSiRghRU8aWzI9ttDq1bqBRApNkoAylCnTnDO\nOf6NbcQIGDXKtx/+299gwYK4o5NCk0j4qpOtGnm36NLFC02VAIgUFyUAZWyVVeDaa+H9971A8MQT\nfebAQw9psyFxITReAJiustL3BdCUU5HioQRAWHttuPtumDTJewIOPNCXfH3xxbgjk7hNnQrffNO8\nBGDGDF8TQESKgxIA+Z9NNoEnnvBvciHADjvAbrv5vgNSntJ3AGzK4ME+3VTDACLFQwmA/MoOO/gb\n/4MPesFg//5w+OH+bVDKSyIBvXpB165NH9exI2y9tRIAkWKiBEAaZAYHHOBdujfcAM88AxUVcOqp\nMHNm3NFJvjRn/D+lstJ3Bly4MLcxiUg0lABIk9q2hRNO8J6A88+HW2/1XeAuv9w3h5HSNX++rxyZ\nSQLw44++boCIFL6MEgAzu9DMFtf7qW3mcw9JHv9IdqFKnDp3hgsugClT4MgjfdvhPn08IdA3vtL0\n1lvwyy9eENocAwf6egEaBhApDtn0ALwL/AbolvzZZllPMLOewFXAuCyuJwWka1e47jpfGnbIEKiu\n9rXgH31UUwdLTSLhPUD9+zfv+DZt/DXxn//kNCwRiUg2CcDCEMKMEMI3yZ/vmjrYzFoBY4A/AJ9k\nE6QUnt694b77YMIE6NED9tvPi8D++9+4I5OoJBL+4d+hQ/OfM3QojB8P8+blLi4RiUY2CUBfM5tm\nZlPMbIyZrbWM4y8Evgkh3JHFtaTADRjgBYLPPOPdxdttB3vtpfngpaCmpvnj/ymVlf46eOWV3MQk\nItHJNAGoAY4EdgaOB3oB48xsuYYONrOtgaOAES2IUYrAjjt68dfYsf7hv/HGcPTR8PnncUcm2Zg5\n0ws/mzv+n7LBBr5FsOoARApfRglACOHpEMLDIYR3QwjPArsBKwEH1T/WzDoD9wDHhhBmRRKtFLRW\nreCQQ7w+4M9/hscfh7594cwzYZZeAUXltdf8NtMeADNtDyxSLNq05MkhhNlm9gHQp4GHewM9gcfN\nzJL3tQIws/lARQihyZqAkSNH0qVLl6Xuq6qqoqqqqiVhS461awe/+x0ccQRcc43/3HornHsunHSS\nLxojhS2R8L0ievfO/LmVlfDAA/D997DiitHHJiJLjB07lrFjxy513+zZs5v1XAstKN1Ofsv/FLgw\nhHB9vcfa8evE4FKgM3Ay8GEIocEJZGY2AJgwYcIEBgwYkHV8Uhi+/tq3HL7lFujWDS6+2FcWbN06\n7sikMbvs4j06TzyR+XOnTvXVAx99FPbZJ/LQRGQZJk6cyMCBAwEGhhAmNnZcpusAXGVm25lZTzPb\nCngUWAiMTT5+t5ldBhBCmB9CqE3/Ab4Hfgwh1DX24S+lp1s3X02wtha22sprAzbZxIcINHWw8ITg\nQwCZjv+nrL22JwCaDihS2DItAlwTuA+YDNwPzAC2DCHMTHu8W3ThSSnp29e7hl97zdcT2GsvnzUw\nfnzckUm6Dz/0mo1Mx//TVVaqDkCk0GVaBFgVQlgzhNAxhNAjhHBo+jh+CGFoCOHoJp5/VAhhv5YE\nLMVv0CD/cHjySfjhB18/YN99YfLkuCMTWLID4OabZ3+Oykrv8fnqq2hiEpHoaS8AiYWZjzNPmgT3\n3OO3G2wAJ54IixbFHV15SySgXz9YaaXszzF0qN9qGECkcCkBkFi1agWHHQbvvw+XXQY33ghPPx13\nVOWtpib78f+Url1ho400DCBSyJQASEFo397XC+jf32cLSDzmzfNNgFoy/p+SqgNQoadIYVICIAXD\nzDcX+te/YNq0uKMpT5Mm+e6OUSQAQ4fCZ5/5DpJx+O47fy2JSMOUAEhBOfRQ7w24QztHxCKR8M1/\nNt645efafntf6yGuOoBTT/WZJnPmxHN9kUKnBEAKSpcuUFUFt92mYsA41NTAwIG+DXBLrbDCkhkf\n+VZX58WlIcAHH+T/+iLFQAmAFJzqavj0U99hUPIrkYim+z+lstJ7ABYvju6czfGHP/imRKAEQKQx\nSgCk4Awa5CsFqhgwv6ZP98Qr6gTg22/hnXeiO+eyTJgADz0El14Kq63mM0xE5NeUAEjBSRUDPv44\nfPll3NGUj9QCQC2dAphu8GCvKcjnMMD550NFBQwf7rdKAEQapgRACtKwYSoGzLeaGt+3Ya21ojtn\nhw6+0mO+EoD//heeeso3nGrTxhc00hCASMOUAEhB6tIFDjnEtxFWMWB+pMb//7d5d0QqK2HcOFiw\nINrz1heCbzndvz8ccIDfl+oB0FoEIr+mBEAKVqoY8Nln446k9C1aBK+/Hu34f0plJfz0k58/l55+\nGl5+2cf+WyXf2Soq4McffUtqEVmaEgApWJtv7vPRVQyYe5Mn+wdllOP/KQMHeo9OLocBQoDzzvPt\npnfddcn9/fr5reoARH5NCYAUrFQx4D//qV3lcq2mxtt7s82iP3fr1jBkSG4TgEcegYkTfT+J9CGM\n3r39+qoDEPk1JQBS0A47DNq1g9tvjzuS0pZI+G6Myy+fm/NXVsKrr8LcudGfe9EiuOAC2GknX30w\nXbt20KuXegBEGqIEQApaejFgvheTKSdRLwBUX2UlzJ/vY/RRu/deX/lv1KiGH9dUQJGGKQGQgqdi\nwNz66Sd4993cjP+nrLeeTzGMehhg/ny48ELYd19fQKohmgoo0jAlAFLwttjC95ZXMWBuvPGG967k\nsgfAzHcHjHpjoNtu8+TwkksaP6aiAj7+2JMFEVlCCYAUPDM47jgVA+ZKIgGdO8P66+f2OpWVvkzv\nrFnRnG/uXO/2HzbM6xcaU1HhdQIffxzNdUVKhRIAKQrDhvkOdVoZMHqJhFf/t26d2+tUVvp0vRdf\njOZ8N9wAM2bARRc1fVxFhd+qDkBkaUoApCisuCIcfLCKAaMWgk8BzOX4f0rPnj4tL4o6gNmz4Yor\nYMQIP2dTunXzHg7VAYgsTQmAFI3qapg6FZ57Lu5ISscXX/iwSi7H/9NVVkaTAIwe7UMA55+/7GPN\nNBNApCFKAKRobLklbLihigGjlNoBMF8JwNChvurgtGnZn+Pbb+Gaa+DEE6F79+Y9RwmAyK8pAZCi\nkSoG/Mc/tLZ7VBIJ3/1v9dXzc72hQ/22JbMBrrjCb88+u/nP6ddPCYBIfUoApKgcdphv86piwGgk\nEvkZ/09ZbTXf3yHbBGDaNC/+O+00WHXV5j+vosILBqOagSBSCpQASFFRMWB0FizwNQDy1f2fkqoD\nyGaL3lGjoFMnOPXUzJ6XmgmgQkCRJZQASNGproZPPsnt5jLl4N13Yd68eBKAzz+Hjz7K7Hkff+wL\n/5x9NqywQmbP7dvXbzUMILKEEgApOoMHezHgzTfHHUlxSyR87v+AAfm97nbb+XUzTeAuusiHEE48\nMfNrdu7sBYPqARBZQgmAFJ3UNsEqBmyZRAI22cS71PNp+eVh880zSwDeew/GjPFpf9nGq5kAIktT\nAiBFKVUMeOedcUdSvGpq8t/9n1JZCS+80Pw6jgsu8IWERozI/ppKAESWpgRAitJKK8FBB6kYMFvf\nf+/z8eNMAGbOhLffXvaxr78Ojz4Kf/wjtGuX/TX79YMPP9TrRSRFCYAUreOO88KwqHeYKwevv+63\ncSUAgwdDx47NGwY4/3zfTnjYsJZds6ICfv7ZCxBFRAmAFLHBg30XOBUDZi6R8CmV/frFc/327WGb\nbZadALz0EjzzjG/329LNirQpkMjSlABI0UoVAz72GEyfHnc0xaWmxgvxWsX4DlBZCePGwfz5DT8e\nApx3HgwcCPvt1/Lr9ezpQwhKAEScEgApaioGzFwI3gMQV/d/ytChMGcOvPZaw48/+SS88gpceqkn\ney3VujX06aMEQCRFCYAUtZVXhgMPVDFgJj75xDfUiTsBGDDAhyEaGgZYvNjH/rfdFnbaKbprVlRo\nLQCRFCUAUvSOOw6mTFExYHPlewfAxrRuDUOGNJwAPPwwTJoU3bf/FE0FFFlCCYAUva22gvXX1zbB\nzVVTA717Z7aZTq5UVno8c+YsuW/hQp/3v+uu3gMQpYoK+OwzmDs32vOKFCMlAFL0UsWAjz6qYsDm\nKITx/5TKSt+U6OWXl9w3Zox/Sx81KvrrpWY9ZLoPgUgpUgIgJWH4cO9SvuuuuCMpbL/84l3rhZIA\nrLsurL76kmGAX37xNf8POCA3exRoKqDIEkoApCSsvLKvDHjLLSoGbMpbb/m0uy23jDsSZ+azAVIJ\nwK23+kI9F1+cm+utsor/KAEQUQIgJaS62osBX3gh7kgKVyLhc+E32STuSJaorPReic8/927/4cN9\n5b9c6ddPCYAIKAGQErL11v7BoWLAxtXUwKab+kp8haKy0tcmOOQQ+O47uPDC3F5PUwFFnBIAKRnp\nxYDffBN3NIWpkAoAU3r08AV6xo/3/3+9euX2eqmpgCHk9joihU4JgJSUww/35W21MuCvffutD5EU\nyvh/ut/+1jcHOu+83F+rogJmz1aSKKIEQEqKVgZsXGrJ3ULrAQDf6nfcOJ8RkGupqYCqA5BypwRA\nSk51tc/zfvHFuCMpLDU1vvhPrrvYs9G1K2y2WX6u1aeP9xKpDkDKnRIAKTnbbKNiwIakxv+jXFq3\nGLVvD2uvrR4AESUAUnJSxYCPPAIzZsQdTWFYvNiHAApx/D8O2hNARAmAlKjhw1UMmO7DD+H77wtz\n/D8O/fppCEBECYCUpFVW8eVkb7lF073Ax/8BBg2KN45CUVHhMyIWLIg7EpH4ZJQAmNmFZra43k9t\nE8ePMLNxZvZd8udZM9NbkOSFigGXSCR83f0VV4w7ksJQUeG7Dn7ySdyRiMQnmx6Ad4HfAN2SP9s0\ncez2wH3AEGBL4HPgGTPLw2QfKXfbbusfeioG9ARA4/9LaCqgSHYJwMIQwowQwjfJn+8aOzCEMDyE\ncFMI4e0QwgfAiOQ1K7MNWKS5UsWADz9c3sWAc+fC229r/D9d9+6w3HKqA5B4ffklnH56fENR2SQA\nfc1smplNMbMxZrZWBs9dDmgLNJo0iETp8MM9ESjnbYInTvTubiUAS5hpUyCJ3z//CddcA2PGxHP9\nTBOAGuBIYGfgeKAXMM7Mlmvm868EpgHPZXhdkayoGNC7/zt2hI02ijuSwqKpgBK32mQF3WWXwaJF\n+b9+RglACOHpEMLDIYR3QwjPArsBKwEHLeu5ZnZ28rh9Qgjzs4pWJAvV1T4N7qWX4o4kHomEr7LX\npk3ckRQW9QBI3Orq/HX40UfwwAP5v36L3hJCCLPN7AOgT1PHmdnpwJlAZQjhveaef+TIkXTp0mWp\n+6qqqqiqqsomXClT223n3/ZuvhmGDIk7mvxLJOCgZabo5aeiAqZP942B6r3NiORFXR0ceSRMmgSX\nXupbYrfKsF9+7NixjB07dqn7Zs+e3azntigBMLPOQG/g7iaOOQM4F9gphDApk/OPHj2aAQMGtCRE\nkf8VA55zjhcDrrZa3BHlz1dfwWefafy/IRUVfvvBB1ofQfJv9myYNs2XLd99d9hqK9/KfP/9MztP\nQ1+KJ06cyMCBA5f53EzXAbjKzLYzs55mthXwKLAQGJt8/G4zuyzt+DOBS4Cjgc/M7DfJn+bWDIhE\n4vDD/fbuRlPV0pRI+K0SgF/r29dvNQwgcZg82W/XXx8GD4bKShg1Kr+1SpkWAa6Jz+ufDNwPzAC2\nDCHMTHu8W9rxJ+BV/w8BX6b9nNaCmEUytuqqnlmXWzFgIgFrrAFrrhl3JIVnhRV8+2FNBZQ41NV5\n72SqJ+r88+HNN+Hf/85fDBkNAYQQmhx8DyEMrfd7AW48KuXquOO8BmDcONh++7ijyQ/tANg0zQSQ\nuNTWQs+e0KmT/7799r6T6ahRPiSQj3+z2gtAysZ223nF7c03xx1JfixaBK+/ru7/pigBkLjU1Xn3\nf4qZ9wIkEvBcnibKKwGQspG+MuC338YdTe7V1sJPPykBaEpqV8DFi+OORMpNba0XAKbbaScvSB01\nKj8xKAGQsnLEEX5bDsWAiYRPKdpss7gjKVwVFTBvnldji+TLvHm+EVX9BCDVCzBunP/kmhIAKSur\nrgr77VcexYCJBGy4IXTuHHckhStVgKVhAMmnDz7w95/0IYCUPfeEjTfOTy+AEgApO8cd52/4+ciw\n41RTo+7/ZVl7bWjbVgmA5FdqCeD6PQCwpBfg2WeXTOPNFSUAUna2397ngJfyNsE//gjvvacEYFna\ntIHevZUASH7V1fkU1BVXbPjx/fbzrcxz3QugBEDKTqoY8KGHYObMZR9fjN54w7sYt9wy7kgKX0WF\n1gKQ/Kqra/jbf0rr1nDeefCvf/kywbmiBEDKUqkXAyYSsPzy/i1CmqapgJJvDc0AqO+QQ7x36tJL\ncxeHEgApS6ut5t1sN99cmsWANTU+nah167gjKXz9+sGnn3pltkiuLVjgu5M2VACYrk0b37/k4Yd9\nOC8XlABI2aqu9m9+//1v3JFEK4QlKwDKslVUeJtNmRJ3JFIOpkzxJGBZPQAAw4dDjx5w2WXLPjYb\nSgCkbA0ZAn36lF4x4Oefw9dfa/y/uTQVUPKprs5vm5MAtGsHZ50F99/vvQZRUwIgZatUiwG1A2Bm\nVl0VVlpJCYDkR12dv95+85vmHX/00X7s5ZdHH4sSAClrRx7py8Dec0/ckUSnpsY3GWnuG0y5M/M6\nACUAkg+pAsDmbvbToQOccYa/R02dGm0sSgCkrJViMaDG/zOnqYCSL/U3AWqO6mpfM+DKK6ONRQmA\nlL3qapg8GV5+Oe5IWm7BApgwQeP/mUpNBSyVJFAK0+LF/l7TnPH/dMstB6edBrffHu2+FUoApOyV\nUjHgO+/Azz+rByBTFRUwa1Z57BIp8fnsM5g7N/MEAOD//s8Tgauuii4eJQBS9lq1gmOPhQcfhO++\nizualqmp8fnDm24adyTFpV8/v9UwgORSagZApkMAACusAKec4sOV06dHE48SABGWFAMW+8qAiQRs\nsgl07Bh3JMWlTx8vylIhoORSbS106gRrrZXd808+2TevuvbaaOJRAiACdO0K++5b/NsEJxIa/89G\nx44+c0IJgORSXZ0vz90qy0/elVaCk06CG26IZuqyEgCRpOpq/wf6yitxR5KdWbP8A0zj/9nRVEDJ\ntWxmANQ3cqR/SbnuupbHowRAJGmHHXzzjWItBnz9db9VApAdTQWUXAqheZsALctqq8Hxx8Nf/gKz\nZ7fsXEoARJJatfJegL//vTiLAWtqvIuwb9+4IylOFRXw0UewcGHckUgpmj4dvv++5T0AAKef7rN9\nrr++ZedRAiCSpphXBkwtANTcFcZkaRUVvo5C1KutiYB/+4eW9wAArL46jBgBo0fDTz9lfx4lACJp\nunaFffYpvmJA7QDYcqmpgKoDkFyoq/MK/t69oznfmWfCDz/ATTdlfw4lACL1VFd7tj5+fNyRNN/H\nH3tVsBKA7K25ps8GUB2A5EJdnSeZbdpEc74ePeCII+Dqq2HevOzOoQRApJ6hQz1Lv/nmuCNpvpoa\nv91883jjKGatWmkmgOROFAWA9Z19tq9eedtt2T1fCYBIPamVAYupGDCR8OK/VVaJO5LipgRAciWK\nKYD19e4Nhx7qmwT98kvmz1cCINKAI4+ERYtgzJi4I2kejf9HQ1MBJRdmzYKvv46+BwDg3HPhyy/h\nrrsyf64SAJEG/OY3xVMM+Msv8OabSgCiUFHhb6Y//hh3JFJKUnsA5CIBWHddOPBAuPxyn8WSCSUA\nIo2orob8NcEbAAAgAElEQVT33oNXX407kqZNmgTz5ysBiEJFhd+qF0CiVFe3pMYkF847z6ev3ndf\nZs9TAiDSiMpKWGedwi8GTCSgfXvfBEhaRlMBJRdqa6FXr9xt0rXxxrD33nDZZT502VxKAEQakV4M\nOGtW3NE0LpGAAQOgXbu4Iyl+Xbr48I96ACRKdXW56f5Pd/75/rp98MHmP0cJgEgTjjzSl4Yt5GJA\nFQBGq6JCPQASrVzMAKhvs81gl11g1ChfzbQ5lACINKFbN+9aK9RiwBkzfBEgJQDRUQIgUZozx8fn\nc90DAN4L8N578OKLzTteCYDIMhx3HLz7bmEWAyYSfrvllvHGUUr69fOu1EJM+KT4pJLJXPcAAGy9\nte9q2tyFgZQAiCxDZaUX8BTiNsGJhO9f0LNn3JGUjooK/9b25ZdxRyKlIDUFcN1183O9889vfg+W\nEgCRZUgVAz7wQOEVA2oHwOilpgJqGECiUFsL3bvDCivk53o77ADXXNO8Y5UAiDTDUUd5MeC998Yd\nyRKLF6sAMBd69fINW5QASBTyUQCYzgyGDGnesUoARJohVQx4882FMzb8/vu+HajG/6PVtq2v/6Cp\ngBKFXGwCFBUlACLNVF3txYCpnffilkh4tj9oUNyRlB7NBJAozJ8PH32kBECk6P32t7D22oVTDJhI\n+BtLvsYWy4kSAInCRx/5ynz5HALIhBIAkWZKLwb8/vu4o/GeCI3/50a/fj53O5stVkVSamv9Vj0A\nIiXg6KN9x624iwHnzoV33tH4f65UVHiR5ZQpcUcixayuDlZdFVZbLe5IGqYEQCQD3brBXnvFXww4\nYYJ3LaoHIDc0FVCikI89AFpCCYBIhqqr/dt3ahW+OCQS0KkTbLBBfDGUsq5dfWMgJQDSEoU8AwCU\nAIhkbMcdfeW9OIsBa2p88482beKLoZSZeR2AEgDJ1qJF/vop1AJAUAIgkrFUMeD998Ps2fHEkEho\n/D/XKiq0FoBkb+pU+Pln9QCIlJyjj/Y5vnFsE/zll/DFFxr/zzVNBZSWSO0BoARApMSsvnp8xYCp\n2gMlALnVrx/MnOk/Ipmqq4POnWHNNeOOpHFKAESylCoGfO21/F63psY3F+nePb/XLTepmQAaBpBs\npAoAC3mjLiUAIlmKqxhQ4//50bev32oYQLKR702AsqEEQCRLrVvnvxhw0SJ44w11/+dDp07Qo4cS\nAMlcCIW/BgBkmACY2YVmtrjeT+0ynnOgmdWZ2Twze8vMdm1ZyCKF46ijfLnYfK0M+N57MGeOEoB8\n0VRAycaXX/pOnSWVACS9C/wG6Jb82aaxA81sMHAfcCvQH3gMeMzMCrxjRKR51lgD9twzf8WANTXe\n8zBwYO6vJZoKKNlJzQAoxSGAhSGEGSGEb5I/3zVx7CnAkyGEa0MI74cQLgQmAidlFa1IAaquhrff\nhtdfz/21EgnYaCNYbrncX0s8AUjt6CbSXLW10L499OoVdyRNyyYB6Gtm08xsipmNMbO1mjh2MPBc\nvfueTt4vUhJ22il/xYCJhLr/86lfPx/i+fTTuCORYlJX56+d1q3jjqRpmSYANcCRwM7A8UAvYJyZ\nNfZ9pBswvd5905P3i5SE1q1hxAgYOza3xYA//ODfLJQA5I82BZJsFMMMAICMVhIPITyd9uu7ZvYa\n8ClwEHBHM09jQLNGS0eOHEmXLl2Wuq+qqoqqqqpmXkokP446Ci66CO67D044ITfXeOMNrzNQApA/\nPXpAhw5eB7CrypelmWprYYcd8nOtsWPHMnbs2KXum93MbyIt2kokhDDbzD4A+jRyyNd4wWC6rvy6\nV6BBo0ePZsCAAS2IUCQ/uneHPfbwYsDjj8/N4h81NbDCCrDuutGfWxrWqpWvB6AeAGmumTNhxoz8\n9QA09KV44sSJDGxGpXCL1gEws85Ab+CrRg55Faisd9+OyftFSkp1Nbz1ln9Tz4VEAjbf3D+UJH+K\ndSrgl1/6fhWSX8WwB0BKpusAXGVm25lZTzPbCngUWAiMTT5+t5ldlvaU64BdzexUM6sws4uAgcD1\n0YQvUjh23tm7jG++Ofpzh6ACwLgU41TAadOgTx/YaiufxSD5U1u7pOeo0GX6XWJNfF7/ZOB+YAaw\nZQhhZtrj/yvwCyG8ClQB1cCbwH7A3iGEJhcPEilG6cWAP/wQ7bk/+wymT1cCEIeKCt99cc6cuCNp\nvquv9mlos2fDppt6bYrkR12dJ1/t28cdybJllACEEKpCCGuGEDqGEHqEEA4NIXyS9vjQEMLR9Z7z\ncAhh3eRzNq5XSChSUo4+2vcAj/oNt6bGb5UA5F+xbQr0zTfeC3XKKTBxou9aOWwYHHNMcSUxxSq1\nCVAx0GiiSITSiwGjXBkwkfBFRbp2je6c0jz9+vltsdQBXHut90adfDIsvzyMGQO33+57Vgwa5DtY\nSu4Uwx4AKUoARCJ23HHw5pvRFgNq/D8+K60Eq61WHD0A330HN9wAJ54IK6/s95n5NNU33oA2bbyQ\n9Kab8rN0dbn58Uf4/PPiWAMAlACIRG7nnWGttaJbGXD+fO/KVQIQn4qK4ugB+MtffNniU0/99WPr\nreeJ5FFH+VoVBx0E33+f/xhL2eTJfqseAJEyFXUx4Ntve13Bllu2/FySnWKYCvjDD3Dddd4D1dhQ\nUceOcOON8NBD8Oyz0L//kvoSabnUFMBiWatDCYBIDhx9NMyb50lASyUS0Latv1lLPFI9AIXcbX7j\njTB3Lpx++rKP3X9/H6ZafXXYdlv4059g8eLcx1jq6up8KnDnznFH0jxKAERyYM01oysGTCT8w79D\nh2hik8xVVMBPP8HXX8cdScPmzIFrrvHEs3v35j1n7bVh3Dg47TQ46yxf6nh6s9ZolcYU0wwAUAIg\nkjPV1TBpEkyY0LLzqAAwfoW+KdAtt8CsWf5Bnom2beGKK+Dpp71HoH9/eP753MRYDoplE6AUJQAi\nObLLLt4T0JJiwO++8+pzjf/Ha511vLajEBOAn3+Gq66C4cP9W302dtrJl7HecEPYcUc4/3xYuDDS\nMEvezz/DlCnqARARlhQD3nefTw/Kxmuv+a16AOLVrp2vw1CIUwHvuMO77s85p2Xn6dbNewIuvdR7\nBYYM8RUopXk+/NDrKJQAiAjgq6+1pBgwkYBVVoHevaONSzJXiFMBFyzwD+uDD16yYFFLtGrlicS4\ncT6fvX9/eOyxlp+3HBTTJkApSgBEcmjNNWH33bPfICi1A2AutheWzBRiAjBmjH9LP/fcaM+71VZe\nvzJkCOy7L/zud97FLY2rrfXpl6usEnckzacEQCTHqqt9IZ9MiwFTOwBq/L8w9OsHn3xSOFvsLloE\nl13mH9Abbhj9+VdeGR5+GK6/3utYBg8uvASokBRbASAoARDJuWyLAT/6yIsANf5fGCoq/EP344/j\njsT9/e/+GjnvvNxdw8yXFU4kfI2BgQPh7rtzd71iVkx7AKQoARDJsTZtvBYg02LARMJvN988N3FJ\nZgppKuDixV6st+uu/qGca/37ew/WAQfAEUf4z08/5f66xWLhQn9dKAEQkV855hj/BpVJMWAi4d3O\nK62Uu7ik+bp18xXeCiEBeOwxeO89n66XL507w513eg/Aww974vHmm/m7fiFLDQ1pCEBEfmWttWC3\n3TIbBqip0fh/ITHzXoC4pwKGAKNGwQ47eLFevg0f7jUtnTr58NT11xf2Esn5UFvrt+oBEJEGVVd7\nN2pzigF//tkXZtH4f2EphJkATz7pFfoXXBBfDP36eYJ63HE+Q2C//bxepVzV1UGXLr63QjFRAiCS\nJ7vu6uu033rrso+dNMnneCsBKCxxJwAhwCWX+Df/IUPiiwOgfXvffvixx+Cll7xO4JVX4o0pLqkC\nwGKbrqsEQCRP2rTxlQHvvXfZxYCJhG/+s/HG+YlNmqdfP5gxI75vuy+84N+8zz+/cD5s9t7bawF6\n9IDtt/fixEWL4o4qv4ptE6AUJQAieXT00V4MeP/9TR9XU+NFVm3b5icuaZ4ttvBlgUeM8B6afBs1\nCgYM8KmlhaRHD3jxRV9F8IILYOedC3fnxKiFAJMnF18BICgBEMmrHj18KGBZxYDaAbAw9eoFDz0E\njz8Ohx+e32+6r7ziPQCF9O0/XZs2Pjzx7LM+Q2GTTXxvgVL3xRc+JVI9ACKyTNXV8MYbXkndkG++\ngalTlQAUqj339B6cBx/06Z2LF+fnuqNGwQYbeJd7Iaus9ALWTTf1noqzzoqntyRfinUGACgBEMm7\n3XZruhgwtQCQpgAWrv33h3vu8Tnxxx+f+2lwb7wBTz3lq/61KoJ37a5d4Ykn4E9/gmuvhW239bny\npaiuDjp2hJ49444kc0XwUhIpLamVAe+9t+HV1GpqfNGZtdbKf2zSfFVVcPvtnsidckpuk4BLL4W+\nfeGgg3J3jai1agVnnAH//a9vV7zppj58Umpqa312SOvWcUeSOSUAIjE45hj/8G+oGDA1/l+I47yy\ntCOP9J0e//pXOPPM3CQB77zjU+3OPbc4P2S23NKnte64Ixx4IJxwgm+RXSqKcROgFCUAIjForBhw\n8WJ4/XWN/xeT6mq47jq4+mr4wx+iP/9ll3n38rBh0Z87X1Zc0TcvuukmX054iy38g7PYhVC8UwBB\nCYBIbKqr/cN+0qQl902eDD/8oPH/YnPyyT7ePWqU/0Tl/ffhgQfg7LOLf0qoma8c+NprvnnOZpv5\nEEoxLyOcWhNCCYCIZGT33WGNNZbuBaip8TfKzTaLLy7JzhlnwMUX+zz4q6+O5pyXX+7Lyx55ZDTn\nKwQbbeSJb1WVD4UddpgnvcUo1YuhIQARyUhDxYCJhE/1Wn75eGOT7FxwgVfqn3GGb5LTEp98AmPG\n+Lk6dIgmvkKx3HJw222+Rfbjj/viRm+8EXdUmaur83/HffrEHUl2lACIxChVDPjAA/67FgAqfpdc\nAqed5pvkZLL7Y31XXgkrr+xDRaWqqsrXw1hxRd/f4M9/Lq4hgdpa//Av1uEZJQAiMerZ0xdLueUW\nmDPHK741/l/czOCqq+Ckk3yNgLvuyvwcX3wBd9zhiUSnTtHHWEj69IHx4729Ro6EvfaCb7+NO6rm\nKeYZAKAEQCR2qcKo227zWQDqASh+Zj4zYMQI3/9hWXs/1Hf11d5NfsIJuYmv0LRr5wsGPf44vPqq\n7yw4blzcUS1bMc8AACUAIrHbfXcv9LrgAujcubi/UcgSrVr5tLdhw7zQ7dFHm/e86dO9R+iUU2CF\nFXIbY6HZYw9fRrhPH9hhBy+qLNSdBWfPhi+/LO5/r0oARGKWKgb88Uev/i/GxV6kYa1a+VS3Aw6A\ngw+Gf/1r2c8ZPdpfE7/7Xe7jK0Tdu8Pzz3tC/Mc/+t4C06bFHdWvTZ7st+oBEJEWGTHCu43V/V96\n2rTxfQP22MP3EHjmmcaPnTkTbrgBTjzRCwDLVevWcNFFngh8+KEPCfz733FHtbTaWv83W1ERdyTZ\nUwIgUgB69oRHHvEFZaT0tG3rdQA77gj77AMvvtjwcX/5i3d5jxyZ1/AK1pAhPiSwxRaeQJ12Gsyf\nH3dUrq4O1l67uIs0lQCIFIh99vGFgaQ0tWvnm+FsvbV/mI0fv/Tjs2d7AnD88b6bnrhVV/XiwGuv\n9T0Xtt4apkyJOypPAIq5+x+UAIiI5E2HDvCPf3itx667+op4KTfeCHPnwumnxxdfoTLzXpHx42HW\nLN9ZMLV2RlyKfQYAKAEQEcmrTp28GHDDDWGnneDNN30NiGuv9WJQ9QI1brPNfOGg3XeHQw6BY4/1\npCnf5s3zlRqLeQYAKAEQEcm7zp3hiSd8uttvf+vf+r//3rcUlqatsIIvIXzbbb6M9qBB8O67+Y3h\n/fd9xUL1AIiISMa6dIGnn4Y11/T1AoYP96IyWTYz7y154w2fajlokK+dkK9lhFObACkBEBGRrKy8\nMjz7rBf+XXRR3NEUn/XX91U0jzjCV9Q8+GDvScm1ujpfvGvFFXN/rVxSAiAiEqPVVoO//Q169Ig7\nkuLUsaP3oPz9796jsummnhTkUikUAIISABERKQEHHugFlV27+lTBq6/2vTVyodg3AUpRAiAiIiWh\nVy94+WU49VQ44wyfLfDNN9FeY8ECX51QPQAiIiIFpG1buPJKePJJmDDBlxH+z3+iO/+UKZ4EKAEQ\nEREpQLvs4kMC663nUy0vuAAWLmz5eVMzADQEICIiUqDWWMM3X7rkErjsMt9i+PPPW3bO2lpYaaXS\nWK5ZCYCIiJSs1q3hvPPgpZdg6lTYZBP45z+zP1+qANAsshBjowRARERK3jbb+M6C220He+8Np5wC\nv/yS+XlKYROgFCUAIiJSFlZeGR591HddvOkmGDzYK/qba/FiJQD/Y2bnmNliM7t2Gcf93swmm9lc\nM/vMzK41s/YtubaIiEimzOB3v4NXX4WffoIBA2DMmOY997PPfCOgUigAhBYkAGY2CDgWeGsZxx0K\nXA5cCKwLHA0cDFya7bVFRERaYsAAnya4zz6+D8ORR3pC0JRS2QMgJasEwMw6A2OAEcCyVl4eDLwc\nQngghPBZCOE5YCyweTbXFhERicLyy8M998Cdd8KDD/p2w2818ZW2tta3c15rrbyFmFPZ9gDcADwe\nQmjO8grjgYHJHgPMbB1gN+DfWV5bREQkMkccARMnQocOsMUWcOONDe8smBr/b1Ui1XMZ/xlmdgjQ\nHzinOceHEMbi3f8vm9l84EPghRDClZleW0REJBcqKqCmBkaMgBNPhAMOgFmzlj6mVDYBSskoATCz\nNYE/A4eFEBY08zlDgHOB44FNgf2APczs/MxCFRERyZ0OHeD66+GRR3z54P79Yfx4fyyE0tkEKKVN\nhscPBFYDJpj9bxmE1sB2ZnYS0D6EX3WcXAzcHUK4I/n7e8kagpuBUU1dbOTIkXTp0mWp+6qqqqiq\nqsowbBERkebZd18vEqyq8nUDLrnEhwm+/77wegDGjh3L2LFjl7pv9uzZzXqu/frzuomDzZYDeta7\n+06gDrgihFDXwHPeAJ4NIZyTdl8VcBvQuYGEATMbAEyYMGECAwYMaHZ8IiIiUVmwAC68EK64Avr2\nhQ8+gMmTfbigkE2cOJGBAwcCDAwhTGzsuIx6AEIIc4Da9PvMbA4wM/Xhb2Z3AdNCCOcmD3kcGGlm\nbwIJoC/eK/CPhj78RURECkHbtkv2EBg+3IcIeveOO6roZDoE0JD6H+JrAYvSfr8EWJy87Q7MAP4J\nqAZAREQK3o47wjvv+EJAbaL41CwQLf5TQghDl/F76sP/kpZeS0REJA6rreY/paREZjOKiIhIJpQA\niIiIlCElACIiImVICYCIiEgZUgIgIiJShpQAiIiIlCElACIiImVICYCIiEgZUgIgIiJShpQAiIiI\nlCElACIiImVICYCIiEgZUgIgIiJShpQAiIiIlCElACIiImVICYCIiEgZUgIgIiJShpQAiIiIlCEl\nACIiImVICYCIiEgZUgLQQmPHjo07hJKi9oye2jRaas/oqU3joQSghfTCjZbaM3pq02ipPaOnNo2H\nEgAREZEypARARESkDCkBEBERKUNt4g6gER0A6urq4o5jmWbPns3EiRPjDqNkqD2jpzaNltozemrT\naKV9dnZo6jgLIeQ+mgyZ2aHAvXHHISIiUsSGhRDua+zBQk0AVgF2BqYCP8cbjYiISFHpAKwNPB1C\nmNnYQQWZAIiIiEhuqQhQRESkDCkBEBERKUNKAERERMqQEgAREZEypARARERyxsws7hikYUoAGmFm\nfcxsj+R/6wUcEbVldMxsQzPbNu44SomZdaz3u16vLWBmK5K24Jzas+WSn03jzGx48ves21QJQD1m\n1s7MbgY+AK4HCJormTUza2tmp5vZvqC2jELyNXob8DYwNO54SkHydXoj8KCZ3W1m25uZ6fWaneRr\n9AbgSeDfZnaWmbVSe2Yv2aZ3A5OBbYANoGXvqUoA0pjZqcBsYD3gOmCWmfWLN6riZWa7Am8CfwL2\nN7M1kvfrW0CWzOwk4Dv8NbppCOGPMYdU9MxsQ+AtYH1gDNANuAa4KPm43iczkFzJdQr+AfUnYBpw\nCHBEnHEVMzM7G5gF9AT6AI/jr1PMrHW259ULG1950MxqgbOAw0II2+EN3AeYE2twRcrMlgP2BZ4D\nzgUqgL1BvQDZMrMK/A313yGErUMIb5lZbzNb1czaxR1fEdsH+AgYGkK4H3+dPg9cYGYDQwiLY42u\niJhZV2A34C8hhCEhhEeB04DWwPxYgytSZnYMUAUcGULYPoQwFZiA9wIQQliU7bmVALiFwEhg9RDC\nw8n7PkjevzXoW2sW5gJ3AjeGEK4APgN2NbONQd+qsjQVuBLYxszWNbOxwL+B8cBjZvbbOIMrNmbW\nKjnmvxHwUwhhsZm1DiHMw1+/AFfHF2HxSHt/nIUnqXekPdwV+B74PrnMuzRD2nvko0D/EMKDaQ/P\nAeaZWe+WXKNs34ST35xaAYQQZocQnk6+AaTapB3+hts9eYy+tTbBzKrN7FAz6wveXiGE8SGE95OH\n3ASsCeybHFvVt6plaKBNf8GTqjlALf4h9Xu8q7odcKWZDYon2uKQ3qYhhMXJD/sFQDsz2yzt29R6\nwBXAVma2c/K5+hJQj5ltnvpPgBDCghDC2yGEb5OPXw68B3QC/gY8b2a7JR8r28+fpjTQpt+lPn/S\nXoM1+JDVL/Xuz0jZ/Q8ws6PN7FPgAWC8mQ1LvRDTP5hCCB/j7dMr+VjW4yylzMx2NrNvgBOAy/CC\nn9+nPZ56ET8LvArsQLJwTW+oDWukTUcmH/4cOBP4AzAyhPBUcrevc/BvWRpnbUAjbXp68uHr8I1T\nHjCz/2dmP+Ljq/fgvSu7g74EpDOzfcxsGvCEma1d78tTug7ATsBWQCX+wXUTgL4ELK2BNl1Uv03T\nXoNf4+8Fv613f0bKKgEws1PwN8ozgVOAp4C7gePNrG0IIZhLtctLwCBo2ThLiRsBPBpC2BTYEbgF\nuNbMdk9VUZtZahrQX/E3hL2TNQKmIssGNdSm15jZHsk3zWfwMdYfUk8IIbyOj7M2uf93GavfpjcD\nfzKzPZNtdwz+DbUDcERy/LoO6Ah8E1fQhShZ5HcuMA6oA86GpT/Q095DTw0hPB9CmB9C+BB4A2hl\nZuvmOeyC1pw2rednvKaiY/L56gFoipl1wjP5e0MIDwDjQwgXAS/jCcFuqWPTGn0+sNjMVspzuAUt\n9WIzs154BvoIQAjhwxDC1cBY4Cr8WxUhhIXJZGAyPp61GXA+8Dpwr3pXmt+myW8Gc9M//JPPWwVY\nAS9mE5bZptewdJu+FUK4OoQwLITwSPKLQB9gJeDTuP6GQpL273QKXiR5FvBPYIiZDUk/Jq0ntf43\n0wHAuOR7QdnLpE3TnmMhhGnAdGDL1N3ZXL9sEgC8oG8gkBqTbp+8/QZoC+xnZqvV+8b6n+RzBDCz\nvqlv9cm7vsKTpB7Jx1OV6P+Hf/jvl/705O3zeAJwFv5tYOty7l3JsE17AvvXe34HM1sdL7wCeJgy\nl2Gb9iDZpmkJQzd8COBiYAY+l71spbXnIoAQQgK4IITwGfAE/p56RvKxRfW/jZpZFzPrYWa3ArsA\n9ybvL9shwJa0aaqnGp8J0MfMlst2OKUkEwAzO9DMbjWzU8xsI4AQwnzgaeAPZtY9hPCzmQ0DVsEb\nfEuWFPwtTJ5qIfAT0D/vf0QBMbODzOwTfGpkjZkdnXyoNT6Msr+ZtQshzE8OpcwG/gyclDpHcozw\neOA14AWgTwjhuOT/l7ITRZua2cHAaOAdYB3ggGQ3a1lqaZsm31hXB07EC9e6A8NTBW3lpon2BEh9\ncL0HPAasbWZHpZ6ado4d8SLVBD6teucQwr+Tzy27mooo2jR5TMC/xL6FF7FmJ4RQMj/4h/mDeMb/\nN+C/wBfA4cnH++JdLVPwxSnmAPslH1sA7Jb879bJ2+7AoLj/rpjbdEfgE/zb0s74AikLgGOTjx8B\nTASqk7+3Sd5uhveuDEw718bAQXH/TXH/RNCmg5K/r48PpewU998U908EbbpZ6n5gCL4mQOx/V4G1\n53zgWKBjvTbsDtyGJ/edk/e1S96uBRwN7BD33xT3TwRt2jZ52zr995b8/G+N5hKxA96lt1nwMRLM\n7CHgIjP7IYTwmJltj79xdgPGhhAWmNlq+Dz1TrCk4C95jmkx/B2xS+tCHQzMBG4NISwAnjazDsAJ\n5rMpHsFf2EeY2TPBF6kA/0a6AF+1LnW+t/Hla8tShG06EyCEUItPByxbOWjThcCL+f0rCkcz2rMa\n+BYvqFwI/j5pZo8CmwCnm9kjwKVm9n8hhM+B22P5YwpEjtqU5DlapNSGAA4Fvkg2Xufkff/Ex6NP\nSo7xfwE8F0K4O60Bd8AzsZfzHnGBSr5gwZOlKclEqW3yvvPxOejD8G6rG4DFwP1mtpWZ9cCLKifg\n01XSz1e2ImzTr/IbeeGK+nVa7prRnr8AeyXrJNIL1F7Av63+AW/Ptmj2BFDgbRp3t0gLulO2w7tR\n2qTddyUwud5xl+PL0b5Msjswef9qwLr4+N804FK8+8/i/ttias8dgb/gC8tsnnb/scAP1Ot2St7/\nIV7EB77U7xv4RhVf492tFXH/XWrT0vpRmxZEe74PDEk7drnk8xfiH1obxf13qU2bGWvcjZVF464K\n3IVn8m8Ca6c9tg6eIb2IT+0bD3yMLzzzJnBx2rED8ClpH+Pr/8f+t8XUnqvjBSnT8Y1Q3sYXlNk8\n+Xg/vI7i4uTv7dKe+xW+GE3q9854b8sWcf9datPS+lGbFlx7/j7t9/XxBX6Gx/13qU0zjDnuRsuw\ngdvgK3k9BRyMF/GdDbRPO2ZrfOGUCfjCM6sm778beKje+TaN+2+KuT074UvL3g/0Srs/AdyR/O/l\ngfPwrtS1kve1St6+iI9npZ5Xlr0nalO1aTH9RN2e+ineNi2qGoDgBRITgeuDL+ZzJXAqvm536phX\nQrF5SgQAAAS/SURBVAjVwOAQwu9CCN+a71C1KTAJIDXPP4QwKd9/QyEJIczFx5/uDCF8krb+wRPA\nesnilR+B+/B2/7uZ9Qw+pa8HvsnHY2nn0zi/2jRyatNoRd2eUrxtasX2byGtojL1+zTgX8DpIYQf\n0x9PVlguwpcBPRZf4vOdOOIuVMn50AuS/90q+YK8F5iTTKRSx3XHs9Q2+BjqVvg46qEhhOn5j7xw\nqU2jpzaNltozesXYpkWXAKSkLehxIJ5V7RZ8w5nU492BvfA5qOsAJ4UQxsYTbXExs5fx7qi7bMmO\niYvNl0YdCGwBvBVCuCvOOIuJ2jR6atNoqT2jV+htWrQJQDozG4/XAwwLIXyTnO43w8yqgDWCr/st\nzWBm65DcAS2EMCF5X7tQpiv2RUFtGj21abTUntErhjYtqhqA+tLGWY7F5/IfYmbXAU+Z2YYhhLH6\n8G8es/+tNb0N8FPaC/ZC4LpkHYVkQG0aPbVptNSe0SumNi3qlQDDklWT3jOzifi63p8Bx4UQ3o01\nuCKTVlexOfCw+Rret+DVrcNDCFrUI0Nq0+ipTaOl9oxeMbVp0Q8BmFlvvHpyHeDkEML/izmkopUs\nmnwH6I2vjHhhCOHKeKMqbmrT6KlNo6X2jF6xtGlR9wAkLcK3QL0yhDAv7mCKWfAdEqcCzwKnhhB+\njjmkoqc2jZ7aNFpqz+gVS5sWfQ+ARMvMWofkZkgSDbVp9NSm0VJ7Rq8Y2lQJgIiISBkq6lkAIiIi\nkh0lACIiImVICYCIiEgZUgIgIiJShpQAiIiIlCElACIiImVICYCIiEgZUgIgIiJShpQAiIiIlCEl\nACKSN2bWKm27VBGJkRIAkTJlZsPN7Fsza1vv/n+Y2Z3J/97bzCaY2Twz+8jM/mBmrdOOHWlmb5vZ\nT2b2mZndYGbLpT1+hJnNMrM9zew94GdgrTz9iSLSBCUAIuXrQfw9YK/UHWa2GrALcLuZbQPcBYwG\n1gWOA44Azk07xyLgd8AGwOHADkD9bU87AWcCxySPK5j90EXKmTYDEiljZnYD0DOEsEfy91OBE0II\nfc3sWeC59H3MzWwY8KcQQvdGzrc/8LcQQtfk70cAtwObhBDezfGfIyIZUAIgUsbMrD/wGp4EfGVm\nbwEPhBAuM7NvgOWAxWlPaQ20Azon9zz/LXA23kOwAtAGaJ98fF4yAbgphNAxj3+WiDSDhgBEylgI\n4U3gbeBwMxsArA/cmXy4M3AhsEnaz4ZAv+SHf0/gceBNYD9gAHBi8rnpdQXzcvxniEgW2sQdgIjE\n7jZgJLAm3uX/ZfL+iUBFCOHjRp43EGgVQjg9dYeZHZLTSEUkMkoARORe4GpgBF7Il3Ix8LiZfQ48\nhA8FbAJsGEK4APgIaGNmJ+M9AdvghYIiUgQ0BCBS5kIIPwIPAz8Bj6Xd/wywB7AjXifwKvB7YGry\n8beBU/EK/3eAKrweQESKgIoARQQzew54J4QwMu5YRCQ/NAQgUsbMbEV87v72wAkxhyMieaQEQKS8\nTQJWBM4MIXwYdzAikj8aAhARESlDKgIUEREpQ0oAREREypASABERkTKkBEBERKQMKQEQEREpQ0oA\nREREypASABERkTKkBEBERKQMKQEQEREpQ/8fJrjLjtVv62QAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f72e91e6b38>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.fvc.plot()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7f72ecde05c0>" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAFrCAYAAACnozH+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xm8XfP1//HXupkkQZAgJDcxJ1SEJOZZCGqqMTlBtYpS\nOsSs1cm3qCqqLZ20KobETP3ci4i5oUjMotxwhZgTIiFzPr8/1tnNyXGnM+59znk/H4/7uLln/Nzt\nOnvt9fms9bEQAiIiIlJb6uIegIiIiJSfAgAREZEapABARESkBikAEBERqUEKAERERGqQAgAREZEa\npABARESkBikAEBERqUEKAERERGqQAgAREZEaVFAAYGbnmdlyM7u8jcecYGaPmdmc9NckM9u2kPcV\nERGRwuQdAKRP4icCL7Tz0N2Bm4A9gB2Ad4AHzGy9fN9bRERECpNXAGBmqwI3ACcAn7X12BDCsSGE\nP4cQXgwhvJ5+Th0wMp/3FhERkcLlmwG4CrgnhPBQHs/tCXQB5uT53iIiIlKgzrk+wczGAFsDI/J8\nz0uAWcCDeT5fRERECpRTAGBm/YHfAfuEEJbk+mZmdi5wFLB7CGFxG4/rDewLNAMLc30fERGRGrYK\nsAFwfwhhdmsPshBCh1/RzA4B7gCWAZa+uRMQ0rd1C628oJmdCfwYGBlCeK6d9xkL3NjhgYmIiEi2\no0MIN7V2Z65TAA8CQ7Ju+ycwHfh1Gyf/s/CT/6j2Tv5pzQA33HADm2++eY5DLK9x48ZxxRVXxD2M\nqqHjWXw6psWl41l8OqbFNX36dI455hhIn0tbk1MAEEL4Ang18zYz+wKYHUKYnv75OmBWCOHH6Z/P\nBi4AUsBMM1s3/dT56ddryUKAzTffnGHDhuUyxLLr1atX4sdYSXQ8i0/HtLh0PItPx7Rk2pxCL0Yn\nwOyr/nqgb8bPp+Cr/m8D3sv4OqMI7y0iIiJ5yLkKIFsIYa92ft6w0PcQERGR4tJeACIiIjVIAUCB\nUqlU3EOoKjqexadjWlw6nsWnYxqPnMoAy8XMhgFTp06dqoUhIiIiOZg2bRrDhw8HGB5CmNba45QB\nEBERqUEKAERERGqQAgARkSo0bRosVCN1aYMCABGRKrNkCey0E/z613GPRJJMAYCISJV5911YtAhu\nugkSuM5bEkIBgIhIlXn7bf/+xhs+FSDSEgUAIiJVprnZv/fuDRMmxDoUSTAFACIiVaa5Gfr2hTFj\n4OabYfnyuEckSaQAQESkyjQ3wwYbQCrl6wGeeCLuEUkSKQAQEakyb7/tAcCOO8KAAZoGkJYpABAR\nqTJRBqCuzqcBbr3VSwNFMikAEBGpIkuXwjvvwMCB/nMqBbNnw6RJ8Y5LkkcBgIhIFZk1C5Yt8wwA\nwNChsPnmmgaQr1IAICJSRaIeAFEAYOZZgLvugi+/jG1YkkAKAEREqkjUAyCaAgAPAObPh3vvjWVI\nklAKAEREqkhzM6yzDnTvvuK2TTaBESO8NbBIRAGAiEgViSoAsqVS0NAAn31W7hFJUikAEBGpIlEP\ngGyjR3sp4J13ln1IklAKAEREqkhrGYB+/WD33VUNICsoABARqRLLlsHMmSsvAMyUSsHkyfDhh+Ud\nlySTAgARkSrx3nveCKilDADA4Yd7d8Bbby3rsCShFACIiFSJ7B4A2Xr3hn33VTWAOAUAIiJVoqUe\nANlSKXjyyRWPldqlAEBEpEo0N0OfPtCzZ+uPOeQQ7xEwcWLZhiUJpQBARKRKtFYBkGnVVeHgg1UN\nIAoARESqRms9ALKlUvDii/DKKyUfkiSYAgARkSrRkQwAwH77wRprKAtQ6xQAiIhUgeXLPQPQ1gLA\nSLducNhhHgCEUPqxSTIpABARqQLvv++tfjuSAQAYOxbefBOeeaakw5IEUwAgIlIF2usBkG2PPaBv\nX00D1DIFACIiVaAjPQAydeoERx0FN9/sLYSl9igAEBGpAs3NsNZasNpqHX9OKuVTB48+WrJhSYIp\nABARqQIdLQHMtP32sOGGmgaoVQUFAGZ2npktN7PL23nckWY23cwWmNkLZrZ/Ie8rIiIr62gJYCYz\nzwLcfjssXlyKUUmS5R0AmNm2wInAC+08bkfgJuBvwNbAXcBdZrZFvu8tIiIryycAAA8APv0U7r+/\n2COSpMsrADCzVYEbgBOAz9p5+A+BxhDC5SGE/4YQfg5MA07L571FROIybx6ccQYsWBD3SFaWSw+A\nbFtu6V+aBqg9+WYArgLuCSE81IHH7gg8mHXb/enbRUQqxmOPweWXw3/+E/dIVvbRR7BoUX4ZAPAs\nwN13wxdfFHVYknA5BwBmNgZP5Z/Xwaf0BT7Muu3D9O0iIhWjqcm///e/8Y4jW1QCmG8AMGYMfPkl\n/OtfxRqRVILOuTzYzPoDvwP2CSEsKeB9DWi3AeW4cePo1avXSrelUilSqVQBby0ikp+kBwD5TAEA\nbLSRVwRMmODZAKkcEyZMYELW/M3cuXM79NycAgBgOLA2MNXMLH1bJ2A3MzsN6BbCVzpLfwCsm3Xb\nOnw1K/AVV1xxBcOGDctxiCIipTFjhn9/7bV4x5Gtudk398m6XsrJ2LFw5pkwZ473E5DK0NJF8bRp\n0xg+fHi7z811CuBBYAg+BTA0/fUsviBwaAsnf4AngZFZt+2Tvl1EpGIkNQOQTw+AbEcd5R0B77ij\nKEOSCpBTABBC+CKE8GrmF/AFMDuEMB3AzK4zs4synnYlsL+ZnW5mg8zsF3gm4Y9F+h1EREpu6VJ4\n6y0YNsyvuBctintEK+RbApipb1/Yc09VA9SSYnQCzL7qrydjgV8I4UkgBZwEPA8cBhySDh5EpMLc\ney/cdFPcoyi/mTM9CDjgAC+7i7IBSdDcnP/8f6ZUCh5+GN57r/DXkuQrOAAIIewVQjg96+fjsx5z\newhhcAihewhhqxCCWk6IVKjzz4dLL417FOUXzf8fcIB/T8o6gBCKMwUAcNhh0Lkz3HJL4a8lyae9\nAESkw957D55/Ht59N+6RlF9Tk58chw+HNddMzjqAjz/2xkTFCADWXBO+/nVNA9QKBQAi0mH33eff\nP/kked3wSq2pyTfO6dwZBg1KTgBQaA+AbKkUPP30ioyHVC8FACLSYQ0NsMoq/u9aywI0NcEmm/i/\nBw9OzhRAoT0Ash10EPTsCRMnFuf1JLkUAIhIhyxZApMmwZFH+s+1FgDMmAEbb+z/jjIALRY+l1lz\nM6y+uvcBKIYePeCQQ3yhZxJ+PykdBQAi0iFTpsDnn8OJJ/rP77wT73jKaflyDwCiDMCgQTB3rvfg\nj1u0APB/rdmKIJWCV1+Fl14q3mtK8igAEJEOaWiAddeFnXeG3r1rKwPw3nuwcOHKAQAkYx1AMXoA\nZBs1yrsBajFgdVMAICId0tAA++0HdXXQv39tZQCimv8oANh4Y+jUKRnrAIrVAyBT165wxBG+DkDT\nANVLAYCItOudd+Dll71EDKC+vrYCgBkzPMUeXWl36+YVAXFnAEIoTQYAfBqguRmeeqr4ry3JoABA\nRNrV2OhXvPvs4z/X19fWFEBTEwwY4Cf+SBJKAWfP9m18SxEA7LorrL++pgGqmQIAEWlXQwPsuKM3\nioHanAKI0v+RJAQAxe4BkKlTJxg9Gm6+2VsgS/VRACAibVq0CCZPXpH+B88AzJnjV5+1oKUAYPBg\nePPNeDcFKnYPgGyplFc6PPxwaV5f4qUAQETa9MQTMH8+7L//itv69/fvtTANEMLKPQAigwatKA+M\nS3MzrLqqr9gvhREjPPDRNEB1UgAgIm1qaID11oOhQ1fcVl/v32thGuDjj2HevJanACDeaYBS9ADI\nZOZZgDvuSNb2x1IcCgBEpE2NjZ7+zzzJ1FIGILsEMLLOOt59L85SwFJVAGRKpbzpUWNjad9Hyk8B\ngIi06q23YPr0ldP/4PsB9OlTGxmAKADYaKOVbzeLfyFgKXoAZNt8c8/+3HRTad9Hyk8BgIi0qrHR\nd7/be++v3lcrpYAzZvgUSM+eX70vzgCglD0AsqVScM89PhUi1UMBgIi0qrERdtkFevX66n21UgrY\nUgVAJM5NgT791BdnliMAGDPGWyHffXfp30vKRwGAiLRo4UIv/8tO/0dqpRtgWwHA4MF+Iv744/KO\nCUrbAyDbwIG+B4SqAaqLAgARadGjj8KCBSvX/2eqlSmA9jIAEM80QKl7AGRLpeCBB7z7oFQHBQAi\n0qLGRj/Jf+1rLd/fv79f/X7xRXnHVU6ffuoNj7J7AEQ22cQ3R4ojAHj7bejRwxdjlsORR/pUx223\nlef9pPQUAIhIixoaPP3fWo151AugmrMAUZOf1jIA3bp5Cj6OUsBoAWCpegBkW2cdGDlS1QDVRAGA\niHxFUxO88Ubr6X9Y0QugmtcBRCWArWUAwNcBxDUFUI75/0xjx8Ljj1d30FdLFACIyFc0NkKXLn7F\n15paCQD69PGGP62JqxSwHD0Ash16KHTt6hsESeVTACAiX9HQALvt5n3mW9Otm6eFq/lqsKU9ALIN\nGuSbAi1eXJ4xRaI2wOW0+upwwAGqBqgWCgBEZCVffum7v7WV/o9Uey+AtioAIoMHw7Jl5d0U6LPP\nvD1vuQMA8GqAqVPh9dfL/95SXAoARGQljzziG790JACo9l4AHQkA4igFLHcJYKYDDoDVVlMWoBoo\nABCRlTQ0+JVldGJrSzX3Apg/Hz74oP0AYN11PTUeRwAQRwage3f4xjc8AIijA6IUjwIAEfmfEDwA\nyN79rzXVPAXw5pv+vb01ANGmQOUsBXz7bd+QaZ11yveemcaO9YDn+efjeX8pDgUAIvI/r7/uOwB2\nJP0PngGYO7c6N4lpbRvglpS7FLDcPQCyjRzp1RGaBqhsCgBE5H8aGnx1/557duzxUSlgNU4DNDV5\nar8jnfbKXQoYRwlgpi5dvDPgxImwfHl845DCKAAQkf9paIA99vAWsx0RdQOsxmmAaAFgR66yBw3y\nlsGffFL6cUE8TYCypVL+333KlHjHIflTACAigC96e+yxjqf/Afr18+/VmAHoSA+AyODB/r1c6wDi\n6AGQbeedPQOk1sCVSwGAiADw0EPezKa17X9b0rWrr4Kv5gxAR0SZgnJMA8yd65sUxR0A1NV5FuDW\nW2HJknjHIvlRACAigKf/N9kENt00t+dVYyngwoUe1HQ0AFhlFT8hlyMAePtt/x7nGoBIKuXTHpMn\nxz0SyYcCABEhBO//n0v6P1KNpYBvveXHpKMBAJRvIWCcPQCybb21/96qBqhMOQUAZnaymb1gZnPT\nX1PMbL92nvMjM3vNzL40s5lmdrmZdSts2CJSTK++CjNn5pb+j1RjN8CorW9H1wCArwMoxxqAt9/2\nSo111y39e7XHzLMAd94JCxbEPRrJVa4ZgHeAc4Dh6a+HgLvNbPOWHmxmY4GLgZ8Dg4HjgdHAhR15\nszh22BKpRY2N3uFt991zf241TgE0NfnxWG+9jj8n2hSo1PPhUQlgXULyt6mU94G49964RyK5yulP\nKIRwbwjhvhBCU/rrfGA+sEMrT9kReCKEcHMIYWYI4UFgArBdR97v2GPhV7+CpUtzGaWI5KqhAfba\ny096uerfHz7/3L+qRVOTX/3ncpIdNMg/q6IOgqUSdw+AbJttBsOHaxqgEuUdQ5pZnZmNAXoAT7by\nsCnAcDPbNv2cjYCvAx2KFY87Dn7+c9hpp/K22RSpJZ9/Do8/nl/6H1b0AqimLEAuFQCRaO+EUn9W\nJaEHQLZUyjMAc+fGPRLJRc4BgJltaWbzgEXA1cChIYQW/+RDCBPw9P8TZrYYeAN4OIRwSUfe69RT\nvcnE3LmwzTZwxRXqOiVSbJMn+5VrvgFA1A2wmtYB5NIDILLeer5LXqmnLpPQAyDb6NFeQnrXXXGP\nRHKRTwbgNWAosD3wJ2C8mQ1u6YFmtgfwY+BkYBvgMOBAMzu/o2+2/fbw3HNw8slw+uneovStt/IY\ntYi0qKHBF7BttFF+z+/XzxeDVUsAsGSJX2XnmgGINgUqZQAwbx7Mnp28AKB/f9h1V00DVJrOuT4h\nhLAUiGa5ppnZdsAPgVNaePgFwPgQwrXpn18xs1WBvwC/au+9xo0bR69evf738047wauvphgyJMXl\nl8OJJ8a3GYZINYjK/446Kv/X6NIF+vatnimAmTM9I5JrAAClDwCS1AMgWyoFp50GH30U3y6FtWjC\nhAlMyIq85nZwLibnAKAFdUBrZX09gOyk/XLAzMxCaHs36SuuuIJhw4atdNu8eXDGGfDd73rpyTXX\nrGhHKiK5eeklmDUrv/r/TNXUCyCXXQCzDR4M991X3PFkSlIPgGxHHAHf/753Bjz11LhHUztSqRSp\nVGql26ZNm8bw4cPbfW6ufQAuNLNdzGxgei3AxcDuwA3p+8eb2UUZT7kHOMXMRpvZBma2D54VuLu9\nk39rVlsN/vpXT1u+8AJsuSXceKNfyYhIbhoaoGdPT98WoppKAWfM8KxGtLgxF4MGeYp+9uzijws8\nA9ClS27lieXSpw+MGqVpgEqS6xqAdYHx+DqAB/FeAKNCCA+l7+8P9M14/P8Bl6W/vwL8DWjE1wQU\nZP/94eWX4YAD4JhjPPr8+ONCX1WktjQ0+N7u3QpszVVtGYANN4ROnXJ/blQJUKppgKT1AMiWSsG/\n/+3TKJJ8ufYBOCGEsFEIoXsIoW8IIfPkTwhhrxDC8Rk/Lw8h/F8IYbMQQs8QwgYhhB+EEIpSMbzW\nWnDDDZ5yeuwx+NrXfFpARNr32WdeZVNo+h9WdAOshkxcPiWAkU039XVJpSoFTFoPgGyHHOL7Ikyc\nGPdIpCMSGkfm5ogjPBuw005w2GHeQOjTT+MelUiyTZoEy5blX/6Xqb7etxOuhmZAhQQA3bv7CbqU\nGYAkzv9HVlsNDjpI0wCVoioCAPC+2HfeCdddB/fcA0OGwP33xz0qkeRqaPCs2YABhb9WtfQCWL7c\nO/nl2gMgUykrAZLYAyBbKgXPPw/Tp8c9EmlP1QQA4Km3b37TVzZvsQXst5/3D5g/P+6RiSTL8uW+\nWr0Y6X9YsWCu0gOAWbNg0aL8MwBQugDgiy98nVPSA4D994devZQFqARVFQBE6uv96v/qq+H662Gr\nrXyNgIi455+HDz4oXgCw3noegFd6JUAhJYCRwYP9dYq9KVCSewBkWmUVn4qdMKE61oRUs6oMAMA/\njE45BV580fsE7LGH9w/QlpUinv5fbTXYeefivF5UmlbpGYCmJl9hX8hVdrQpULE7lkYBQNIzAODT\nAE1NMHVq3CORtlRtABDZeGN45BG49FK46irfteqZZ+IelUi8Ghthn338xF0s1dALYMYMXxPRtWv+\nr1GqUsDmZujcGdZfv7ivWwp77undADUNkGxVHwCA1/OecQZMmwY9esCOO8LPfuabV4jUmtmz4amn\nirP6P1M19AIopAIgsv76sOqqxS8FbG724CSf/gTl1rmzt5eeONErTSSZaiIAiGyxBTz5pJ/8L74Y\ndtjBFwyK1JIHHvBFgMUOAKJeAJWsGAFAqTYFSnoPgGxjx8J77/lW05JMNRUAgKc8f/Yz+M9/PAMw\nYgRccomiVKkdjY0wdGjx99Do39+nACp14VcIxQkAoDQBQCWUAGbaYQcfr6YBkqvmAoDIsGG+QOVH\nP4LzzoNddoHXX497VCKltXy5BwDFvvoHzwB88YV3GKxEH33k4y+kB0CkVBmASgoAzGDMGLjtNk23\nJlXNBgDg/c8vuQSeeAI++QS23hr+8Af/kBSpRs8+63/rxSr/yxT1AqjUhYDFKAGMDBrkNftz5hT+\nWuDVSx9+WFlTAODVAHPmeNdJSZ6aDgAiO+3kddHf+Q784Ae+OjoquRGpJo2N3qRlxx2L/9qV3g0w\nCgA22qjw1xo82L8XKwtQSSWAmYYM8bVXmgZIJgUAaT17+tX/pEnwxhv+h/uPf1TufKZISxoafMvW\nzp2L/9rrrec19JUcAPTr55VChdp0U/9e6wGAmWcB7roLvvwy7tFINgUAWfbe2ysDjjjCMwIHHwzv\nvx/3qEQK9/HH3gOjFOl/WFGjXqlTADNmFGf+HzyIGDCgeAFAc7OX/xV74WY5pFK+tuKee+IeiWRT\nANCCXr386v/uu/0Dc8st4eab4x6VSGHuv98zWvvtV7r3qOReAMWqAIgMHly8XgDNzX5sS5G5KbWN\nN4btttM0QBIpAGjDwQf7NsN77+2rWUeP9gVUIpWoocGrX/r2Ld17VHI3wGIHAMWsBKi0CoBsqZSv\nP6nUCpFqpQCgHX36+NX/xInw4IOeDVAqSyrNsmWeAShV+j9SqRmAOXPg00+LHwA0Nfm+AIWqtB4A\n2Y46yjdHuuOOuEcimRQAdNDo0Z4NGDHCMwPHHw9z58Y9KpGOefppP8mVOgCIugFW2uLZGTP8e7HW\nAIAHAEuWFGdToErPAKy/vm/IdtNNcY9EMikAyMF66/nV/9//7s0thgyByZPjHpVI+xoaYK21fC62\nlOrrvWb9009L+z7FFpUAFjMAKFYp4MKFvhC50noAZBs7Fh5+2LehlmRQAJAjM7/6f+klTxfuvTec\ndpqvchVJqoYG2Hff0m8kU6m9AJqaYO21fQFwsfTr5+XFhQYAM2f690rOAAAcfrj//d1yS9wjkYgC\ngDwNHOhrAn7/e68Y2HprmDIl7lGJfNUHH/hOmKVO/8OKboCVGAAUc/4f/GJhs80KDwAqtQdAtjXX\n9AoUVQMkhwKAAtTVwfe/710E+/SBXXeFc87xlJ1IUtx3n5+M9t239O/Vt69f5VVaJUAxewBkGjSo\n8FLA5mb/rImyK5UslfKtqN98M+6RCCgAKIrNNvP9BC66CH73O18oOG1a3KMScQ0NsO22nuIutU6d\nfMGXMgBu8ODCMwDNzT6d0KVLUYYUq4MP9iZJEyfGPRIBBQBF06mTX/0/+6z/j7r99nDBBb4KWCQu\nS5fCAw+UJ/0fqbReAPPm+UY7pQgABg3yXQYLWRRZ6RUAmXr2hEMO0TRAUigAKLIhQ+A///Ethi+4\nwDcaevXVuEclterJJ71ctRTb/7am0noBRCWApQoAoLAsQKX3AMiWSnlJ9csvxz0SUQBQAl27+sn/\nySdh/nzvvnbZZd6MRaScGho89T9iRPneM+oFUClK0QMgstlm/r2QAKCaMgDga1HWXFNZgCRQAFBC\n227rawFOPRXOOgv23HPFh41IOTQ2+srrujL+n96/v08BVEozoKYmL//r3bv4r92zpwdE+QYAixbB\ne+9Vfg+ATF27ekngxImV8zdSrRQAlFj37n71/8gj/qE4dCj8+c/6w5fSmzULXnihvOl/8BPewoUw\ne3Z53zdf0QJAs9K8fiF7AkRdFaspAwA+DfDmm96hUuKjAKBMdtsNXnwRjj0WTjnF02CVlCaVynPf\nfX7lP2pUed836gVQKQsBS1UBECmkFLBaegBk231376yq1sDxUgBQRquuCn/6k38wv/qqLxgcP17Z\nACmNhgbYYYfSpLbbUmndAEvVAyAyeLAHGfmsAWpu9sxEFFRVi06dfH+VW27R2qg4KQCIwb77eivh\ngw+G446Dww7zMiSRYlm8GCZNKn/6H2DddX3f+koIABYs8HGWOgOweLGfzHPV3Ox9Fbp2Lfao4pdK\neZfKRx6JeyS1SwFATNZc06/+b78d/v1v32b49tvjHpVUiylTvL69nPX/kagZUCVMAUQ79ZU6AID8\n1gFUWwVApm239cyLqgHiowAgZocd5vWwu+4KRxwBRx9deTupSfI0NHhb3q23juf9K6UUMNoFsJQB\nQP/+3v0un3UA1dYDIJMZjBnjFz6LFsU9mtqkACAB1lnH/ye4/nq4917PBjQ2xj0qqWQNDeUv/8tU\nKd0AZ8zwk3PfvqV7j7q6/DcFquYMAPg0wGef+booKT8FAAlhBscc49mAIUM8dXvSSZ7GFcnFzJnw\nyivxpP8jldINsKnJ09ClKgGM5FMKuGSJl3JWUw+AbF/7Gmy1laYB4qIAIGH69/er/7/8xUtkttoK\nHn007lFJJWls9Hn4ffaJbwxRBiDpFS6lLgGM5FMK+O67sHx5dWcAwLMA//qXd02V8sopADCzk83s\nBTObm/6aYmb7tfOcXmZ2lZm9Z2YLzOy19p5T68z86v/FF2HAANhjDxg3zlcsi7SnocH3oFhjjfjG\n0L+/z+t+8kl8Y+iIcgUAgwd7pc/cuR1/TlQ1UO0BwJgx/tn2r3/FPZLak2sG4B3gHGB4+ush4G4z\n27ylB5tZF+BBYABwGDAIOBGYle+Aa8lGG8HDD8Pll3v/gG228Y2GRFqzaBFMnhxv+h9W1K0neRpg\nyRJfZFfKHgCRfCoBogBgwICiDydRNtgAdtxR0wBxyCkACCHcG0K4L4TQlP46H5gP7NDKU74DrAF8\nI4TwVAhhZgjh8RDCSwWOu2bU1fnV/3PPweqr+5XdT37idcUi2R5/HL74IjkBQJIXAr79tjehKUcG\nIJ9NgZqbvVtet24lGVKipFK+ELBS2kdXi7zXAJhZnZmNAXoAT7bysIPS911tZh+Y2Utmdp6Zae1B\njjbf3Gu7f/lL+M1vvIb2hRfiHpUkTUMD9OvnC0njtM460KVLsjMA5SgBjKy6qv93yWUdQDWXAGY7\n6ihf76BeKOWV84nYzLY0s3nAIuBq4NAQQmt/1hsBR6bfZ3/g/4AzgB/nN9za1rkznH8+PPOML67a\ndlu46CJYujTukUlSNDZ6979Sr2pvT12dn/CSHgB07bqidXGpDR6cewagVgKAddeFkSM1DVBu+VyJ\nvwYMBbYH/gSMN7PBbbz+h8BJIYTnQgi3ABcCp+QzWHFbb+1BwJlnwk9/CrvsUth+41Id3nzTrzDj\nTv9Hom2Bk2rGDNhwQ6+YKIdcSwFrKQAAnwZ49FEvfZTy6JzrE0IIS4E30z9OM7PtgB/S8kn9fWBx\nCCsVA00H+ppZ5/RrtWrcuHH06tVrpdtSqRSpVCrXYVedbt386v+gg3w/ga23hl//Gr7//fiav0i8\nGhs9SzRyZNwjcUnvBliuCoDIoEHw97/7uoP2go6lSz14quYeANkOPRROPtk3CBo3Lu7RVI4JEyYw\nISt1MreUaOaJAAAgAElEQVSD5SY5BwAtqANaW6bybyD7bD0IeL+9kz/AFVdcwbBhwwocXnXbcUd4\n/nk47zz40Y/grrvg2mtr68pBXGOjt5ReffW4R+Lq6+Gpp+IeReuamnxjrnIZPNirNN5+2yt82jJr\nlgcKtfT/8RprePZqwgQFALlo6aJ42rRpDB8+vN3n5toH4EIz28XMBqbXAlwM7A7ckL5/vJldlPGU\nPwG9zexKM9vUzA4AzgP+mMv7Stt69IArr4SHHvLNTYYMgWuuSX4TFimeBQv8v38cu/+1pn9/P5Et\nXx73SL5q2TKfMil3BgA6Ng1QKz0AsqVSPr35xhtxj6Q25JosXhcYj68DeBDvBTAqhPBQ+v7+wP+6\naocQ3gVGAdsCLwC/A64ALils2NKSPff05kGjR8OJJ8KBB8J778U9KimHRx/1ICAp8//gGYDFi+Hj\nj+MeyVfNmuVjK0cPgEh9PXTvnlsAUO09ALIdeKBXTEycGPdIakOufQBOCCFsFELoHkLoG0LIPPkT\nQtgrhHB81nP+E0LYKYTQI4SwaQjhkqw1AVJEq6/uV///7//BtGm+sdCECcoGVLvGRj9ZbLFF3CNZ\nIcm9AMpZAhipq4NNN+1YKWBzs6+M79695MNKlB494Bvf0GdWuWi5WJU64ADfWGi//WDsWK+zTeKV\nmBRHQ0Myyv8yReV1SVwI2NTkC/HKvciuo6WAtdQDIFsqBdOnezZTSksBQBXr3ds3FLrlFm8pvOWW\ncPfdcY9Kiu2NN/yElqT0P8Daa3udfVIDgIEDfXzl1NFSwForAcy0zz7+2aWeAKWnAKAGHHmkZwO2\n397Ta8cd53twS3VobPQT2V57xT2SlUXNgJI4BTBjRnnn/yODBsH778Pnn7f9uObm2ioBzNSlCxxx\nhAcASVxAWk0UANSIvn396v/aa71UcMgQmDQp7lFJMTQ0wG67+eKppElqL4By9wCIDE63TGsrC7Bs\nmR+zWs0AgE9bzpwJT7bWZF6KQgFADTGDb30LXnrJr0RGjYLvfU/7cFeyL7+ERx5JXvo/Ul+fvAxA\nCJ4BiCMA6MimQO+9542AajkA2GUXX0OiaYDSUgBQgwYMgAcegKuuguuu8y6CTzwR96gkHw8/7M1l\nkhoA9O+fvAzAhx/6jolxBACrrQbrr992AFCrPQAy1dV5OfOtt2qvk1JSAFCj6ur86v+FF3x6YLfd\n4KyzYOHCuEcmuWho8H720ZVl0tTXJ68ZUFQCGMcaAPDsW1ulgLXaAyBbKgUffeQNrqQ0FADUuE02\n8SYyl1wCv/89DB8OU6fGPSrpiBA8APj615NV/pepf39YssQ/yJMiCgDaa8dbKu2VAjY3ewVFz55l\nG1IiDRvmfRM0DVA6CgCETp386n/aNFhlFa8W+MUv/INbkuu///WTRVLT/7CiGVCSpgGamjwwiavJ\nzqBBXrrZWlaklnsAZDLzLMAddygzWSoKAOR/vvY137zl/PPhV7+CHXbw8kFJpoYG3xVyjz3iHknr\nktgNMK4FgJFBg/yENnNmy/fXcg+AbKmUl0w2NMQ9kuqkAEBW0qWLX/3/5z/+ITV8OPzmN16aJMnS\n0OD7P/ToEfdIWtenjwcpScsAxDX/Dys2BWptHUAt9wDINngwbLONpgFKRQGAtChaC/CDH8C55/oi\nwWjuVOI3fz489liy0//gadwkVQKE4On3ODMAAwb4VFtL6wCWL/fMgDIAK6RSvrdJe82TJHcKAKRV\nq6wCl17qJ5oPPoChQ710MEkrumvV5Mm+RiNJ2/+2pn//5EwBzJkDc+fGGwB06uSL21oKAN5/3/+7\nKgBYYfRoz0aqjXnxKQCQdu2yi5cLfutbcNppsO++rc9fSnk0NPhJJM4TWUclqRvgjBn+Pc4pAGi9\nFFA9AL5qwAD/DLrpprhHUn0UAEiHrLqqX/3ff79/cA0ZAv/8p7bsjEMI3v8/6en/SJK6AcbdAyDS\nWilgFABoDcDKxo711uXa0bS4FABITkaN8lbChx4K3/62by70wQdxj6q2vPKKX1FXQvoffApg1qxk\nLCRtaoJ11oHVV493HIMGecvfefNWvr252XfCS+K+DnE64gj/fttt8Y6j2igAkJytsYZf/d91l5cN\nbrmlt+yU8mhs9Br23XePeyQdU1/v7Vw//DDukcS3CVC2qBLg9ddXvl09AFq29tq+TbCqAYpLAYDk\n7ZBD/Gp0zz3hqKN8te6cOXGPqvo1NMDIkb5IsxL07+/fkzANENc2wNlaKwVUD4DWpVLw+OPJWU9S\nDRQASEH69IFbbvEFOvff782E7r037lFVr88/942bKiX9D8nqBpiUDMDqq8N66311HYB6ALTuG9/w\noPfmm+MeSfVQACAFi1p2vvyyN+048EA44QTV7ZbCgw96Or2SAoDevf2DO+4A4PPPfU+CJAQA4FmA\nzABg+XJNAbRl9dX9s0XVAMWjAECKZv31/er/b3/zKH3IEO3kVWwNDbD55r4DYKWImgHFPQUQlQAm\nKQDInAL48ENYvFgBQFtSKXjuubY3U5KOUwAgRWXmV/8vveS7rY0c6d0Ev/wy7pFVvqj8r5Ku/iNJ\n6AWQlB4AkexNgdQDoH1f/7pnArQYsDgUAEhJbLCBd6v73e88I7D11vDkk3GPqrK9+KKXjlVK/X+m\nJGQAmpq8gmWtteIdR2TwYFiwYEVgpB4A7VtlFS9BnjBBPUiKQQGAlExdHfzwh/D88/6hu8sucN55\nsGhR3COrTA0NXh++yy5xjyR3ScgARAsAzeIdRySqBIjS2W+/DWuuGX+PgqRLpbx88rnn4h5J5VMA\nICU3aJCvXP/Vr+Cyy2DbbT0okNxE5X/dusU9ktzV13v2Is5mQEmpAIgMHOj/LaN1ACoB7JiRI70v\ngBYDFk4BgJRF585+9f/ss54Z2HZbDwiWLo17ZJXh0099CqUS0//gUwDLlsXbNTIpPQAi2ZsCKQDo\nmM6dve/IzTdrY7JCKQCQstpqK3j6aTjnHPj5z2GnnVrfF11WmDTJT6CVuAAQ4u8FsGCBr0FIUgYA\nVi4FVA+Ajkul/L/nE0/EPZLKpgBAyq5rV7/6nzLFa7O32QauuELRfFsaGrzlcnQirTRxdwN8803/\nnsQA4LXXfEGbegB03I47+i6BqgYojAIAic322/tCnpNPhtNP95bC0Qe1rLB8Odx3X+Wm/8EXgXbv\nHl8GINoFMIkBwKxZ/ne/cKECgI6qq4MxY3wPkiVL4h5N5VIAILHq3t2v/h9+GGbO9FbCY8d6W+Ek\n7B6XBM89501iKjkAMIu3EmDGDOjZE9ZdN573b83gwf79gQf8u6YAOi6VgtmzfXpM8qMAQBJhjz28\nzv0Xv/AKgf328xPGWWd5i+Fa1tDgpWE77RT3SAoTZy+ApiZfAJiUEsBIVAp4//3+XRmAjhs61Lti\nahogfwoAJDFWW80XB77yCjzzjO8Bfu213lJ42DBvKpSELWXLrbHRt0Lt0iXukRQmzgxA0koAI716\neVbioYf832usEfeIKke0B8ldd6nTaL4UAEjimMGIEfD733vt+N13e+/7s8+Gfv3goIN87m/hwrhH\nWnqffAJPPVXZ6f9IfX28GYAkBgDg0wDz5unqPx+pFMyfrx1I86UAQBKta1c4+GC4/XZ4/334wx/g\n44+9Dni99XwB4ZQp1dsW9IEH/Hfbb7+4R1K4/v09oCt374fFi32FfZJ6AGSKpgE0/5+7TTbxiwVN\nA+RHAYBUjN694ZRT/Ir4tdfg1FM9Pb7zzt5Q5YIL4K234h5lcTU2+j4K668f90gKV1/vFQ3vv1/e\n9337bX/fpGYAogBAGYD8pFK+Tuazz+IeSeVRACAVadAg7yXw1ls+f7rrrnDppb4D4e67w9//7j0G\nKtmyZV7+V6nNf7LF1QsgqSWAEQUAhRk92rM8d94Z90gqT04BgJmdbGYvmNnc9NcUM+tQctLMxpjZ\ncjO7I7+hinxVXZ33D7j2Wm8ze/313l/9xBN9cdXYsX4SrcSWw88+62sAqmH+H+LrBtjU5H8TUQCS\nNFts4d+TOkWRdP36edCvaYDc5ZoBeAc4Bxie/noIuNvMNm/rSWY2ELgUeCyfQYp0RM+ecMwxPm/+\nzjvwy1/CCy/4FXR9PZx5Jrz0Utyj7LjGRl8VvsMOcY+kONZYw/8blTsAmDHDF5HWJTTfueGG3gej\nWgK9OKRSvv14LVYJFSKn/yVCCPeGEO4LITSlv84H5gOtfkSZWR1wA/AzoMpmaCWp+vXzqoGXX/Yr\n6aOOguuu870IotbDSf+waGiAUaN885NqYBZPL4AkVwBE9tijev47x+Hwwz3Au/XWuEdSWfKOic2s\nzszGAD2AJ9t46M+Bj0II1+b7XiL5MoPhw+HKK1eUFG68MZx7rgcJBx4It9ySvJLCjz7yXgjVdlUY\nRy+ASggApDC9e8O++2oaIFc5BwBmtqWZzQMWAVcDh4YQWtzPzcx2Br4NnFDQKEWKoEsXLym87bYV\nJYWzZ/sior594bvfhX//OxklhVFnuGoo/8tU7gzAsmXeZ18BQPVLpbwkuLk57pFUjnySTq8BQ4E1\ngMOB8Wa2W3YQYGarAtcDJ4YQPs1ncOPGjaNXr14r3ZZKpUilUvm8nMj/rLWWlxSecgq8/jqMH+8L\nCP/6V88QfPObcOyxPj8bh4YGz1wkrXd9oerrV/S9L4d33/XNYrTArvodcojvLTJxomf4asWECROY\nkJX6mDt3boeea6HAyx0zmwQ0hRBOybp9KDANWAZEHbijjMMyYFAIocU1AWY2DJg6depUhg0bVtD4\nRDpq+XJ47DEPBm691TuM7borHHectyXOikVLZulSWGcdOO00721QTf72N8+0LFpUntbGkyfD3nvD\nG28oC1ALxoyB6dN98W8tmzZtGsOHDwcYHkKY1trjirEutg7o1sLt04EhwNZ4xmAo8C+8cmAoXlEg\nkhh1db4Y6x//8AWCN9zgVxQnneRTBKmUr8wvdUnh00/Dp59W3/w/+BRACOVrBtTUBJ06qcterUil\nfFOxV1+NeySVIdc+ABea2S5mNjC9FuBiYHd8lT9mNt7MLgIIISwOIbya+QV8BswLIUwPIVRgZbbU\nih494OijfS5+5kwvKXzxRT8pRyWFL75YmvduaPBFTdtuW5rXj1O5ewE0NXmDnUrfSEk6Zr/9vNxU\niwE7JtcMwLrAeHwdwIN4L4BRIYSH0vf3B/oWb3gi8cssKZw61RcNjh/v25FuvXXxSwobGnxFc6dO\nxXvNpCh3N8AZMzT/X0u6dYPDDvMAIAmLeZMu1z4AJ4QQNgohdA8h9A0hZJ78CSHsFUI4vo3nfzuE\ncFghAxaJi9mKbYlnzYJ//cv3IIhKCg84oPCSwvffh+eeq870P/g6ilVXLW8GQHP/tWXsWA/8nnkm\n7pEkX0J7Y4kkW5cuK7Ylfv99+OMffd4+Kik86SR44oncr0Luu88DjX33Lc2442ZWvl4AISgAqEV7\n7OH/D2oaoH0KAEQKtNZaK7Ylfv11+MEPvNRt11395PPLX3otekc0NMB220GfPqUdc5zK1Qvg/fdh\nwQIFALWmUyfv/Hnzzd4HQlqnAECkiKJtid98Ex55xK9GLrvM56F32w2uuQZaK9FdsgQmTare9H+k\nXBmAGTP8u9YA1J5UygPAx7T7TJsUAIiUQF3dim2JP/gAbrzRKwu++11PT44Z89WSwief9OCgWrb/\nbU25MgDPP+9TDnE1c5L4bL+9/3fXNEDbFACIlFiPHiu2JX7nHc8QvPyyX+n37w9nnOGNSxobYe21\nvQNgNauv96Bo8eLSvceyZd7q+dBDvZeD1BYzzwLcdltp/84qnQIAkTJaf3046yzflnjaNM8EXH+9\nlxNeeqlf/Sd129piqa/3BXrvvVe697j9du/+d955pXsPSbZUyhfmRvtqyFdV+UeNSDKZ+bbEUUnh\nPff4/gOnnRb3yEqv1L0AQoCLLvKtlEeMKM17SPJtuaV/aRqgddqBWiRmXbr4tsQHHhj3SMqj1N0A\nGxt9SuWRR0rz+lI5Uim48EL44gvo2TPu0SSPMgAiUlarrw6rrVaaDEAI/oG/005edSG1bcwY+PJL\nz7DJVykAEJGyK1Up4OOPez+GH//Yp1mktm20kVcE3HRT3CNJJgUAIlJ2pQoALroIttqq+nspSMdF\nFThz5sQ9kuRRACAiZVeKXgBTp/qK7/PO09W/rHDUUV4WescdcY8keRQAiEjZlSIDcPHF3vb3yCOL\n+7pS2fr2hT33VDVASxQAiEjZ9e/vWygvWlSc15s+3a/wzjmnOrdRlsKkUvDww94eWFZQACAiZReV\nAharGdAll3iTpWOPLc7rSXU57DDo3Nm365YVFACISNkVsxdAczPccAOceSZ061b460n1WXNNXxiq\naoCVKQAQkbIrZjfA3/4W1lgDTjyx8NeS6pVKwdNPr9glUhQAiEgMVlsNevUqPAPwwQe+xfKPfqRO\nb9K2gw7yv5GJE+MeSXIoABCRWBSjEuB3v4OuXeHUU4szJqlePXrAIYeoGiCTAgARiUWhvQA+/RSu\nvhq+9z2f4xVpTyoFr7ziu3GKAgARiUmhGYCrroIlS2DcuOKNSarbqFGw1lpaDBhRACAisSgkA/DF\nF3DllfCd78C66xZ3XFK9unaFI47wdQAhxD2a+CkAEJFY1NfDRx/l1wzommvgs8/grLOKPy6pbqmU\nl44+9VTcI4mfAgARiUXUCyDXLMDixXDppXD00TBwYPHHJdVt1129aZQWAyoAEJGY5NsL4PrrvYPg\nOecUf0xS/Tp1gtGjvSvg0qVxjyZeCgBEJBZRAJDLQsBly+DXv/bWrptvXppxSfVLpXwvikceiXsk\n8VIAICKxWHVV7+CXSwbgttugqcm3/BXJ14gRvnNk3NUAzc1w7rmwcGE8768AQERik0spYAhw0UWw\n774wfHhpxyXVzcyzAHfcUbwdKXMVApx0km9k9eMfxzMGBQAiEptcAoCGBnjxxfg+LKW6pFIwdy40\nNsbz/rffDpMmwaGHwhVXwOTJ5R+DAgARiU1HewGEABdeCDvt5Ku4RQq1+eYwdGg81QDz5/v+FQcf\n7NNae+0Fxx3n3S3LSQGAiMSmoxmAxx6DJ5/0q3+z0o9LakMqBffcA/Pmlfd9/+//YPZsb2ZVVwf/\n/Kc3t/re98o7DgUAIhKb/v3hk0/aXwR10UWw1Va+p7tIsYwZAwsWwN13l+89X30VLr8cfvIT2GAD\nv62+3ve1mDixvBkJBQAiEpuONAN69ll44AFd/UvxDRwIO+9cvpNuCHDaaX7iz+5imUp5QHLKKYXv\nktlRCgBEJDZRANDWB97FF3vJ1hFHlGdMUltSKQ8wZ88u/XtNnAgPPwx//CN06/bV+6++GlZbzdcD\nLF9e+vEoABCR2LTXDfDVV71U69xzvYObSLEdeaRfmd92W2nf5/PP4Ywz4PDDvZS1JWuu6esBHn4Y\nfve70o4HcgwAzOxkM3vBzOamv6aY2X5tPP4EM3vMzOakvyaZ2baFD1tEqkGPHr49a2sZgEsu8SDh\n2GPLOy6pHeusAyNHln4a4Be/8LLDyy9v+3EjR/oW1+edBy+/XNox5ZoBeAc4Bxie/noIuNvMWmvK\nuTtwE7AHsEP6+Q+Y2Xp5jVZEqk7//i0HAM3NcOONcOaZvo2rSKmMHeuVJvluT92el16C3/8efvpT\nGDCg/cdfdBFsuqlveFXKRkU5BQAhhHtDCPeFEJrSX+cD8/GTe0uPPzaE8OcQwoshhNeBE9LvObLg\nkYtIVaivb/mD99JLPSV6wgnlH5PUlkMP9SDz5puL/9ohwKmn+jqW00/v2HNWWcWD3+nTPWgolbzX\nAJhZnZmNAXoAT3bwaT2BLsCcfN9XRKpLS70APvgA/v53b5bSs2c845LasfrqcMABpZkGuOEGePxx\nuOqq3DJZQ4fCr34Fv/0tPPpo8ccFeQQAZralmc0DFgFXA4eGEF7r4NMvAWYBD+b6viJSnVrqBnjF\nFf5heeqp8YxJak8qBVOnwhtvFO81P/vMp7BGj/a5/VydcYZ3vvzmN339QLHlkwF4DRgKbA/8CRhv\nZoPbe5KZnQscBXwjhLA4j/cVkSpUX+8lWF9+6T9/+in86U9+8l9jjXjHJrXjgAO8BK+YWYCf/cz/\nri+7LL/nd+oE48f7/xPf/37xxhXpnOsTQghLgTfTP04zs+2AHwKntPYcMzsTOBsYGUJ4paPvNW7c\nOHr16rXSbalUilQqleuwRSShMksBN9vMU6VLlnj6X6RcuneHb3zDtwj+6U8Lbzr1/PP+t/yb30C/\nfvm/zsCB3jfguOPgoIO8bDHThAkTmJAVtcztYLrAQgj5jwwws8nA2yGE41u5/yzgx8CoEMIzHXzN\nYcDUqVOnMmzYsILGJyLJ9sYbfuKfPBm2394/8FIp+MMf4h6Z1Jr77oP994dp02CbbfJ/neXLYZdd\nvPb/ueegS5fCxhUCHHWU/z/y0kvtBxTTpk1juO+ZPTyEMK21x+XaB+BCM9vFzAam1wJcjJf63ZC+\nf7yZXZTx+LOB/wOOB2aa2brpLy3rERFgRQbgnXfgb3/zuc4zz4x3TFKbRo6EPn0Knwa47jrfvOqq\nqwo/+YNnI/78Z68O+Pa3i9clMNc1AOsC4/F1AA/ivQBGhRAeSt/fH+ib8fhT8FX/twHvZXydUcCY\nRaSKdO8OvXvDjBm+4vmYYzwLIFJuXbp4in3ixPxPsnPmwNlnew3/7rsXb2y9e8O118KkSR5YFENO\nawBCCG1W5IYQ9sr6ecN8BiUitaW+3hf+zZ4N55wT92iklqVS/rc4ZYqn8XN1/vmweLEHs8W2776+\nmdDZZ3u2YostCns97QUgIrGLtgU+7DAY3G5NkUjp7Lyz/z3mMw3w7LOeqr/gAujbt/3H5+OSS3w3\nwWOO8UCjEAoARCR20a6A550X7zhE6uo8C3DLLV6N0lHLl8P3vgdDhpS2f0WPHt4l8KWX4Je/LOy1\nFACISOxSKb9q8oXLIvFKpTwjNXlyx59zzTXwzDO+pW/nnAvsczNsmJ/8f/1r+Pe/838dBQAiErtd\ndy1tz3ORXGy9NQwa1PFpgE8+8ezVt77lUwjlcPbZsMMOvlPm55/n9xoKAERERDKYeRbgzjthwYL2\nH3/eeT4FcMklpR9bpHNnuP56+Pjj/JtmKQAQERHJkkrBvHnQ0ND24556ytP/F14I66xTnrFFNtoI\nrrzSywPvuCP35ysAEBERybLZZr4mpa1pgGXLfMHfsGHw3e+Wb2yZvv1tb2F80km+i2YuFACIiIi0\nIJWC//f/Wt+J7y9/8bbBV1/tG/fEwQz++lefEjj+eG8b3FEKAERERFowerTX2t9111fv++gj+MlP\n4IQTfA+LOK29Nvz979DY6H0IOkoBgIiISAv69/cKlZamAc45x3sGXHxx+cfVkgMOgJNPhjPOgObm\njj1HAYCIiEgrUil48EFfbR/597/hn//0k3+fPrEN7St++1sPWjpaUqsAQEREpBVHHOHz7Lfe6j8v\nXeod/7bbztP/SdKzJ9xwA7z+escerwBARESkFX36wKhRcNNN/vPVV3sb3quu8imApNluO7j77o49\nNoHDFxERSY5UytP+Tz/t6fWTT4YRI+IeVes6uhGRAgAREZE2HHIIrLIK7L8/dO0Kv/pV3CMqDgUA\nIiIibVhtNTjoIJgzx9v9rrVW3CMqjhLvWSQiIlL5zj7bV9h/61txj6R4FACIiIi0Y8SIZM/750NT\nACIiIjVIAYCIiEgNUgAgIiJSgxQAiIiI1CAFACIiIjVIAYCIiEgNUgAgIiJSgxQAiIiI1CAFACIi\nIjVIAYCIiEgNUgAgIiJSgxQAiIiI1CAFACIiIjVIAYCIiEgNUgAgIiJSgxQAiIiI1CAFACIiIjVI\nAYCIiEgNyikAMLOTzewFM5ub/ppiZvu185wjzWy6mS1IP3f/woacLBMmTIh7CFVFx7P4dEyLS8ez\n+HRM45FrBuAd4BxgePrrIeBuM9u8pQeb2Y7ATcDfgK2Bu4C7zGyLvEecMPrDLS4dz+LTMS0uHc/i\n0zGNR04BQAjh3hDCfSGEpvTX+cB8YIdWnvJDoDGEcHkI4b8hhJ8D04DTChu2iIiIFCLvNQBmVmdm\nY4AewJOtPGxH4MGs2+5P3y4iIiIx6ZzrE8xsS/yEvwowDzg0hPBaKw/vC3yYdduH6dtFREQkJjkH\nAMBrwFBgDeBwYLyZ7dZGEJDNgNDOY1YBmD59eh7DK6+5c+cybdq0uIdRNXQ8i0/HtLh0PItPx7S4\nMs6dq7T1OAuhvXNx28xsEtAUQjilhfveBi4LIfw+47ZfAIeEELZp4zXHAjcWNDAREZHadnQI4abW\n7swnA5CtDujWyn1PAiOB32fctg+trxmI3A8cDTQDCwscn4iISC1ZBdgAP5e2KqcMgJldCDTi5YCr\n4Sfps4BRIYSHzGw88G4I4cfpx+8IPAqcC9wLpNL/HhZCeDXHX0hERESKJNcMwLrAeGA9YC7wIumT\nf/r+/sDS6MEhhCfNLAVcmP56A0//6+QvIiISo4LXAIiIiEjl0V4AIiIiNUgBgIiISA1SACAiIiVj\nZhb3GKRlCgBaYWabmNmB6X/rD7hIdCyLx8y2NLNd4x5HNTGz7lk/6++1AGa2BhmLzXU8C5c+Nz1m\nZsemf877mCoAyGJmXc3sL8DrwB8BglZK5s3MupjZmWZ2KOhYFkP6b/QavApnr7jHUw3Sf6dXA7ea\n2Xgz293MTH+v+Un/jV6Fl43fa2bnmFmdjmf+0sd0PN6Ndxfga1DYZ6oCgAxmdjpe3rg5cCXwqZlt\nFu+oKpeZ7Q88D/wGONzM1k/frquAPJnZacAc/G90mxDCL2MeUsVL72/yArAFcAO+V8llwC/S9+tz\nMgfpTq4z8BPUb4BZwBjguDjHVcnM7FzgU2AgsAlwD+k9dcysU76vqz9swMx6m9mrwDnAMSGE3fAD\nvB2tQrAAAA0cSURBVAnwRayDq1Bm1hM4FN8N8sfAIOAQUBYgX2Y2CP9AvTeEsHMI4QUz29jM+phZ\n17jHV8G+ATQBe4UQJuJ/p5OBn5rZ8BDC8lhHV0HMbB3g68DvQwh7hBDuBM4AOgGLYx1chTKz7+BN\n9L4VQtg9hNAMTMWzAIQQluX72goA3FJgHLBeCOH29G2vp2/fGXTVmocvgX8CV4cQfg3MBPY3s61A\nV1V5agYuAXYxs8FmNgHvsDkFuMvM9o5zcJUmvaV5d2AIMD+EsNzMOoUQFuB/vwC/jW+ElSPj8/FT\nPEi9NuPudYDPgM/MrHe5x1apMj4j7wS2DiHcmnH3F8ACM9u4kPeo2Q/h9JVTHUAIYW4I4f70B0B0\nTLriH7j90o/RVWsbzOwkMxtrZpuCH68QwpQQwn/TD/kz3iny0PTcqq6q2tHCMV2EB1VfAK/iJ6kf\n4anqrsAlZrZtPKOtDJnHNISwPH2yXwJ0NbMRGVdTmwO/BnYys33Tz9VFQBYz2y76J0AIYUkI4cUQ\nwifp+y8GXgF6AH8CJpvZ19P31ez5py0tHNM50fkn42/wKXzKalHW7Tmpuf8AZnZ8epfCm4EpZnZ0\n9IeYeWIKIbyJH58N0/flPc9SzcxsXzP7CDgFuAhf8POjjPujP+JJ+CZQe5JeuKYP1Ja1ckzHpe9+\nBzgb+BkwLoRwX3q3r/PwqyzNs7aglWN6ZvruK/GNU242s7+b2Tx8fvV6PLtyAOgiIJOZfcPMZgEN\nZrZB1sVTplWAUcBO+MZwT+EXA+giYGUtHNNl2cc042/wA/yzYO+s23NSUwGAmf0Q/6A8G/ghcB++\nt8HJZtYlhBDMRcflUWBbKGyepcqdANyZ3t55H+CvwOVmdkC0itrMojKgP+AfCIek1wiYFlm2qKVj\nepmZHZj+0HwAn2P9PHpCCOEZfJ61zf2/a1j2Mf0L8BszOyh97L6DX6GuAhyXnr+eDnQHPopr0EmU\nXuT3Y+AxYDq+wdtKJ/SMz9DTQwiTQwiLQwhvAM8CdWY2uMzDTrSOHNMsC/E1Fd3Tz1cGoC1m1gOP\n5G8MIdwMTAkh/AJ4Ag8Ivh49NuOgLwaWm9maZR5uokV/bGa2IR6B3gEQQngjhPBbYAJwKX5VRQhh\naToYeA2fzxoBnA88A9yo7ErHj2n6yuDLzJN/+nm9gdXxxWxCu8f0MlY+pi+EEH4bQjg6hHBH+kJg\nE2BN4O24fockyfj/dAa+SPIc4F/AHma2R+ZjMjKp2Vemw4DH0p8FNS+XY5rxHAshzAI+BHaIbs7n\n/WsmAMAX9A0HojnpbunvHwFdgMPMbO2sK9aH0s8RwMw2ja7q0ze9jwdJA9L3RyvRv4ef/A/LfHr6\n+2Q8ADgHvxrYuZazKzke04HA4VnPX8XM1sMXXgHcTo3L8ZgOIH1MMwKGvvgUwAXAx3gte83KOJ7L\nAEII/wF+GkKYCTTgn6lnpe9bln01ama9zGyAmf0N2A+4MX17zU4BFnJMo0w1XgmwiZn1zHc6pSoD\nADM70sz+ZmY/NLMhACGExcD9wM/MrF8IYaGZHQ30xg/4DqxY8BdtabwUmA9sXfZfIkHM7Cgzewsv\njXzKzI5P39UJn0Y53My6hhAWp6dS5gK/A06LXiM9R3gy8DTwMLBJCOG76f8uNacYx9TMRgNXAC8B\nGwFHpNOsNanQY5r+YF0POBVfuNYPODZa0FZr2jieANGJ6xXgLmADM/t29NSM19gHX6T6H7yset8Q\nwr3p59bcmopiHNP0YwJ+EfsCvog1PyGEqvnCT+a34hH/n4DHgXeBb6bv3xRPtczAm1N8ARyWvm8J\n8PX0vzulv/cDto3794r5mO4DvIVfLe2LN0hZApyYvv84YBpwUvrnzunvI/DsyvCM19oKOCru3ynu\nryIc023TP2+BT6WMivt3ivurCMd0RHQ7sAfeEyD23ythx3MxcCLQPesY9gOuwYP7VdO3dU1/rweO\nB/aM+3eK+6sIx7RL+nunzJ8L+fpfj+YqsSee0hsRfI4EM7sN+IWZfR5CuMvMdsc/OPsCE0IIS8xs\nbbxOvQesWPCXfo1ZMfwesctIoe4IzAb+FkJYAtxvZqsAp5hXU9yB/2EfZ2YPBG9SAX5FugTvWhe9\n3ot4+9qaVMRjOhsghPAqXg5Ys0pwTJcCj5T3t0iODhzPk4BP8AWVS8E/J83sTmAocKaZ3QFcaGbf\nCyG8A/wjll8mIUp0TEm/RkGqbQpgLPBu+uCtmr7tX/h89GnpOf53gQdDCOMzDuCeeCT2RNlHnFDp\nP1jwYGlGOlDqkr7tfLwG/Wg8bXUVsByYaGY7mdkAfFHlVLxcJfP1alYRj+n75R15chX777TWdeB4\nLgIOTq+TyFyg9jB+tfoz/Hh2QdUTQMKPadxpkQLSKbvhaZTOGbddAryW9biL8Xa0T5BOB6ZvXxsY\njM//zQIuxNN/FvfvFtPx3Af4Pd5YZruM208EPicr7ZS+/Q18ER94q99n8Y0qPsDTrYPi/r10TKvr\nS8c0Ecfzv8AeGY/tmX7+UvykNSTu30vHtINjjftg5XFw+wDX4ZH888AGGfdthEdIj+ClfVOAN/HG\nM88DF2Q8dhhekvYm3v8/9t8tpuO5Hr4g5UN8I5QX8YYy26Xv3wxfR3FB+ueuGc99H29GE/28Kp5t\n2T7u30vHtLq+dEwTdzx/lPHzFniDn2Pj/r10THMcc9wHLccD3Bnv5HUfMBpfxHcu0C3jMTvjjVOm\n4o1n+qRvHw/clvV628T9O8V8PHvgrWUnAhtm3P4f4Nr0v1cDfoKnUuvTt9Wlvz+Cz2dFz6vJ7ImO\nqY5pJX0V+3jqq3KPaUWtAQi+QGIa8MfgzXwuAU7H+3ZHj/l3COEkYMcQwvdDCJ+Y71C1DfAcQFTn\nH0J4rty/Q5KEEL7E55/+GUJ4K6P/QQOweXrxyjzgJvy432JmA4OX9A3AN/m4K+P1NM+vY1p0OqbF\nVezjKZV7TK3S/l/IWFEZ/TwL+H/AmSGEeZn3p1dYLsPbgJ6It/h8KY5xJ1W6HnpJ+t916T/IG4Ev\n0oFU9Lh+eJTaGZ9D3QmfRx0bQviw/CNPLh3T4tMxLS4dz+KrxGNacQFAJKOhx5F4VPX14BvORPf3\nAw7Ga1A3Ak4LIUyIZ7SVxcyewNNR19mKHROXm7dGHQ5sD7wQQrguznFWEh3T4tMxLS4dz+JL+jGt\n2AAgk5lNwdcDHB1C+Chd7vexmaWA9YP3/ZYOMLONSO+AFkKYmr6ta6jRjn3FoGNafDqmxaXjWXyV\ncEwrag1Atox5lhPxWv4xZnYlcJ+ZbRlCmKCTf8eY/a/X9C7A/Iw/2J8DV6bXUUgOdEyLT8e0uHQ8\ni6+SjmlFdwIMK7omvWJm0/C+3jOB74YQXo51cBUmY13FdsDt5j28/4qvbj02hKCmHjnSMS0+HdPi\n0vEsvko6phU/BWBmG+OrJzcCfhBC+HvMQ6pY6UWTLwEb450Rfx5CuCTeUVU2HdPi0zEtLh3P4quU\nY1rRGYC0ZfgWqJeEEBbEPZhKFnyHxGZgEnB6CGFhzEOqeDqmxadjWlw6nsVXKce04jMAUlxm1imk\nN0OS4tAxLT4d0+LS8Sy+SjimCgBERERqUEVXAYiIiEh+FACIiIjUIAUAIiIiNUgBgIiISA1SACAi\nIlKDFACIiIjUIAUAIiIiNUgBgIiISA1SACAiIlKDFACISNmYWV3GdqkiEiMFACI1ysyONbNPzKxL\n1u13m9k/0/8+xMymmtkCM2sys5+ZWaeMx44zsxfNbL6ZzTSzq8ysZ8b9x5nZp2Z2kJm9AiwE6sv0\nK4pIGxQAiNSuW/HPgIOjG8xsbWA/4B9mtgtwHXAFMBj4LnAc8OOM11gGfB/4GvBNYE8ge9vTHsDZ\nwHfSj0vMfugitUybAYnUMDO7ChgYQjgw/fPpwCkhhE3NbBLwYOY+5mZ2NPCbEEK/Vl7vcOBPIYR1\n0j8fB/wDGBpCeLnEv46I5EABgEgNM7OtgafxIOB9M3sBuDmEcJGZfQT0BJZnPKUT0BVYNb3n+d7A\nuXiGYHWgM9Atff+CdADw5xBC9zL+WiLSAZoCEKlhIYTngReBb5rZMGAL4J/pu1cFfg4MzfjaEtgs\nffIfCNwDPA8cBgwDTk0/N3NdwYIS/xoikofOcQ9ARGJ3DTAO6I+n/N9L3z4NGBRCeLOV5w0H6kII\nZ0Y3mNmYko5URIpGAYCI3Aj8FjgBX8gXuQC4x8zeAW7DpwKGAluGEH4KNAGdzewHeCZgF3yhoIhU\nAE0BiNS4EMI84HZgPnBXxu0PAAcC++DrBJ4EfgQ0p+9/ETgdX+H/EpDC1wOISAXQIkARwcweBF4K\n/799OyZiIAaCILhi8IyM50MnpmkABnMOnoMUbDeCDafqpJn36S3AHk4AUGytdeX5u/9Kch+eA2wk\nAKDbN8mV5DMzv9NjgH2cAACgkEeAAFBIAABAIQEAAIUEAAAUEgAAUEgAAEAhAQAAhQQAABQSAABQ\n6A85Hyu5SQccFwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f72ecdfeeb8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.fev1.plot()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>fvc</th>\n", " <th>fev1</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>12.000000</td>\n", " <td>12.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>5.149167</td>\n", " <td>3.517500</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>0.273179</td>\n", " <td>0.371511</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>4.790000</td>\n", " <td>3.110000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>4.907500</td>\n", " <td>3.237500</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>5.140000</td>\n", " <td>3.390000</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>5.372500</td>\n", " <td>3.860000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>5.600000</td>\n", " <td>4.150000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " fvc fev1\n", "count 12.000000 12.000000\n", "mean 5.149167 3.517500\n", "std 0.273179 0.371511\n", "min 4.790000 3.110000\n", "25% 4.907500 3.237500\n", "50% 5.140000 3.390000\n", "75% 5.372500 3.860000\n", "max 5.600000 4.150000" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "fvc 0.074627\n", "fev1 0.138020\n", "dtype: float64" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.var()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment