Last active
February 21, 2018 10:50
-
-
Save drcjar/b9cf3fc2480096f228702912d4b51f5c to your computer and use it in GitHub Desktop.
respiratory mortality 2016
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import matplotlib\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"# data from\n", | |
"# https://www.ons.gov.uk/file?uri=/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathregistrationssummarytablesenglandandwalesreferencetables/2016/deathsummarytables2016final.xls\n", | |
"df = pd.read_csv('deathsummarytables2016final.csv', skiprows=4)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"df.columns = ['icd_code', 'description', 'sex', 'All ages', 'Under 1', '1-4', '5-14', '15-24', '25-34', '35-44', '45-54', '55-64', '65-74', '75-84', '85 and over']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>icd_code</th>\n", | |
" <th>description</th>\n", | |
" <th>sex</th>\n", | |
" <th>All ages</th>\n", | |
" <th>Under 1</th>\n", | |
" <th>1-4</th>\n", | |
" <th>5-14</th>\n", | |
" <th>15-24</th>\n", | |
" <th>25-34</th>\n", | |
" <th>35-44</th>\n", | |
" <th>45-54</th>\n", | |
" <th>55-64</th>\n", | |
" <th>65-74</th>\n", | |
" <th>75-84</th>\n", | |
" <th>85 and over</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>NaN</td>\n", | |
" <td>for individual causes)</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>over</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>A00-R99,</td>\n", | |
" <td>All causes, all ages</td>\n", | |
" <td>M</td>\n", | |
" <td>257,811</td>\n", | |
" <td>1,506</td>\n", | |
" <td>228</td>\n", | |
" <td>299.0</td>\n", | |
" <td>1,487</td>\n", | |
" <td>2,889</td>\n", | |
" <td>5,363</td>\n", | |
" <td>12,615</td>\n", | |
" <td>24,535</td>\n", | |
" <td>50,872</td>\n", | |
" <td>78,904</td>\n", | |
" <td>79,113</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>U00-Y89</td>\n", | |
" <td>NaN</td>\n", | |
" <td>F</td>\n", | |
" <td>267,237</td>\n", | |
" <td>1,205</td>\n", | |
" <td>215</td>\n", | |
" <td>226.0</td>\n", | |
" <td>666</td>\n", | |
" <td>1,475</td>\n", | |
" <td>3,187</td>\n", | |
" <td>8,585</td>\n", | |
" <td>17,042</td>\n", | |
" <td>36,684</td>\n", | |
" <td>69,751</td>\n", | |
" <td>128,201</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" icd_code description sex All ages Under 1 1-4 5-14 15-24 \\\n", | |
"0 NaN for individual causes) NaN NaN NaN NaN NaN NaN \n", | |
"1 NaN NaN NaN NaN NaN NaN NaN NaN \n", | |
"2 A00-R99, All causes, all ages M 257,811 1,506 228 299.0 1,487 \n", | |
"3 U00-Y89 NaN F 267,237 1,205 215 226.0 666 \n", | |
"4 NaN NaN NaN NaN NaN NaN NaN NaN \n", | |
"\n", | |
" 25-34 35-44 45-54 55-64 65-74 75-84 85 and over \n", | |
"0 NaN NaN NaN NaN NaN NaN over \n", | |
"1 NaN NaN NaN NaN NaN NaN NaN \n", | |
"2 2,889 5,363 12,615 24,535 50,872 78,904 79,113 \n", | |
"3 1,475 3,187 8,585 17,042 36,684 69,751 128,201 \n", | |
"4 NaN NaN NaN NaN NaN NaN NaN " | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"df.icd_code = df.icd_code.fillna('0')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>icd_code</th>\n", | |
" <th>description</th>\n", | |
" <th>sex</th>\n", | |
" <th>All ages</th>\n", | |
" <th>Under 1</th>\n", | |
" <th>1-4</th>\n", | |
" <th>5-14</th>\n", | |
" <th>15-24</th>\n", | |
" <th>25-34</th>\n", | |
" <th>35-44</th>\n", | |
" <th>45-54</th>\n", | |
" <th>55-64</th>\n", | |
" <th>65-74</th>\n", | |
" <th>75-84</th>\n", | |
" <th>85 and over</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>212</th>\n", | |
" <td>J00-J99</td>\n", | |
" <td>Diseases of the respiratory system</td>\n", | |
" <td>M</td>\n", | |
" <td>35,457</td>\n", | |
" <td>28</td>\n", | |
" <td>20</td>\n", | |
" <td>28.0</td>\n", | |
" <td>50</td>\n", | |
" <td>81</td>\n", | |
" <td>240</td>\n", | |
" <td>749</td>\n", | |
" <td>2,251</td>\n", | |
" <td>6,488</td>\n", | |
" <td>11,861</td>\n", | |
" <td>13,661</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>215</th>\n", | |
" <td>J092,3</td>\n", | |
" <td>Influenza due to certain identified</td>\n", | |
" <td>M</td>\n", | |
" <td>70</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>3.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8</td>\n", | |
" <td>9</td>\n", | |
" <td>23</td>\n", | |
" <td>19</td>\n", | |
" <td>5</td>\n", | |
" <td>3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>218</th>\n", | |
" <td>J10-J113</td>\n", | |
" <td>Influenza</td>\n", | |
" <td>M</td>\n", | |
" <td>163</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>3.0</td>\n", | |
" <td>5</td>\n", | |
" <td>2</td>\n", | |
" <td>8</td>\n", | |
" <td>19</td>\n", | |
" <td>32</td>\n", | |
" <td>32</td>\n", | |
" <td>40</td>\n", | |
" <td>20</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>221</th>\n", | |
" <td>J12-J18</td>\n", | |
" <td>Pneumonia</td>\n", | |
" <td>M</td>\n", | |
" <td>12,316</td>\n", | |
" <td>11</td>\n", | |
" <td>6</td>\n", | |
" <td>9.0</td>\n", | |
" <td>25</td>\n", | |
" <td>48</td>\n", | |
" <td>109</td>\n", | |
" <td>327</td>\n", | |
" <td>543</td>\n", | |
" <td>1,429</td>\n", | |
" <td>3,401</td>\n", | |
" <td>6,408</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>224</th>\n", | |
" <td>J40-J44</td>\n", | |
" <td>Bronchitis, emphysema and other</td>\n", | |
" <td>M</td>\n", | |
" <td>14,555</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0.0</td>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>48</td>\n", | |
" <td>239</td>\n", | |
" <td>1,180</td>\n", | |
" <td>3,593</td>\n", | |
" <td>5,435</td>\n", | |
" <td>4,056</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>228</th>\n", | |
" <td>J45-J46</td>\n", | |
" <td>Asthma</td>\n", | |
" <td>M</td>\n", | |
" <td>394</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>9.0</td>\n", | |
" <td>6</td>\n", | |
" <td>10</td>\n", | |
" <td>13</td>\n", | |
" <td>21</td>\n", | |
" <td>28</td>\n", | |
" <td>50</td>\n", | |
" <td>118</td>\n", | |
" <td>138</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" icd_code description sex All ages Under 1 1-4 \\\n", | |
"212 J00-J99 Diseases of the respiratory system M 35,457 28 20 \n", | |
"215 J092,3 Influenza due to certain identified M 70 0 0 \n", | |
"218 J10-J113 Influenza M 163 1 1 \n", | |
"221 J12-J18 Pneumonia M 12,316 11 6 \n", | |
"224 J40-J44 Bronchitis, emphysema and other M 14,555 0 1 \n", | |
"228 J45-J46 Asthma M 394 0 1 \n", | |
"\n", | |
" 5-14 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85 and over \n", | |
"212 28.0 50 81 240 749 2,251 6,488 11,861 13,661 \n", | |
"215 3.0 0 0 8 9 23 19 5 3 \n", | |
"218 3.0 5 2 8 19 32 32 40 20 \n", | |
"221 9.0 25 48 109 327 543 1,429 3,401 6,408 \n", | |
"224 0.0 1 2 48 239 1,180 3,593 5,435 4,056 \n", | |
"228 9.0 6 10 13 21 28 50 118 138 " | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df[df.icd_code.str.contains('J')] # resp diseases begin with a J in ICD 10 but is just men.." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"df1 = df.ix[212:230]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"df1 = df1[~df1.sex.isnull()]\n", | |
"df1 = df1[~df1['All ages'].isnull()]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>icd_code</th>\n", | |
" <th>description</th>\n", | |
" <th>sex</th>\n", | |
" <th>All ages</th>\n", | |
" <th>Under 1</th>\n", | |
" <th>1-4</th>\n", | |
" <th>5-14</th>\n", | |
" <th>15-24</th>\n", | |
" <th>25-34</th>\n", | |
" <th>35-44</th>\n", | |
" <th>45-54</th>\n", | |
" <th>55-64</th>\n", | |
" <th>65-74</th>\n", | |
" <th>75-84</th>\n", | |
" <th>85 and over</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>212</th>\n", | |
" <td>J00-J99</td>\n", | |
" <td>Diseases of the respiratory system</td>\n", | |
" <td>M</td>\n", | |
" <td>35,457</td>\n", | |
" <td>28</td>\n", | |
" <td>20</td>\n", | |
" <td>28.0</td>\n", | |
" <td>50</td>\n", | |
" <td>81</td>\n", | |
" <td>240</td>\n", | |
" <td>749</td>\n", | |
" <td>2,251</td>\n", | |
" <td>6,488</td>\n", | |
" <td>11,861</td>\n", | |
" <td>13,661</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>213</th>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>F</td>\n", | |
" <td>36,784</td>\n", | |
" <td>19</td>\n", | |
" <td>32</td>\n", | |
" <td>25.0</td>\n", | |
" <td>32</td>\n", | |
" <td>87</td>\n", | |
" <td>192</td>\n", | |
" <td>573</td>\n", | |
" <td>1,717</td>\n", | |
" <td>5,070</td>\n", | |
" <td>10,368</td>\n", | |
" <td>18,669</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>215</th>\n", | |
" <td>J092,3</td>\n", | |
" <td>Influenza due to certain identified</td>\n", | |
" <td>M</td>\n", | |
" <td>70</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>3.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>8</td>\n", | |
" <td>9</td>\n", | |
" <td>23</td>\n", | |
" <td>19</td>\n", | |
" <td>5</td>\n", | |
" <td>3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>216</th>\n", | |
" <td>0</td>\n", | |
" <td>influenza virus</td>\n", | |
" <td>F</td>\n", | |
" <td>47</td>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>4</td>\n", | |
" <td>12</td>\n", | |
" <td>9</td>\n", | |
" <td>5</td>\n", | |
" <td>10</td>\n", | |
" <td>3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>218</th>\n", | |
" <td>J10-J113</td>\n", | |
" <td>Influenza</td>\n", | |
" <td>M</td>\n", | |
" <td>163</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>3.0</td>\n", | |
" <td>5</td>\n", | |
" <td>2</td>\n", | |
" <td>8</td>\n", | |
" <td>19</td>\n", | |
" <td>32</td>\n", | |
" <td>32</td>\n", | |
" <td>40</td>\n", | |
" <td>20</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>219</th>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>F</td>\n", | |
" <td>150</td>\n", | |
" <td>5</td>\n", | |
" <td>5</td>\n", | |
" <td>1.0</td>\n", | |
" <td>3</td>\n", | |
" <td>3</td>\n", | |
" <td>8</td>\n", | |
" <td>16</td>\n", | |
" <td>24</td>\n", | |
" <td>26</td>\n", | |
" <td>26</td>\n", | |
" <td>33</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>221</th>\n", | |
" <td>J12-J18</td>\n", | |
" <td>Pneumonia</td>\n", | |
" <td>M</td>\n", | |
" <td>12,316</td>\n", | |
" <td>11</td>\n", | |
" <td>6</td>\n", | |
" <td>9.0</td>\n", | |
" <td>25</td>\n", | |
" <td>48</td>\n", | |
" <td>109</td>\n", | |
" <td>327</td>\n", | |
" <td>543</td>\n", | |
" <td>1,429</td>\n", | |
" <td>3,401</td>\n", | |
" <td>6,408</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>222</th>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>F</td>\n", | |
" <td>14,758</td>\n", | |
" <td>3</td>\n", | |
" <td>11</td>\n", | |
" <td>13.0</td>\n", | |
" <td>12</td>\n", | |
" <td>47</td>\n", | |
" <td>91</td>\n", | |
" <td>208</td>\n", | |
" <td>419</td>\n", | |
" <td>1,030</td>\n", | |
" <td>3,121</td>\n", | |
" <td>9,803</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>224</th>\n", | |
" <td>J40-J44</td>\n", | |
" <td>Bronchitis, emphysema and other</td>\n", | |
" <td>M</td>\n", | |
" <td>14,555</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0.0</td>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>48</td>\n", | |
" <td>239</td>\n", | |
" <td>1,180</td>\n", | |
" <td>3,593</td>\n", | |
" <td>5,435</td>\n", | |
" <td>4,056</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>225</th>\n", | |
" <td>0</td>\n", | |
" <td>chronic obstructive pulmonary</td>\n", | |
" <td>F</td>\n", | |
" <td>13,694</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>31</td>\n", | |
" <td>203</td>\n", | |
" <td>947</td>\n", | |
" <td>3,113</td>\n", | |
" <td>4,935</td>\n", | |
" <td>4,463</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>228</th>\n", | |
" <td>J45-J46</td>\n", | |
" <td>Asthma</td>\n", | |
" <td>M</td>\n", | |
" <td>394</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>9.0</td>\n", | |
" <td>6</td>\n", | |
" <td>10</td>\n", | |
" <td>13</td>\n", | |
" <td>21</td>\n", | |
" <td>28</td>\n", | |
" <td>50</td>\n", | |
" <td>118</td>\n", | |
" <td>138</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>229</th>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>F</td>\n", | |
" <td>843</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>3.0</td>\n", | |
" <td>7</td>\n", | |
" <td>17</td>\n", | |
" <td>24</td>\n", | |
" <td>41</td>\n", | |
" <td>44</td>\n", | |
" <td>69</td>\n", | |
" <td>220</td>\n", | |
" <td>418</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" icd_code description sex All ages Under 1 1-4 \\\n", | |
"212 J00-J99 Diseases of the respiratory system M 35,457 28 20 \n", | |
"213 0 NaN F 36,784 19 32 \n", | |
"215 J092,3 Influenza due to certain identified M 70 0 0 \n", | |
"216 0 influenza virus F 47 1 2 \n", | |
"218 J10-J113 Influenza M 163 1 1 \n", | |
"219 0 NaN F 150 5 5 \n", | |
"221 J12-J18 Pneumonia M 12,316 11 6 \n", | |
"222 0 NaN F 14,758 3 11 \n", | |
"224 J40-J44 Bronchitis, emphysema and other M 14,555 0 1 \n", | |
"225 0 chronic obstructive pulmonary F 13,694 0 1 \n", | |
"228 J45-J46 Asthma M 394 0 1 \n", | |
"229 0 NaN F 843 0 0 \n", | |
"\n", | |
" 5-14 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85 and over \n", | |
"212 28.0 50 81 240 749 2,251 6,488 11,861 13,661 \n", | |
"213 25.0 32 87 192 573 1,717 5,070 10,368 18,669 \n", | |
"215 3.0 0 0 8 9 23 19 5 3 \n", | |
"216 0.0 0 1 4 12 9 5 10 3 \n", | |
"218 3.0 5 2 8 19 32 32 40 20 \n", | |
"219 1.0 3 3 8 16 24 26 26 33 \n", | |
"221 9.0 25 48 109 327 543 1,429 3,401 6,408 \n", | |
"222 13.0 12 47 91 208 419 1,030 3,121 9,803 \n", | |
"224 0.0 1 2 48 239 1,180 3,593 5,435 4,056 \n", | |
"225 1.0 0 0 31 203 947 3,113 4,935 4,463 \n", | |
"228 9.0 6 10 13 21 28 50 118 138 \n", | |
"229 3.0 7 17 24 41 44 69 220 418 " | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"df2 = df1[['description', 'sex', 'All ages']].copy()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"df2['All ages'] = df2['All ages'].str.replace(',','')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"df2['All ages'] = df2['All ages'].astype(int)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"df2['percent_of_total_deaths'] = (df2['All ages'] / 257811) * 100" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"df2 = df2.fillna(method='ffill')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"df2.description = df2.description.str.replace('influenza virus', 'Influenza due to certain identified')\n", | |
"df2.description = df2.description.str.replace('chronic obstructive pulmonary', 'Bronchitis, emphysema and other')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 34, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"description\n", | |
"Influenza due to certain identified 0.045382\n", | |
"Influenza 0.121407\n", | |
"Asthma 0.479809\n", | |
"Pneumonia 10.501491\n", | |
"Bronchitis, emphysema and other 10.957252\n", | |
"Diseases of the respiratory system 28.020915\n", | |
"Name: percent_of_total_deaths, dtype: float64" | |
] | |
}, | |
"execution_count": 34, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df2.groupby('description')['percent_of_total_deaths'].sum().sort_values()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7f3ea02cddd8>" | |
] | |
}, | |
"execution_count": 36, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAJdCAYAAABu2D58AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmcHFW9/vHPQ8IiaIKamwS95IIoEBCQjCL5oYhGEhFw\nVxhBgYAKsui44C4Ieq+gEEFAUeCy6SiCLAoSARUUUCRhiTchqCwBMYGBOImBEJbv749zhtR0epae\nFFPdyfN+veaV6apT1d9uhulnTp06RxGBmZmZWRnWqboAMzMzW3M4WJiZmVlpHCzMzMysNA4WZmZm\nVhoHCzMzMyuNg4WZmZmVxsHCzMzMSuNgYWZmZqVxsDAzM7PSOFiYmZlZaRoKFpLWkXS8pHskPS7p\nb5K+XKfdcZIeym2ukfTKmv0vlvQjSd2SFks6S9JGNW22l3SDpCck3S/ps3We5/2S5uU2d0jao5HX\nY2ZmZuVqtMfi88DHgI8DWwNHA0dLOqKngaTPAUfkdjsBy4CZktYrnOfHwERgCrAnsCtwZuEcLwJm\nAvcCk4DPAsdKOqTQZnI+zw+B1wCXAZdJ2qbB12RmZmYlUSOLkEn6BbAwIj5S2HYx8HhEfDg/fgj4\nVkTMyI9HAYuAAyLiIkkTgf8D2iLittxmGnAl8J8RsVDSYcDxwPiIeDq3+R/gnRGxTX78E2DDiHhH\noZabgdsi4uNDfD/MzMxsNTTaY3ETMEXSqwAk7QDsAlyVH28OjAeu6zkgIpYAfwIm5007A4t7QkV2\nLRDA6wttbugJFdlMYCtJo/Pjyfk4atpMxszMzCoxssH23wRGAXdJeoYUTL4UET/J+8eTAsKimuMW\n5X09bR4u7oyIZyQ9VtPmnjrn6NnXnf/t73nMzMxsmDUaLPYBPgjsC8wljW04RdJDEXFBP8eJFDj6\nM1AbDbJN3f2SXgpMA+4Dlg9Qi5mZma20AbAZMDMiHu2vYaPB4kTgvyPiZ/nx/0naDPgCcAGwkPTh\nPo7evQljgZ5LHwvz4+dIGgG8OO/raTOu5rnH0rs3pK82tb0YPaYBP+rzlZmZmdlA9iPdONGnRoPF\nhqzaI/AseaxGRNwraSHpbo874bnBm68HTs/tbwY2lrRjYZzFFFIguaXQ5uuSRkTEM3nbVGB+RHQX\n2kwBTi3UsnveXs99ABdeeCETJ04c9AseLh0dHcyYMaPqMlqO37fG+T0bGr9vjfN7NjTN+L7NmzeP\n/fffH/JnaX8aDRa/AL4k6QHSnR2TgA7grEKb7wBflvS3XMDxwIPA5QARcZekmcAP890f6wHfBToj\noqfH4sfAV4FzJJ0AbAccBXyi8DynANdL+hTpjpJ2oA34CPUtB5g4cSKTJk1q8GU//0aPHt2UdTU7\nv2+N83s2NH7fGuf3bGia/H0bcChBo8HiCFJQOJ102eEh4Ht5GwARcaKkDUnzUmwM/B7YIyJWFM7z\nQeA00l0dzwIXUwgNEbEk34J6GnAr0AUcGxFnF9rcLKkd+Eb++ivpdtS5Db4mMzMzK0lDwSIilgGf\nyl/9tTsWOLaf/f8C9h/gHHOANw3Q5hLgkv7amJmZ2fDxWiFmZmZWGgeLJtHe3l51CS3J71vj/J4N\njd+3xvk9G5pWf98amtK7lUmaBMyaNWtWMw+KMTMzazqzZ8+mra0N0nIcs/tr6x4LMzMzK42DhZmZ\nmZXGwcLMzMxK42BhZmZmpXGwMDMzs9I4WJiZmVlpHCzMzMysNA4WZmZmVhoHCzMzMyuNg4WZmZmV\nxsHCzMzMSuNgYWZmZqVxsDAzM7PSOFiYmZlZaRwszMzMrDQOFmZmZlYaBwszMzMrjYOFmZmZlcbB\nwszMzErjYGFmZmalcbAwMzOz0oysugAzM7NWtmDBArq6uqouo64xY8YwYcKEYX1OBwszM7MhWrBg\nAVttNZHlyx+vupS6NthgQ+bPnzes4cLBwszMbIi6urpyqLgQmFh1OTXmsXz5/nR1dTlYmJmZtZaJ\nwKSqi2gKDQ3elHSvpGfrfH03719f0umSuiQtlXSxpLE159hU0pWSlklaKOlESevUtNlN0ixJyyXd\nLemAOrUcnut5QtIfJb1uKG+AmZmZlafRu0JeC4wvfO0OBHBR3v8dYE/gvcCuwMuAS3oOzgHiKlJP\nyc7AAcCBwHGFNpsBvwSuA3YATgHOkrR7oc0+wEnAMcCOwB3ATEljGnw9ZmZmVqKGgkVEPBoRD/d8\nAXsDf4+I30saBUwHOiLi+oi4DTgI2EXSTvkU04Ctgf0iYk5EzAS+AhwuqeeyzGHAPRFxdETMj4jT\ngYuBjkIpHcCZEXF+RNwFHAo8np/fzMzMKjLkeSwkrQvsB5ydN72W1BNxXU+biJgPLAAm5007A3Mi\nonhfzkxgNLBtoc21NU83s+cc+Xnbap4n8jGTMTMzs8qszgRZ7yYFgvPy43HAiohYUtNuEemyCfnf\nRXX2M4g2oyStD4wBRvTRZjxmZmZWmdW5K2Q68KuIWDhAO5HGYQykvzYaZJsBn6ejo4PRo0f32tbe\n3k57e/uABZqZma3pOjs76ezs7LWtu7t70McPKVhImgC8FXhXYfNCYD1Jo2p6LcaysndhIVB798a4\nwr6ef8fVtBkLLImIFZK6gGf6aFPbi7GKGTNmMGmSbwkyMzOrp94f27Nnz6atrW1Qxw/1Ush00of4\nVYVts4CngSk9GyRtCUwAbsqbbga2q7l7YyrQDcwrtJlCb1PzdiLiqfxcxedRfnwTZmZmVpmGeyzy\nh/iBwLkR8WzP9ohYIuls4GRJi4GlwKnAjRHx59zs18Bc4AJJnwM2AY4HTsuBAeD7wBGSTgDOIQWG\n9wFvL5RxMnCepFnALaS7RDYEzm309ZiZmVl5hnIp5K3ApsD/1tnXQbpMcTGwPnA1cHjPzoh4VtJe\nwPdIvQvLSGHgmEKb+yTtSQoPRwEPAgdHxLWFNhflXo/jSJdEbgemRcQjQ3g9ZmZmVpKGg0VEXEO6\nK6PevieBI/NXX8c/AOw1wHNcT7qltL82ZwBnDFSvmZmZDZ/Vud3UzMzMrBcHCzMzMyuNg4WZmZmV\nxsHCzMzMSuNgYWZmZqVxsDAzM7PSOFiYmZlZaRwszMzMrDQOFmZmZlYaBwszMzMrjYOFmZmZlcbB\nwszMzErjYGFmZmalcbAwMzOz0jhYmJmZWWkcLMzMzKw0DhZmZmZWGgcLMzMzK42DhZmZmZXGwcLM\nzMxK42BhZmZmpXGwMDMzs9I4WJiZmVlpHCzMzMysNA4WZmZmVhoHCzMzMyuNg4WZmZmVpuFgIell\nki6Q1CXpcUl3SJpU0+Y4SQ/l/ddIemXN/hdL+pGkbkmLJZ0laaOaNttLukHSE5Lul/TZOrW8X9K8\n3OYOSXs0+nrMzMysPA0FC0kbAzcCTwLTgInAp4HFhTafA44APgbsBCwDZkpar3CqH+djpwB7ArsC\nZxbO8SJgJnAvMAn4LHCspEMKbSbn8/wQeA1wGXCZpG0aeU1mZmZWnpENtv88sCAiDilsu7+mzSeA\n4yPiFwCSPgwsAt4FXCRpIimUtEXEbbnNkcCVkj4TEQuB/YF1gYMj4mlgnqQdgU8BZxWe51cRcXJ+\nfIykqaRQ8/EGX5eZmZmVoNFLIXsDt0q6SNIiSbNrehE2B8YD1/Vsi4glwJ+AyXnTzsDinlCRXQsE\n8PpCmxtyqOgxE9hK0uj8eHI+jpo2kzEzM7NKNBosXgEcBswHpgLfB06VtH/eP54UEBbVHLco7+tp\n83BxZ0Q8AzxW06beORhEm/GYmZlZJRq9FLIOcEtEfCU/vkPStqSwcWE/x4kUOPozUBsNss1Az2Nm\nZmbPk0aDxT+BeTXb5gHvyd8vJH24j6N3b8JY4LZCm7HFE0gaAbw47+tpM67mecbSuzekrza1vRi9\ndHR0MHr06F7b2tvbaW9v7+8wMzOztUJnZyednZ29tnV3dw/6+EaDxY3AVjXbtiIP4IyIeyUtJN3t\ncSeApFGksROn5/Y3AxtL2rEwzmIKKZDcUmjzdUkj8mUSSJde5kdEd6HNFODUQi275+19mjFjBpMm\nTeqviZmZ2Vqr3h/bs2fPpq2tbVDHNzrGYgaws6QvSNpC0geBQ4DTCm2+A3xZ0t6StgPOBx4ELgeI\niLtIgyx/KOl1knYBvgt05jtCIN1GugI4R9I2kvYBjgJOKjzPKcAekj4laStJxwJtNbWYmZnZMGoo\nWETErcC7gXZgDvAl4BMR8ZNCmxNJQeFM0t0gLwD2iIgVhVN9ELiLdFfHL4EbSPNe9JxjCemW1M2A\nW4FvAcdGxNmFNjfnOj4K3E66HPPOiJjbyGsyMzOz8jR6KYSIuAq4aoA2xwLH9rP/X6S5Kvo7xxzg\nTQO0uQS4pL82ZmZmNny8VoiZmZmVxsHCzMzMSuNgYWZmZqVxsDAzM7PSOFiYmZlZaRwszMzMrDQO\nFmZmZlYaBwszMzMrjYOFmZmZlcbBwszMzErjYGFmZmalcbAwMzOz0jhYmJmZWWkcLMzMzKw0DhZm\nZmZWGgcLMzMzK42DhZmZmZXGwcLMzMxK42BhZmZmpXGwMDMzs9I4WJiZmVlpHCzMzMysNA4WZmZm\nVhoHCzMzMyuNg4WZmZmVxsHCzMzMSuNgYWZmZqVxsDAzM7PSNBQsJB0j6dmar7mF/etLOl1Sl6Sl\nki6WNLbmHJtKulLSMkkLJZ0oaZ2aNrtJmiVpuaS7JR1Qp5bDJd0r6QlJf5T0ukZfvJmZmZVrKD0W\nfwHGAePz1xsK+74D7Am8F9gVeBlwSc/OHCCuAkYCOwMHAAcCxxXabAb8ErgO2AE4BThL0u6FNvsA\nJwHHADsCdwAzJY0ZwusxMzOzkgwlWDwdEY9ExMP56zEASaOA6UBHRFwfEbcBBwG7SNopHzsN2BrY\nLyLmRMRM4CvA4ZJG5jaHAfdExNERMT8iTgcuBjoKNXQAZ0bE+RFxF3Ao8Hh+fjMzM6vIUILFqyT9\nQ9LfJV0oadO8vY3UE3FdT8OImA8sACbnTTsDcyKiq3C+mcBoYNtCm2trnnNmzzkkrZufq/g8kY+Z\njJmZmVWm0WDxR9Kli2mkXoLNgRskbUS6LLIiIpbUHLMo7yP/u6jOfgbRZpSk9YExwIg+2ozHzMzM\nKjNy4CYr5UsXPf4i6RbgfuADwPI+DhMQgzl9P/s0yDaDeR4zMzN7njQULGpFRLeku4FXki5FrCdp\nVE2vxVhW9i4sBGrv3hhX2Nfz77iaNmOBJRGxQlIX8EwfbWp7MVbR0dHB6NGje21rb2+nvb19oEPN\nzMzWeJ2dnXR2dvba1t3dPejjVytYSHohsAVwHjALeBqYAlya928JTABuyofcDHxR0pjCOIupQDcw\nr9Bmj5qnmpq3ExFPSZqVn+eK/DzKj08dqOYZM2YwadKkhl+rmZnZ2qDeH9uzZ8+mra1tUMc3FCwk\nfQv4Benyx8uBr5HCxE8iYomks4GTJS0GlpI+6G+MiD/nU/wamAtcIOlzwCbA8cBpEfFUbvN94AhJ\nJwDnkALD+4C3F0o5GTgvB4xbSHeJbAic28jrMTMzs3I12mPxn8CPgZcCjwB/AHaOiEfz/g7SZYqL\ngfWBq4HDew6OiGcl7QV8j9SLsYwUBo4ptLlP0p6k8HAU8CBwcERcW2hzUZ6z4jjSJZHbgWkR8UiD\nr8fMzMxK1OjgzX4HIkTEk8CR+auvNg8Aew1wnutJt5T21+YM4Iz+2piZmdnw8lohZmZmVhoHCzMz\nMyuNg4WZmZmVxsHCzMzMSuNgYWZmZqVxsDAzM7PSOFiYmZlZaRwszMzMrDQOFmZmZlYaBwszMzMr\njYOFmZmZlcbBwszMzErjYGFmZmalcbAwMzOz0jhYmJmZWWkcLMzMzKw0DhZmZmZWGgcLMzMzK42D\nhZmZmZXGwcLMzMxK42BhZmZmpXGwMDMzs9I4WJiZmVlpHCzMzMysNA4WZmZmVhoHCzMzMyuNg4WZ\nmZmVxsHCzMzMSrNawULSFyQ9K+nkwrb1JZ0uqUvSUkkXSxpbc9ymkq6UtEzSQkknSlqnps1ukmZJ\nWi7pbkkH1Hn+wyXdK+kJSX+U9LrVeT1mZma2eoYcLPKH+EeAO2p2fQfYE3gvsCvwMuCSwnHrAFcB\nI4GdgQOAA4HjCm02A34JXAfsAJwCnCVp90KbfYCTgGOAHXMdMyWNGeprMjMzs9UzpGAh6YXAhcAh\nwL8K20cB04GOiLg+Im4DDgJ2kbRTbjYN2BrYLyLmRMRM4CvA4ZJG5jaHAfdExNERMT8iTgcuBjoK\nZXQAZ0bE+RFxF3Ao8Hh+fjMzM6vAUHssTgd+ERG/qdn+WlJPxHU9GyJiPrAAmJw37QzMiYiuwnEz\ngdHAtoU219ace2bPOSStC7TVPE/kYyZjZmZmlRg5cJPeJO0LvIYUImqNA1ZExJKa7YuA8fn78flx\n7f6efXf002aUpPWBlwAj+miz1eBeiZmZmZWtoWAh6T9JYyh2j4inGjkUiEG066+NBtlmMM9jZmZm\nz4NGeyzagP8AZknq+aAfAewq6QjgbcD6kkbV9FqMZWXvwkKg9u6NcYV9Pf+Oq2kzFlgSESskdQHP\n9NGmthejl46ODkaPHt1rW3t7O+3t7f0dZmZmtlbo7Oyks7Oz17bu7u5BH99osLgW2K5m27nAPOCb\nwD+Ap4ApwKUAkrYEJgA35fY3A1+UNKYwzmIq0J3P09Nmj5rnmZq3ExFPSZqVn+eK/DzKj0/t7wXM\nmDGDSZMmDe7VmpmZrWXq/bE9e/Zs2traBnV8Q8EiIpYBc4vbJC0DHo2Iefnx2cDJkhYDS0kf9DdG\nxJ/zIb/O57hA0ueATYDjgdMKl1e+Dxwh6QTgHFJgeB/w9sJTnwyclwPGLaS7RDYkBR0zMzOrQMOD\nN+uoHdPQQbpMcTGwPnA1cPhzjSOelbQX8D1SL8YyUhg4ptDmPkl7ksLDUcCDwMERcW2hzUV5zorj\nSJdEbgemRcQjJbwmMzMzG4LVDhYR8Zaax08CR+avvo55ANhrgPNeTxrT0V+bM4AzBl2smZmZPa+8\nVoiZmZmVxsHCzMzMSuNgYWZmZqVxsDAzM7PSOFiYmZlZaRwszMzMrDQOFmZmZlYaBwszMzMrjYOF\nmZmZlcbBwszMzErjYGFmZmalcbAwMzOz0jhYmJmZWWkcLMzMzKw0DhZmZmZWGgcLMzMzK42DhZmZ\nmZXGwcLMzMxK42BhZmZmpXGwMDMzs9I4WJiZmVlpHCzMzMysNA4WZmZmVhoHCzMzMyuNg4WZmZmV\nxsHCzMzMSuNgYWZmZqVxsDAzM7PSNBQsJB0q6Q5J3fnrJklvK+xfX9LpkrokLZV0saSxNefYVNKV\nkpZJWijpREnr1LTZTdIsScsl3S3pgDq1HC7pXklPSPqjpNc1+uLNzMysXI32WDwAfA5oy1+/AS6X\nNDHv/w6wJ/BeYFfgZcAlPQfnAHEVMBLYGTgAOBA4rtBmM+CXwHXADsApwFmSdi+02Qc4CTgG2BG4\nA5gpaUyDr8fMzMxK1FCwiIgrI+LqiPhb/voy8G9gZ0mjgOlAR0RcHxG3AQcBu0jaKZ9iGrA1sF9E\nzImImcBXgMMljcxtDgPuiYijI2J+RJwOXAx0FErpAM6MiPMj4i7gUODx/PxmZmZWkSGPsZC0jqR9\ngQ2Bm0k9GCNJPQ0ARMR8YAEwOW/aGZgTEV2FU80ERgPbFtpcW/N0M3vOIWnd/FzF54l8zGTMzMys\nMg0HC0mvlrQUeBI4A3h37jUYD6yIiCU1hyzK+8j/Lqqzn0G0GSVpfWAMMKKPNuMxMzOzyowcuMkq\n7iKNfdiYNJbifEm79tNeQAzivP210SDbDPg8HR0djB49ute29vZ22tvbByzQzMxsTdfZ2UlnZ2ev\nbd3d3YM+vuFgERFPA/fkh7Pz+IlPABcB60kaVdNrMZaVvQsLgdq7N8YV9vX8O66mzVhgSUSskNQF\nPNNHm9pejFXMmDGDSZMmDdTMzMxsrVTvj+3Zs2fT1tY2qOPLmMdiHWB9YBbwNDClZ4ekLYEJwE15\n083AdjV3b0wFuoF5hTZT6G1q3k5EPJWfq/g8yo9vwszMzCrTUI+FpG8AvyLddvoiYD/gTcDUiFgi\n6WzgZEmLgaXAqcCNEfHnfIpfA3OBCyR9DtgEOB44LQcGgO8DR0g6ATiHFBjeB7y9UMrJwHmSZgG3\nkO4S2RA4t5HXY2ZmZuVq9FLIOOB8UiDoBu4khYrf5P0dpMsUF5N6Ma4GDu85OCKelbQX8D1S78Iy\nUhg4ptDmPkl7ksLDUcCDwMERcW2hzUW51+O4XNPtwLSIeKTB12NmZmYlaihYRMQhA+x/Ejgyf/XV\n5gFgrwHOcz3pltL+2pxBuivFzMzMmsRQ7goxM7M11IIFC+jq6hq4YQXGjBnDhAkTqi7DBuBgYWZm\nQAoVW201keXLH6+6lLo22GBD5s+f53DR5BwszMwMgK6urhwqLgQmDtR8mM1j+fL96erqcrBocg4W\nZmZWYyLg+X5saMqYx8LMzMwMcI+Fma2hPAjRrBoOFma2xvEgRLPqOFiY2RrHgxDNquNgYWZrMA9C\nNBtuHrxpZmZmpXGwMDMzs9I4WJiZmVlpHCzMzMysNA4WZmZmVhoHCzMzMyuNg4WZmZmVxsHCzMzM\nSuNgYWZmZqVxsDAzM7PSOFiYmZlZaRwszMzMrDQOFmZmZlYaBwszMzMrjYOFmZmZlcbBwszMzErj\nYGFmZmalcbAwMzOz0jhYmJmZWWkaChaSviDpFklLJC2SdKmkLWvarC/pdEldkpZKuljS2Jo2m0q6\nUtIySQslnShpnZo2u0maJWm5pLslHVCnnsMl3SvpCUl/lPS6Rl6PmZmZlavRHos3At8FXg+8FVgX\n+LWkFxTafAfYE3gvsCvwMuCSnp05QFwFjAR2Bg4ADgSOK7TZDPglcB2wA3AKcJak3Qtt9gFOAo4B\ndgTuAGZKGtPgazIzM7OSjGykcUS8vfhY0oHAw0Ab8AdJo4DpwL4RcX1ucxAwT9JOEXELMA3YGnhz\nRHQBcyR9BfimpGMj4mngMOCeiDg6P9V8SW8AOoBr8rYO4MyIOD8/z6GkQDMdOLGR12VmZmblWN0x\nFhsDATyWH7eRwsp1PQ0iYj6wAJicN+0MzMmhosdMYDSwbaHNtTXPNbPnHJLWzc9VfJ7Ix0zGzMzM\nKjHkYCFJpMsef4iIuXnzeGBFRCypab4o7+tps6jOfgbRZpSk9YExwIg+2ozHzMzMKtHQpZAaZwDb\nAG8YRFuRejYG0l8bDbJNv8/T0dHB6NGje21rb2+nvb19EOWZmZmt2To7O+ns7Oy1rbu7e9DHDylY\nSDoNeDvwxoh4qLBrIbCepFE1vRZjWdm7sBCovXtjXGFfz7/jatqMBZZExApJXcAzfbSp7cXoZcaM\nGUyaNKm/JmZmZmuten9sz549m7a2tkEd3/ClkBwq3kkafLmgZvcs4GlgSqH9lsAE4Ka86WZgu5q7\nN6YC3cC8Qpsp9DY1bycinsrPVXwe5cc3YWZmZpVoqMdC0hlAO/AOYJmknh6D7ohYHhFLJJ0NnCxp\nMbAUOBW4MSL+nNv+GpgLXCDpc8AmwPHAaTkwAHwfOELSCcA5pMDwPlIvSY+TgfMkzQJuId0lsiFw\nbiOvyczMzMrT6KWQQ0ljGH5Xs/0g4Pz8fQfpMsXFwPrA1cDhPQ0j4llJewHfI/UuLCOFgWMKbe6T\ntCcpPBwFPAgcHBHXFtpclHs9jiNdErkdmBYRjzT4mszMzKwkjc5jMeClk4h4Ejgyf/XV5gFgrwHO\ncz3pltL+2pxBGkRqZmZmTcBrhZiZmVlpHCzMzMysNA4WZmZmVhoHCzMzMyuNg4WZmZmVxsHCzMzM\nSuNgYWZmZqVxsDAzM7PSOFiYmZlZaRwszMzMrDQOFmZmZlYaBwszMzMrjYOFmZmZlcbBwszMzErj\nYGFmZmalcbAwMzOz0jhYmJmZWWkcLMzMzKw0DhZmZmZWGgcLMzMzK42DhZmZmZXGwcLMzMxK42Bh\nZmZmpXGwMDMzs9I4WJiZmVlpHCzMzMysNA4WZmZmVpqGg4WkN0q6QtI/JD0r6R112hwn6SFJj0u6\nRtIra/a/WNKPJHVLWizpLEkb1bTZXtINkp6QdL+kz9Z5nvdLmpfb3CFpj0Zfj5mZmZVnKD0WGwG3\nA4cDUbtT0ueAI4CPATsBy4CZktYrNPsxMBGYAuwJ7AqcWTjHi4CZwL3AJOCzwLGSDim0mZzP80Pg\nNcBlwGWSthnCazIzM7MSjGz0gIi4GrgaQJLqNPkEcHxE/CK3+TCwCHgXcJGkicA0oC0ibsttjgSu\nlPSZiFgI7A+sCxwcEU8D8yTtCHwKOKvwPL+KiJPz42MkTSWFmo83+rrMzMxs9ZU6xkLS5sB44Lqe\nbRGxBPgTMDlv2hlY3BMqsmtJvR+vL7S5IYeKHjOBrSSNzo8n5+OoaTMZMzMzq0TZgzfHkwLCoprt\ni/K+njYPF3dGxDPAYzVt6p2DQbQZj5mZmVViuO4KEXXGYzTYRoNsM9DzmJmZ2fOk4TEWA1hI+nAf\nR+/ehLHAbYU2Y4sHSRoBvDjv62kzrubcY+ndG9JXm9pejF46OjoYPXp0r23t7e20t7f3d5iZmdla\nobOzk87Ozl7buru7B318qcEiIu6VtJB0t8edAJJGkcZOnJ6b3QxsLGnHwjiLKaRAckuhzdcljciX\nSQCmAvMjorvQZgpwaqGE3fP2Ps2YMYNJkyYN9SWamZmt0er9sT179mza2toGdfxQ5rHYSNIOkl6T\nN70iP940P/4O8GVJe0vaDjgfeBC4HCAi7iINsvyhpNdJ2gX4LtCZ7wiBdBvpCuAcSdtI2gc4Cjip\nUMopwB6SPiVpK0nHAm3AaY2+JjMzMyvHUHosXgv8lnRZIlj5YX8eMD0iTpS0IWleio2B3wN7RMSK\nwjk+SAoA1wLPAheTbh8F0p0kkqblNrcCXcCxEXF2oc3NktqBb+SvvwLvjIi5Q3hNZmZmVoKhzGNx\nPQP0dETEscCx/ez/F2muiv7OMQd40wBtLgEu6a+NmZmZDR+vFWJmZmalcbAwMzOz0jhYmJmZWWkc\nLMzMzKycv4+uAAAgAElEQVQ0DhZmZmZWGgcLMzMzK42DhZmZmZXGwcLMzMxK42BhZmZmpXGwMDMz\ns9I4WJiZmVlpHCzMzMysNA4WZmZmVhoHCzMzMyuNg4WZmZmVxsHCzMzMSuNgYWZmZqVxsDAzM7PS\nOFiYmZlZaRwszMzMrDQOFmZmZlYaBwszMzMrjYOFmZmZlcbBwszMzErjYGFmZmalcbAwMzOz0jhY\nmJmZWWkcLMzMzKw0I6suYHVJOhz4DDAeuAM4MiL+XG1Vjevs7KS9vb3qMlrO2vK+LViwgK6urlLO\ndfXVV/O2t72tlHMBjBkzhgkTJpR2vubVCaz5P2vl8ns2NK39vrV0sJC0D3AS8FHgFqADmClpy4go\n57fwMFlbPiDLtja8bwsWLGCrrSayfPnjpZ3zS1/6Umnn2mCDDZk/f95aEC5a+5d9NfyeDU1rv28t\nHSxIQeLMiDgfQNKhwJ7AdODEKgszK0tXV1cOFRcCE0s4Ywcwo4TzAMxj+fL96erqWguChZkNRssG\nC0nrAm3Af/dsi4iQdC0wubLCrF9ldukDdHd3M3v27FLO1fxd+hOBSSWcZ3RJ5zEzW1XLBgtgDDAC\nWFSzfRGw1XAUUOaHZJkfkNCcH5LPR5c+QFtbWynnWXu69M3Mnj+tHCz6IiDqbN8AYN68eaU8yT//\n+U/e8573sWLF8lLOB+V9QAKst94G/PznF7PJJpuUds7VNW/evBwqDgbKquunwD4lnOefLF9+Nr//\n/e+ZOLGMyw3lWfkzexVQxs/vg8CPSjgPwL1Aef9flaX89wzKe9+a8z0D/6wNxdrys1Y4xwYDtVVE\nvc/g5pcvhTwOvDcirihsPxcYHRHvrmn/Qcr7CTczM1sb7RcRP+6vQcv2WETEU5JmAVOAKwAkKT8+\ntc4hM4H9gPuA8roZzMzM1nwbAJuRPkv71bI9FgCSPgCcB3yMlbebvg/YOiIeqbI2MzOztVHL9lgA\nRMRFksYAxwHjgNuBaQ4VZmZm1WjpHgszMzNrLl4rxMzMzErjYGFmZqtF0rqSrpP0qqprseq19BiL\nViJp+8G2jYg7n89azMzKlO/SG/TvOFsp3834PuDNwFhq/uCPiPdUUdfq8BiLYSLpWdLEXX1N4PWc\niBgxLEWZmZVE0gzgyYj4fNW1tBJJp5DubPwtaeboXp8PEXFQFXWtDvdYDJ/NC9/vCHwb+BZwc942\nGfg0cPQw19WSJG0DTADWK24vTpZmiaTXAe+n/vvVcn8NDTf/rA3aSGC6pN2BW4FlxZ0R8alKqmp+\nHwLeExFXVV1IWRwshklE3N/zvaSfAUfV/CDdKekB4HjgsuGur1VIegVwKbAdK3uAYGXKd29PgaR9\ngfNJk9pMBX4NvAoYT3ofrQ/+WWvYq4GeBY+2rNnnrvG+dQP3VF1EmXwppAKSngAmRcS8mu0TgdkR\n8YJqKmt+kn4BPAN8hPQ/407AS4GTgM9ExO8rLK/pSLoTODMiTpe0FNiBtIDAmcA/I+KYSgtsYv5Z\ns+Eg6QDgbcD0iHii6nrK4GBRAUmzgb8Ah0TEirxtPeAs4NUR4TWt+yCpC3hLRNwpqRvYKSLmS3oL\ncFJE7FhxiU1F0jJg24i4T9KjwG4RMSeH2N9ERPOsUtdk/LM2NJJeCWwB3BART0hS+IOmT5JeQOoZ\n24W05MRTxf2t+HngSyHVOBT4BfBg/osySH9JBrB3lYW1gBHAv/P3XcDLgPnA/cBWVRXVxB4DXpS/\n/wepu3oOsDGwYVVFtQj/rDVA0kuBi0h3NwTpkts9wNmSFkfEp6usr4mdB7QBF1Jn8GYrcrCoQETc\nImlzYH9ga9K124uAH0fEsn4Ptr8A25N+Yf0JOFrSCuCjrGHXKUvye2B3Upj4GXBK/ot7d+C6Kgtr\nAf5Za8wM0l/bE+i9fvhPgZNJg9NtVXuSlqL4Q9WFlMXBoiIR8Tjwg6rraEFfBzbK338V+CXpw/NR\nYJ+qimpiR5BWJQT4BukX//8DLiG9l9Y3/6w1ZirpA/LBNDXDc/4K/Fc1JbWEB4AlVRdRJo+xqIik\nD5HuXX4FMDki7pfUAdwTEZdXW11rkfQSYLGv49rzzT9rfcuDgydFxF97BgpHxD2SXgvMjIiXVlxi\nU5K0J3AkcGhE3FdxOaXwlN4VkHQYqWvwV8CLWXnb2mLgk1XV1QokfTjPK/CciHgMWF/Shysqq+lJ\nGivp1ZK2L35VXVeriYjHHCr69Hug+P9gSFqHNDfPb6spqSVcSBqX8ndJSyU9VvyqurihcI9FBSTN\nBb4YEZfVJPtXA7+LiDEVl9i08gymy4ADI+KSwvZxwEOetbQ3SW2kwWETWTkPQ4/w+9WbpJ+TfraW\n5O/75MnFesu/v64jzWXxFuAKYFvgJcAuEfH3CstrWvl20z5FxHnDVUtZPMaiGpsDt9XZ/iQrr+la\n344BLpC0XUQcW3UxTe4c4G7gYNaQEefPs25WvkfdVRbSaiLiL5K2JI3rWQq8EPg5cHpE/LPS4ppY\nKwaHgbjHogK5x+ILEXF5TY/FkcBBrXjf8nDJPRbjSWNTLgVuJE2JOwr3WKwi/3ztGBF/q7oWM6tP\n0hbAQaT5Pz4REQ9L2gNYEBH/V211jXOPRTVOBk6XtAGpe3onSe3AF4BDKq2s+QVARPxR0utJ3a03\nkeYGsVVdR5ojxcHCnneSNibNUFpvlc7zKymqyUl6E2m83Y3ArsCXgIdJ/98eTFr5tKW4x6IikvYD\njiUlVEiTFx0bEWdXVlQL6OmxiIiH8+MNgR8BU4CN3GPRm6QxpDEWt5DmZaid1c8LafUhj9v5Nuln\nayw1Y1T8s9abpL1J/y9uRLoUUvxwiYh4SSWFNTlJNwM/i4iTa3qwdwIujYiXV1xiwxwsKpY/GF/Y\n80Fp/ZN0DPCtPA9IcfvXgF0j4s3VVNac8i/7C0iXimp58GY/JP2KNNnTacA/WXU5a98WXiDpbuAq\n0sD0xwdqb4mkfwPbRcS9NcFiM+CuiNig3xM0IQcLszWYpPtIEzsdHxGLKi6npeRf8m+MiNurrqUV\n5HVptosIz0raAEkPAh+IiJtqgsW7gW9HxBYDnKLpeIzFMMkLj02JiMWSbqOf0fkevNm/PPJ8N1a9\njhsRcXwlRTWvlwIzHCqG5AFWvUXX+jYTeC2e7rxRPwFOkPR+0ufCOpJ2IV2Ga8lxKQ4Ww+dy0u2k\nAJdVWUgrk/QR4HukRaEWUnMdF3Cw6O3n5Ml3qi6kBX0S+Kakj60pMyKWTdI7Cg+vBL6VJ7Cbg8fz\nDNYXgdNJQXYEMDf/+2NadNp9XwoZJpKOAn4QEcslTQAejIhnq66r1Ui6HzgjIk6oupZWIOlLpA/I\nK6n/y/7UKupqBZIWk1aAHQk8zqrv3Vo/GDEPph4Mj+cZgKRNge1I83/cFhF/rbikIXOwGCaSngZe\nlu9PfgbYxAM2GydpCfAaX8cdHEn39rM7IuIVw1ZMi1kTZ0S05iPpq6SxFLUD0l8AfDYijqumsqFz\nsBgmkhYA/0MaNX0v6VpkV722EbFgGEtrKZLOBv4cEd+vuhYzWymv1fPTiHiyZvt6wL6ex6K+vv7Q\nlPRS4OFW7OlxsBgmkj4KfJf+x7UIdxn2S9IXgE/hrn0bBpJGAO8irbUSpOvfV0TEM5UW1oTWxA/I\n4ZAvJ42LiEdqtr+FFNT+o5rKhs7BYhhJehHwX8CdwFuBR+u1i4g7hrOuVuKu/cbkD8YDWTnJU+1s\niG+poKyWIOmVpB7GlwPzScF/S9Iguz29qFZv/XxA7gD81mNSestjeAIYDSyh90D0EaSxFt+PiMMr\nKG+1OFhUIF+7/Ultl6FZ2SSdRgoWV1J/kqeOCspqCZKuIoWJ/SLisbztpaRlrp+NiD2rrK9ZFG6f\n3wH4P+Dpwu4RpEUXr46ID1RQXtPKnwMiLRT4SXovercCuC8ibq6ittXlYGEtKV+33Rz4e0Q8PVD7\ntZWkLuDDEXFV1bW0mjzh084RMadm+w7AjRHxwmoqay55NlxIqw6fBPy7sHsFcB9wSUSsGObSWkJe\nK+TGNen3mOexGCaSHgO2jIiuQhdYXe4y7FueAv27QM+I/S2BeyR9F/hHRHyzsuKa0wq8ANlQPQm8\nqM72F5LeVwMi4mvw3CyvP42I5dVW1HKWksbwzAGQ9E7SSqdzSetHtdzPmoPF8Okg/QD1fO+uoqH5\nH1KX627A1YXt15IWdXOw6O0k4BOSjgh3Tzbql8APJB1MWsQN4PXA90mr6lpBz+23ktooDHaNiNsq\nLaz5nUn6vTVH0iuAn5Imtns/aR6VT1ZY25D4Uoi1lDxB1j552fTivPqvBGZHRL3FttYqkn5es+kt\nwGOk69+1d9G8Z7jqajV5CfDzgL1Z+b6NJIWKAyOiu69j10aSxpKmp94N+Bdp/MBo4Lek200f6fvo\ntZekbmBSRPxd0ueAt0TEtDyt908iYtOKS2yYeywq4NuyVst/APUmFtsI9wL1qP3Au7SSKlpcRPwL\neKekVwFbkz4o50aELy3V913SKrrbRsQ8gDy993nAqUB7hbU1M7Hybq23knrKIN19NKaSilaTg0U1\n+lrYaH187XYgtwJ7kn6JwcowcQjQkiOoyxYRB1Vdw5okT63cstMrD6O3AW/tCRUAETFX0uHAr6sr\nq+ndCnxZ0rXAm4DD8vbNgZZcPNDBYhjl9UIgfRgeIqk4enoEsCtw17AX1lq+CPwq/yU0kjR+YFtg\nMul/SiuQ9BvgPfmv7+L2UcBlnseib5IEvI+0iFu9OUB8Gam3dai51JY9Rc17Z710AD8iTcT2jUKP\n2PuAmyqrajV4jMUwKkzu9F/Ag0Bx9r6e27K+GhF/GubSWoqkLYDPkwZxvhCYDZxQe1ugPTdp0fg6\nl93Gku6iWbeaypqfpFOAj5HGCCxi1TlA3DNUIOlyYGOgPSIeytteTvrQXBwR766yvlYjaQPgmYio\nF9aamoNFBST9lvRX5OKqa7E1k6Tt87e3s3LwZo8RpG7rj0XEZsNcWsvIt4jv7zlABievznk58GrS\n+IAAJpBuo3xnRDxYYXlNS9K5wDkRcUPVtZTFl0IqEBFvrrqGVpWXnO+TF3B7zu2kX+wB/KbO/ieA\nI4e1otbTDXgV3UGKiAeASZJ2p/dg12urrazpvRi4Ji9U+b/AeRHxj4prWi3usaiA128Yuty139/k\nYr6jBpD0X6Rf7PcAOwHFW/1WkO4+8kJa/chTLr8NmB4RT1Rdj625JP0H8CHSxH/bkOblOYc0DsqX\nQmxgXr9h6PJ0ykXrAjuSVjz9UkTUzuFgNiSSXkC6VXcX0vin2jlAJlVQlq3hJE0izbx5CGl69AuB\nM/LdSS3Bl0KqsS/wAV+7bVwfK7/eKukh4LOkGessy391d0XElfnxicBHSdMFt0fE/VXW1+TOA9pI\nv9hXGbxpVjZJmwC7A1NJg/uvArYD5ko6OiJmVFnfYLnHogL5Q3C3iLi76lrWFHnmzTsiYqOqa2km\nkuYDh0XEbyRNBq4jTRG8F/C0b5nsW16EbFpE/KHqWmzNJWld4B2kXoqpwJ3AWcCPImJpbvNu0gDP\nF1dWaAPcY1ENr98wRHn+hV6bgE1I64S0TFfhMNqUlYuQvQu4OCJ+IOlG4HeVVdUaHgCWVF2ErfH+\nSRpn1wnsFBG312nzW9I06S3BwaIabyBNurOHJK/f0Jh/sWqXtEgfAvsOfzlN79/AS4EFpL+GerpS\nlwMvqKqoFvFp4ERJh0bEfVUX04zqBP0+RYRDWn0dwM/6WxU2T3C3+fCVtHocLKrxL7x+w1DV3qr7\nLOmOh79FxNMV1NPsrgHOknQbaYn5K/P2bQGPr+jfhaTVJf8u6XFW/QPgJZVU1VzqBf2++I6tOiLi\nguLjHNbeAswvTo/eShwsKuAZ+4YuIq6vuoYWczjwddIlkfdGxKN5exup69X61nLLVVegGPQ3Iy3/\nfS4r1+2ZTLqF8gvDWlULkXQRcENEnJbvRLqV9F5K0r4RcUmlBQ6BB29WRNJI0vLCWwA/joilkl4G\nLImIf/d78FpG0jsG2zYirng+a2l1kl5EWmXyEKDN835YWSRdB5wVEZ012z8IfDQidquksCYnaSFp\nkPAd+b36Gmm5ggNI79uOlRY4BA4WFciTF11Nmu52fWDLiLgnr02wfkQcWmmBTSZPijUY4Q/K+iTt\nCkwnLWz0EOm23Esi4s+VFtbEPMtrY/Lloh1q51uQtCVwe0RsWE1lzU3SE6TPgAcknQ88FBGfzz9/\ncyPihRWX2DBfCqnGKaTurh2ARwvbLwV+WElFTSwivDLiEOR74g8ADgZGAReRguy7ImJulbW1iPvo\nf/yAQ2xvDwAfAY6u2X5I3mf1PQBMzmvTvI2Vg9BfTBpk3XIcLKrxBmCXiFiRVmZ+zn3AyyupqInl\n/+FeFRGPSjoH+ETP/d1Wn6QrSMvIX0kaK3B1RDwjyb1hg1fbBd1rltfhL6fpdQCXSNoD+BMplL0e\neBXw3ioLa3LfIa0A+2/SgOrf5e27khZwazm+FFIBSYtJwWKupKWk7sN7JL2B1D09ruISm4qkfwPb\n5/foGdIy4I8MdNzaTNLTwKnA94pd05KeIv28ucdiiCTtCXzWYwZWJek/gY9TWIQM+H5eoMz6IKmN\ndGn8mp4xdvnn7F8RcWOlxQ2Bg0UFJP0U6I6Ij+ZgsT3plsnLgQW+a6Q3SdcA44BZpK79n5JW51xF\nREwfxtKaVp5lczrwAeAu4ALS+/YQDharxbO8mvXPwaICOdXPJCX6V5HGW7wK6AJ2jYiHKyyv6Uga\nR+pm3QJ4D+m9e7Je24h49zCW1vQkbUi6ZjudtMrpCFJX/jm+nNS/AWZ53ToiXjPsRTU5SRuTfs7q\nrdp8fiVF2bBzsKhIvt10X1JvxQuB2aS54b08cz8k3Qu8tjAfgw2SpK1IAzk/BGxM6nYd9K28a5t8\nN1Kfs7xGxM2rHrX2krQ3aazARsBSer934QnF1h4OFmZrGUkjgL2B6Q4WfZP0pppNnuW1H5LuJq3G\n+cWIeLzqeqw6DhbDxJM8lUfSFGAK9btbPcbCrAJ5NdjtIuKeqmuxavl20+FzWc3jIHWr1m4D3x/f\nJ0nHAF8ljUv5J4Nfp8CsYZI+BBxKWgBqckTcL6kDuCciLq+2uqYzE3gt4GDRAEn3AecA564pk645\nWAyT4iRPkt4KnAB8kTSnfgD/j7SmwxcrKbB1HAocWLtwj1nZJB0GHEeaZ+BLrAz8i0lzgzhY9HYl\n8C1J25DmX6hdtM09sfWdQrrb7auSfgucDVwaEXUHqLcCXwqpgKS/AIdGxB9qtr8R+EFETKymsuYn\n6VFgp4j4e9W12JpN0lzSeIHLauabeTXwu4gYU3GJTWWAqfc93f4AJE0CDiSt5TMC+DHp7q3ZVdY1\nFJ4quRpbkJYbrtVNWtXO+nYW8MGqi7C1wubAbXW2P0m688EKImKdfr4cKgYQEbMj4ijgZaSeskOA\nP0u6Q9J01UzT3Mx8KaQafwZOlvShiFgEz83V8C3glkora34bAB/Nl5PuZNXu1k9VUpWtie4FXkOa\nZrnobcC84S/H1mSS1gXeDRwE7A78kXRZ5D+B/wbeSov8UeVgUY3ppAXHFkh6gDTGYgLwV+BdVRbW\nArYHbs/fv7rKQmyNdzJwuqQNSAOtd5LUDnyB9Nek1ZC0EWmNmgnAesV9EXFqJUU1uXwJ5CDSJZBn\nSLPkdkTEXYU2l5L+IG0JHmNRkdyttTu959S/NvwfxKxpSNqPNNPmFnnTP4BjI+LsyopqUpJ2JM1j\nsSHpUtFjwBjgceDhiHhFheU1rbz+0TWk3onLIuKpOm02Ak5rleUeHCysJUj6+SCaRUR4FUUrXZ4a\n/YWebr9vkn4H3E26c6sb2IF0qfJC4JSIGMz/w2uVPFnd/sAVEbG46nrK4mAxTCQdRbrjY3n+vk/u\nMlyVpP8dTLtWSfRmaxpJ/wJeHxHz8/eTI2KepNcD50XE1hWX2JQkLQcmRsS9VddSFo+xGD4dpHn0\nl+fv+xKk5a6twIHBhlseUP1tVs7y2mtUvu90WMVTrJyw7mHSOIt5pN6LCVUV1QL+AryCNFh4jeBg\nMUwiYvN635tZ0zqX9IF4PJ7ldTBuI828eTdwPXCcpDGkRe/mVFlYk/sy8G1JXwFmAcuKOyNiSSVV\nrQZfCjEzqyNPivXGiLh9wMaGpNcCL4qI30oaC5xPmlH4r6QF7+6otMAmVTOxWPEDWbToxGLusTAz\nq+8BVl3Px/oQEbcWvn+YNN+HDezNVRdQNvdYmJnVIWkq8GngYxFxX8XlmLUMBwszszokLSbNyTCS\nNBdD7SyvL6miLlvzSNoYOBiYSLocMpe0Tkh3pYUNkYOFmVkdkg7ob39EnDdctdiaK49NmQk8QVrS\nQaRBsC8AprbiImQOFhXJCXUn0m1svRaDi4jzKynKzJC0DvBZ4B2kaamvA74WEU9UWpitkST9Hvgb\n8JGIeDpvG0lacPEVEbFrlfUNhYNFBSTtTZrTYiNgKb1HAoe7WM2qI+nLpGm8ryP9FTkN+InnUrHn\ng6QngB2La4Pk7dsAt0bEhtVUNnS+K6QaJwHnAF+MiMerLsbMejkA+HhE/AAgr6R7paSDI+LZ/g9d\nu3kRsiFZQnq/7qrZvinpD8+W4x6LCkhaBmwXEfdUXYuZ9SbpSeCVEfFAYdvyvO3B6iprbl6EbGgk\nnUpaLv0zwE2kHuw3AN8CLomIT1ZY3pC4x6IaM0mDcxwszJrPSNLU+0VPAetWUEsrmQH8gpWLkO1M\nYRGyCutqdp8hhYnzWfmZ/BTwPeDzVRW1OtxjUQFJBwNfBf6XNNVt7W1sV1RRl5k9NxPir4AnC5v3\nBn5DYbrliHjPMJfW1LwI2erJK+huQbor5G+tfJncPRbV+GH+96t19gXQclO4mq1B6t1GeuGwV9F6\nvAjZEEg6B/hERCylsKZKHq/y3YiY/v/bu/d4zcd6/+Ovt3GeyTmHduMY0nacqEQJJbX7VVuUDg6J\nnX6/ti0JqZDqFz8RSfpVbBG7FGraIlsoUklsI6cMY8gxjGEcZ8Z7/3F9J2uWe8ase91zX+u75v18\nPNbD976+9zLvWcysz7qu6/u5qoXrUmYsIiJi2CRdApxh+xxJ3wU2pZzUvAewou3XVw04QkmaDazR\ntEEfOL4K8IDt1k0ALPbSb4mIiHhJh1NOgQX4HDCNsk/g5cC/1Ao1UklaTtLylKWPlzWv53ysCLyT\nMvPTOpmx6BNJBwDfsf1Mcz1PeSwrImJ0a/byzO8bsIEjbX+lT5F6JoVFn0iaAmxp+5Hmel6cx7Ii\nIkY3SdtRZisuA95HeTx3jueAqbbvq5FtuFJYRETEsElaGTiacgx4p6MK0lG4A0lrAfeMpuZrrdsU\nEhERI9JZwKuA04AHmf80fzRsT4W/P27aqWPppBq5hiMzFpVIeiXlkKNO/yMdVCVURESXJD0BbGv7\nhtpZ2kTSyyk9jd7R6b7t1rUfyIxFBZJ2BCZSOm++GvgzsDZlva11R+RGRFDOulimdogWOhFYAXg9\ncAWlvfdqwOeBT9eL1b3MWFQg6RrgIttHNlX+ZpTHis4GLrZ9atWAERFDJGkr4BjKPos/8+KOwo/X\nyDXSSbofeI/tayQ9Ttnk/xdJ7wYOsb1t5YhDlj4WdWxE6QsPMAtYxvYMSifOQ6uliojo3mPAcpSn\nHB6i9LGY1oxPq5hrpBvLC/0qplH6fkDpwjmhSqJhylJIHU8CSzXX91P6w9/UvF6lSqKIiOE5mzJL\n8SGyeXMobgM2BO4CbgA+LukuymFu98/700auFBZ1/B7YBriZcszw8ZI2AXZp7kVEtM3GwBa2b6sd\npGVOBNZorr8IXAx8mNLLYu9KmYYleywqkLQuMM72pOagmeOBNwK3AwfNefwoIqItJP0GONr2pbWz\ntFnz2OmrgbttP1w7TzdSWERExLBJ2g04CjiOsj9g8ObN1vVjWNgkLUF5muZdtm+pnadXUlhUIOlO\nYCvbjwwaXwG4Li29I6JtmrMvBjPlMXq3sR9DP0i6F3jraCossseijrWBTn/IlgL+ob9RIiJ6Yp3a\nAVrqFOBQSfvanlU7TC+ksOij5rnkOd4uafqA12OAHSk7gyMiWiV7w7q2FeXv/p0k3Uh5avDvbO9S\nJdUwpLDor58OuP7+oHszKUVFKzutRURI2oPymOQ6wNa2p0o6EJhi+2d1041YjwHn1Q7RSyks+sj2\nYjD3EeqVI0VE9ISkT1C6bp4IfI4XlnsfAw4EUlh0YPujtTP0Wjpv9lmzC/hOIEcIR8Ro8q/Afra/\nAsweMH4tsEmdSFFDZiz6zPZMSZvWzhER0WPrANd3GH+W0rY6GpKuA3a0PU3S9cynS6nt1rX1TmFR\nxw+AjwGH1Q4SEdEjU4DNgcGbOHcGRs2jlD3yM0rBBXPvvRsVUljUsTiwj6S3UaYJB+8CPqhKqoiI\n7p0AnCJpaUrvitdJ+iDwWWDfqslGGNtf7HQ9WqRBVgWSLp/PbdveoW9hIiJ6RNKHKd0312uG7gWO\nsn1atVAtIWlLysnXBm6x/afKkbqWwiIiInqqOe9inO2HXvLNizhJrwT+g3Iw5WPN8ArA1cDutv9a\nK1u38lRIRZJeJentkpZpXqt2poiIbkhapikosP0UsIykAyXtVDnaSPc9YAlgI9sr2V6JMnOh5l7r\nZMaiAkkrA+cC21Omvda3faek04FpttMkKyJaRdIlwPm2v92ce3Qb5ejvVSinNp9aNeAIJelp4I22\nrx80PgG4yvaydZJ1LzMWdXyd0mlzTeCpAeM/ouygjohomwnAlc31rsADwFrAnsABtUK1wD2UGYvB\nFgfu63OWnkhhUcdOwKEd1s5up/xBjIhom2WBJ5rrnSizF88Dvyd/r83PZ4CTJW05Zzm82ch5EnBw\n1WRdSmFRx1jmnqmYYyVeeLY5IqJNJgPvlTQeeDtwSTO+KvB4tVQj3xmU/h9/AJ6R9GxzPQE4XdKj\nc1nfav0AABtTSURBVD4qZhyS9LGo40rK9OAXmteWtBhwCDC/R1EjIkaqo4FzKEu9v7L9u2Z8Jzp3\n5IziwNoBei2bNyuQtDHwK+A6YAdgIvCPlBmLbWzfUTFeRERXJK0OrAHc0CyDIOl1wOO2b60aLvom\nhUUlkpYHPglsBoyjFBmn2L6/arCIiC5I2hv4ke2na2dpk+bpj5m2b2xevwf4KHAzpbnYczXzdSOF\nRUREDJukh4ClgR8Dp9m+unKkVpD0R+AY2+dJWpdSUJwPbAVcaLt1SyXZvFmBpI9K2q3D+G6S9qqR\nKSJimF4B7EXpW3GFpFslHdosj8S8bQD8d3O9G/Br2x8C9gbeVyvUcKSwqOMw4OEO4w8Bh/c5S0TE\nsNmeZfsC2+8BxgPfBT4M3C1poqT3NJvUY27ihe/FbwV+0VzfQynSWif/ketYi3LE8GBTKU2zIiJa\ny/aDwFXA74DngU2A7wN3SHpLxWgj0bXA5yXtAWwHXNiMrwM8WC3VMKSwqOMhYNMO45sBj/Q5S0RE\nT0haTdLBkm4CrgCWA95lex3KUsm5lAIjXnAgpWfFN4Gv2J7cjO9KOYisdbJ5swJJxwIfoOz8/U0z\nvB1wOvAT263sthYRiy5JP6c0xvoL5fCsM20/Oug9qwIP2M4PtS9B0tLAbNsza2cZqjTIquMLwNqU\nXhazmrHFgDPJHouIaKeHgO0GNMbq5G+UKf4YoDm0bVdgPeC4piB7DWUp5N6a2bqRGYuKJK1PaeX6\nNHCj7amVI0VERB9J2pTyQ+ZjlB84N2xOu/4ysKbtPWvm60YKi4iI6AlJOwI7Us4HmWu5w/Y+VUKN\ncJIuBa6zfYikJ4DNmsLijcA5tteum3DoshQSERHDJulI4AjKUw73A/mpdcFsBXy8w/i9QCt7gKSw\niIiIXtgf2Nv2WbWDtMyzlKdnBtuAsieldbIzNyIiemFJWvp4ZGUTgSMkLdG8tqQ1gWOB8+rF6l4K\ni4iI6IXvAR+qHaKFPk05iPIhYBng18Bk4AngcxVzdS2bNytpHi/6GLARZS3yFsrBPdOrBouIWECS\nThjwcjHKWSGTmo+5+i/YPqiP0VpH0jYMOO3a9qWVI3UthUUFkrYEfkl5zPQaSq/4LSnV6k62r6sY\nLyJigUi6fAHfats7LNQwLdQsf1wM7G/79tp5eiWFRQWSrqRMde1ne1YztjhlKnFd22+umS8iIvpD\n0t+AN6awiGGR9DSwhe1bB42/BrjW9rJ1kkVEDJ+k8ZRZir/WzjLSSfo68Kztw2pn6ZU8blrH45RT\nTG8dND6esmEnIqJVmlnXI4EDKPsEkDQDOBn4YhvPvOiTxYF9JL2N0gPkyYE327g3JYVFHT8CTpN0\nMOXxLAPbAscB/1EzWEREl04GdgEOoRyXDrA1cBSwMvCJOrFGvI2BOfvqNhh0r5VLClkKqUDSkpQi\nYn9eKO5mAqcCh9l+tla2iIhuSJoO7G77okHj7wB+aHv5Osmi31JYVCRpWcppdgIm236qcqSIiK5I\nmnO66S2DxjcCfmP75XWSRb+lQVYFkk6X9DLbT9m+0fYk209JGivp9Nr5IiK68E3gC5KWmjPQXH+u\nuReLiMxYVCBpNrCG7YcGja8CPGA7e18iolUkXUA52fRZ4IZmeDNKq+9fDXyv7V36my76Kd/A+kjS\ncpRlDwEvk/TMgNtjgHdS2rpGRLTNY7z4bIt7agSJujJj0UeSnmf+u3wNHGn7K32KFBER0VOZseiv\n7SmzFZcB7wMeHXDvOWCq7ftqBIuIiDok7UF5SnAdYGvbUyUdCEyx/bO66YYuhUUf2f41gKR1gLud\n6aKIGCUkrQwcTfkBalUGPRxge6UauUY6SZ+gfN1OpGx0HdPcegw4EGhdYZGlkIiIGDZJvwBeBZwG\nPMigZV/b36+Ra6STdDNwuO2fSnoC2Mz2nZI2Bq6wvUrliEOWGYuIiOiFNwHb2r7hJd8ZA60DXN9h\n/FlgbJ+z9ET6WERERC/cCixTO0QLTQE27zC+M3BLh/ERLzMWERHRC/8bOEbS0cCfKccU/J3tx6uk\nGvlOAE6RtDRlc//rJH0Q+Cywb9VkXUphUUlzEuBbKC29z7H9hKRXAI/bnlE1XETE0D0GLEd56m0g\nUfZbjHnRZwS2vyfpaeDLwLLAOcC9wL/Z/mHVcF3K5s0KJK0FXEw5On0pYINms85JwFK2968aMCJi\niCRdA8wCTqLz5s1f18jVJs35UeMGd2Vum8xY1HEScC2l3e0jA8YvAL5bJVFExPBsDGxh+7baQdqq\nOYiy9YdRZvNmHdsCX7b93KDxu4B/6H+ciIhhuxYYXztE20haTdJZku6TNEvS7IEftfN1IzMWdYyh\n83rjK4En+pwlIqIXTgZOknQccCMv3rw5qUqqke8MyrL4l4D7mf+xD62QPRYVSPoRMN32vzQNUTYF\n/kbpsHa37Y9WDRgRMUTNWUiDmWbzpu1s3uyg+R7wJtv/XTtLr2TGoo5PA79sOq4tTdkFvD7wMPDB\nmsEiIrq0Tu0ALXUPpfgaNTJjUUnzuOnulNmKccB1wNm2n64aLCIi+kbSTpQfNj9u+67KcXoihUVE\nRPTEaDulc2GRNI2591KMpawgPMWL96a07vC2LIVUIGnP+d23fWa/skRE9MJoPKVzITqwdoCFKTMW\nFTTV6kBLUDquPQc81cYKNSIWbaPxlM7oTvpYVGB7xUEf44ANgavI5s2IaKdRd0pnPzT9KlbtML5y\nW/tYpLAYIWzfDhxG6coZEdE2o+6Uzj6Z1xMhS1FmsVsneyxGllnAK2qHiIjowqg7pXNhknRAc2lg\nX0kDD58cA7yZchR962SPRQWS3j14CFgD+CRwj+139D9VRMTwSPowcBTl1GYop3QeZfu0aqFGKElT\nmsu1gL8CA5c9nqMc8XCE7T/0OdqwpbCooEOHOlM6b14GfNr2/f1PFRHRG6PllM5+kHQ5sIvtwZv6\nWyuFRURERPRMNm9GREREz2TzZp9IOmFB32v7oIWZJSIiYmFJYdE/Wwx6/VrKzt/bmtcbUDbv/Kmf\noSIiInopSyF9Ynv7OR/Az4ErgFfanmB7AjAeuBy4sGLMiIhYyCSdL2m55npPSUvVztRL2bxZgaR7\ngZ1s3zRofGPgEtvpZRERo0ZzPtJvbd9RO8tIIOk5YC3b9zfdNdcYTU/QZCmkjuWAl3cYfznwsj5n\niYhY2M4AZkr6ju1/rR1mBLgV+GrzqKmA90t6vNMb23goZWYsKpB0JvAm4NPANZQ+Fm8AjgOutL1X\nxXgRET0naR3gHba/VTtLbZLeSOlUuh6wEvAEcx+jPofbeChlCosKmuYxXwP2oZxsCqWd92nAZ2w/\nWStbRET0T9MwcfXRtBSSwqIiSWMpFauAySkoIqKtJE0AZtq+sXn9HuCjwM2Utt6tPFBrYZO0FnC3\nR9E34xQWERExbJL+CBxj+zxJ6wI3ARcAWwEX2j6wasARTNIKwMeAjShLIrcAp9meXjVYl1JYRETE\nsEmaDkywfYekQ4EdbL9d0jbAD22PrxxxRJK0JfBL4GnKnjsBWwLLUJ4evK5ivK7kqZCIiOgF8UJv\npLcC/9lc3wOsUiVRO3wdmAjsZ3sWgKTFge8BJ1KOT2+VzFhERMSwSbqMUkRcStmI/hrbkyVtB3zf\n9to1841Ukp4GtrB966Dx1wDX2l62TrLupfNmRET0woHABOCbwFdsT27GdwWurpZq5HscWLPD+HjK\nY6itkxmLipqKdE1gyYHjtifWSRQR0VuSlgZm255ZO8tIJOkbwD8DB1MKMAPbUvoandfGTa/ZY1FB\ns2P6AmATyv9Eam7NqfLG1MgVEdFrtp+pnWGEO5jyd/+ZvPA9eSZwKnBYrVDDkRmLCiT9nHKS6X7A\nncDrgJWB44GDbV9ZMV5ExAKR9Ciwge2HJU2jc/dIANrYQbKfmsaJA/saPVU5UtcyY1HH1pRHsf7W\ndF173vZVkj4LfIMXH7EeETESfYoX9gF8ivkUFjF/TSFxY+0cvZDCoo4xwIzm+mHgFcBtwFRgw1qh\nIiKGwvb3B1yfUTFKjCB5KqSOPwObNtd/AA5pmsgcQVkaiYhoFUmzJa3aYXzl5mjwWERkxqKOLwNj\nm+sjKI1krgQeAT5QK1RExDBoHuNLATknZBGSwqIC278ccD0ZeLWklYBpo+kgmogY/SQd0Fwa2FfS\njAG3x1A6R976ok+MUStPhVQgaU9KR7WbB40vDbzf9pl1kkVEDI2kKc3lWsBfKU+8zfEccBdwhO0/\n9DlaK0jaC3jY9oXN6/8H/AvlVNgP2p5aM183UlhU0DwJ8iSwt+3zBoyvBtxnO30sIqJVJF0O7GJ7\nWu0sbSLpNuATti+TtDXwK0oX03cBs2zvUjVgF7IUUs+RwFmSNrF9VO0wERHDYXv72hlaajwwp/35\ne4Gf2P6OpN8CV1RLNQwpLOr5AaV96wWSNgb2qJwnImJIJJ0AfMH2k831PNk+qE+x2mYGpUHi3cBO\nlNNOAZ6hHJ3eOiks6jCA7d9Lej3lyNyrgf2rpoqIGJotgCUGXM9L1tzn7b+A70m6HtgAuLAZ/0fK\n/pTWyR6LCpo9Fqvbfqh5vSxwNrAjMDZ7LCIiFg2SVqC0IBgPnGr74mb8i8Bztr9SM183UlhUIOlI\n4LjBveCb/5HenLXKiIhoqxQWERExbJLGUk7j3BFYlUGdnW2vWyNXG0h6E/BxYF1gN9v3StoDmGL7\nqrrphi57LCqRtAHwFl78B9C2v1QlVERE974HbAecBdxP9lUsEEnvo3zNzgYmUDqVAiwPHA68s1K0\nrmXGogJJ+wGnUg4ge4C5/wDa9oQqwSIiuiTpMeCfbP+2dpY2aTZtft32mZKeADazfaekLYCLbK9e\nOeKQZcaijs8Dn7N9bO0gERE9Mg14tHaIFtoQ+E2H8enACn3O0hM53bSOFYEf1w4REdFDXwCObp5y\niwX3APCqDuPb0tLTrjNjUcePKY1Qvl07SEREt5pp/IFLua8CHpR0FzBz4HuzxDtP3wVOkrQP5Wv5\niqa199eAo6sm61IKizomA1+S9AbgRl78B/AbVVJFRAzNT2sHGAWOoawe/ApYlrIs8izwNdvfrBms\nW9m8WcGA0wA7cR7LiohYtEhakjLjMw642faMl/iUESuFRUREDJukrYDFBh+P3hxbMNv2tXWStYuk\n5YAdgNts31I7TzeyebMiSUtK2lBSlqQiou1OobSlHuwfmnvRgaRzJX2yuV4G+CNwLjCp6XHROiks\nKpC0rKTTgKeAm4A1m/GTJR1WNVxERHdeA1zXYfz65l509mbgyub6nynfl1cADqC0JmidFBZ1fBXY\njNJ585kB45cCH6gRKCJimJ4FVuswvgYwq89Z2mR5Xuj/sTNwXnOO1IXA+tVSDUMKizreC3yy6QE/\ncJPLTcB6dSJFRAzLJcBXJS0/Z6A5ufP/Uo4Gj87uAbZuzlrZmfJ1hNLv6Jl5ftYIlrX9Ol4OPNRh\nfCzprx8R7XQw5VHJqU1/C4DNgQeBPaqlGvlOpJwTMgOYClzRjL+Z0o6gdfJUSAWSfgP82PbJTW/4\nTW1PkXQysL7tnStHjIgYsuan7g9TlnqfBiYB/2F75nw/cREn6bWUvXb/NecxU0n/BDzWxrNXUlhU\nIGlb4CLgB8DewP8H/hHYGtjO9p/qpYuIiOheCotKJK0HHEap7MdRdlMfa7uVU18REZI2oGxKX5VB\ne/hst7I9dT9IeiXwbsqsxZID79k+qEqoYUhhERERwyZpP+BU4GHKwVoDv7k4Z4V0JmlHYCLlwLFX\nA38G1gYEXGd7h3rpupPCogJJa87vvu27+5UlIqIXJE0FvmX72NpZ2kTSNcBFto9s9txtRtncfzZw\nse1TqwbsQgqLCiQ9z3ye/rA9po9xIiKGTdLjwOa2W3nUdy1NMbG57TskTQO2tX2TpM2An9leu27C\noUsfizq2ACYM+Hg9sD/wF2C3irkiIrr1Y2Cn2iFa6Elgqeb6fubuZbRK/+MMX/pYVGD7hg7D10q6\nD/gMcH6fI0VEDNdk4EuS3kDpvzDXI6a2v1El1cj3e2Ab4GbgF8DxkjYBdmnutU6WQkYQSa8CbrA9\ntnaWiIihkDRlPrdte92+hWkRSesC42xPavqAHA+8EbgdOMj21KoBu5DCooLmWNy5hij99I8CXm17\n876HioiI6IEshdTxGC/evClKz/jd+x8nIqJ3JAnKNEXtLG3QnKmyK2V/xXG2H5U0AXjQ9r110w1d\nCos6th/0+nngb8Bk2zkFMCJaSdKelH1i6zev/0L5RnlW1WAjmKRNKSdbT6f0r/gu5bTTXSgNs/as\nFq5LKSwqsP3r2hkiInpJ0kHAl4BvAr+lzMJuA3xb0iq2v14z3wh2AnCG7UOaR0/n+AVwTqVMw5I9\nFn0i6d0L+l7bExdmloiIXms2bx5p+8xB43sBR9lep06ykU3SdGBC08fiCWAz23dKWgu4zfbSlSMO\nWWYs+uenC/g+A2mQFRFtswZwdYfxq5t70dmzwOAN/QAbUJbIWycNsvrE9mIL+JGiIiLaaDLw/g7j\nH6A8OhmdTQSOkLRE89rNsQ/HAufVi9W9LIX0iaRHgfVtPyLpdODfbD/xUp8XEdEGkt4H/IiyEfG3\nlNnXbYEdgffbvqBivBFL0vLAT4AtgZcB9wGrA78D3mn7yYrxupLCok8kzQA2bdbOZgOr227lNFdE\nRCeSXgt8CtiIsnnzZuB429dXDdYCkrahHEA2jnKq6aWVI3UthUWfSPovYDXgT8BelMr+6U7vtb1P\nH6NFRAyLpMWBDwG/tP1g7TxtJ2kF24/VztGt7LHon49QHh8aR5kiXB5YcR4fERGt0fTf+TbQuicY\napN0qKQPDHh9LvCIpHubE05bJzMWFTSPZW1p+5HaWSIiekHSFcCJthf0CbgAJN0JfMT21ZLeBpxL\n2fD6fmBN2607MTaPm1aQ57kjYhT6FuVkzldSlnzn2nRoe1KVVCPfGpTjHADeBZxr+xJJdwF/qJZq\nGFJYVCJpR8pu6VUZtCSVPRYR0UI/bP458Hh0UzZxpj/PvE0DxlOKi52BzzfjoqVfsxQWFUg6EjgC\nuBa4nxcfSBYR0TaZie3O+cA5km4HVgYuasY3p/QGaZ0UFnXsD+ydg3kiYrSwPbV2hpb6FHAXZdbi\nENszmvE1KMtLrZPNmxVIegR4ne07ameJiOgFSSvP2ZAuaTywH7AMMNH2lVXDRV+lsKhA0rHADNtf\nqp0lImI4JG0C/JzyE/ftwO7AxcBY4Pnmn7vmaZEXNIdSXmR75ksdUNnGQylTWFQg6SRgT2BS8zFz\n4H3bB9XIFRExVJIuAmZRzrb4COXJhkuAfZu3nAy81vYb6iQceSQ9T+m+/FBzPS9u4/lRKSwqkHT5\nfG7b9g59CxMRMQySHgZ2sD1J0jjgccpS77XN/VcDv7e9Qs2c0T/ZvFmB7e1rZ4iI6JGVgAcAbM+Q\n9CTw6ID70yiHa8UiIoVFREQM1+Cp70yFLwBJiwF7A7sAa1O+blMop52e5ZYuKaSw6CNJ5y/I+2zv\nsrCzRET00BmSnm2ulwa+3cxcACxVKdOIJknAROCdwA3AjZSmWBsBZ1CKjffWyjccKSz6a3rtABER\nPfb9Qa9/0OE9Z/YjSMvsDbwZ2NH2XPvuJO0A/FTSnrZb97XL5s2IiIg+k3QJcJntY+Zx/3BgO9tv\n72+y4cux6REREf23KaXfx7xcBLTy2PQUFhEREf23EvDgfO4/CKzYpyw9lcIiIiKi/8ZQGovNy2xa\nug+ylaEjIiJaTsz9NM1grX2aJoVFRERE/w1+mqaT1j0RAnkqJCIiInooeywiIiKiZ1JYRERERM+k\nsIiIiIieSWERERERPZPCIiIiInomhUVERET0TAqLiPg7SZdLOqHirz9F0gE9+Pf8u6Tze5EpIoYm\nDbIiYiTZEnhyQd8saS1gCrC57UkDbh1A6WwYEX2WwiIiqpO0hO2Zth8Z6qcCL+ryZ/uJ3iSLiKHK\nUkjEIkrSspLOlPSEpHslHTTo/pKSvibpr5JmSPqdpO0G3F9T0kRJjzb3b5S084D7r5H0c0nTJT0u\n6deS1mnu/bukCyQdLule4NZmfK6lEEnPS9pf0i8kPSXpDknvGxDzzuaf/92897Lm884YuBTS/F6+\nIelBSU9LulLSlgPub9d8/g6S/ijpSUm/lbR+T77YEYuQFBYRi66vAW8C/hewE/AW4LUD7p8CvB54\nP7AJ8GPgIknrNfe/BSwJbAtsDBwKzACQ9ArgN8DTzb93AnA6c8+S7ghsALwVeNd8ch7d/NqbAmcD\nP5S0YXPvdZRZix2A1YFdmvHBsxjHAf8M7AFsAUwGfilphUHv+zLwqebrMKvJHBFDkKWQiEWQpLHA\nPsCHbF/RjO0F/LW5Hg/sDYy3/UDzaSdIegfwUeDzwHjgJ7Zvbu7fNeCX+CTwGPBB27ObscmDYswA\n9rU9v6OjAc61/e/N9RGS3gb8a/Nr/K0Zf9T2Q/P4vS4L7A/safuSZmw/4G3Ax4Djm7caONz2Vc17\njgH+U9KStp97iYwR0UhhEbFoWg9YArhmzoDtaZJua15uAowB/iJp4CbIJYGHm+tvAKdKejtwKXCe\n7Rube5sBVw4oKjq5cQGKCoDfD3r9u+bfv6DWo/xdd/WcAduzJF0DbDQ404Dr+5t/rkpTcEXES0th\nEbFomlMszOt443GUpYAJwPOD7s0AsH2apIuBf6IspXxW0kG2T6EsgbyUBX76o4OhHMs8r99rp42f\nMzv8GlkyjhiC/IGJWDRNphQOb5gzIGlFyp4HgOspP3isZvvOQR9/X3Kwfa/t79jelbKksF9zaxLw\nJkljepD1DR1e39pcz1mimN+vM5lSMGw7Z0DS4pRHW2+e1ydFRHcyYxGxCLL9pKTTgOMkPUrZq/Bl\nYHZz/3ZJZwNnSjqYUmisStkkeYPtiyR9HbgI+AuwErA9L3yj/iZlD8SPJH0VmE4pCP5g+/Yhxt1N\n0p+Aq4CPAFtR9ocAPESZHdm5ebrkGduPD/q9PiXp1Ob3Og24BzgEWIa5N2d26nuRXhgRQ5QZi4hF\n12eAK4GJwCXN9Z8G3N8bOJPy9MitwAWUn/Lvbu6PoRQQNwO/aN7zfwBsP0opQsYCVwDXAvsy91JD\nJ52WOI4EdgduoBQWu9u+tfl1ZlM2cn4cuBf46Tz+vYcB5zW/n2uBdYGdbE9/iV97KEsuEQHIzp+b\niBiZJD0PvNf2xNpZImLBZMYiIiIieiaFRUSMZJlSjWiZLIVEREREz2TGIiIiInomhUVERET0TAqL\niIiI6JkUFhEREdEzKSwiIiKiZ1JYRERERM+ksIiIiIieSWERERERPZPCIiIiInrmfwCSoUdm6jzI\niAAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f3ea029b438>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"df2.groupby('description')['All ages'].sum().sort_values().plot(x='description', kind='bar')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment