Skip to content

Instantly share code, notes, and snippets.

@drorata
Created August 11, 2022 06:29
Show Gist options
  • Save drorata/3716f915ffc020bfbb109b5d4d5952c0 to your computer and use it in GitHub Desktop.
Save drorata/3716f915ffc020bfbb109b5d4d5952c0 to your computer and use it in GitHub Desktop.
Original notebook for benchmarking_columns_operation.md
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I recently ran the following experiment.\n",
"The reason was my need to perform operations on two columns.\n",
"Think for example in terms of features engineering; you want to produce an new feature (i.e. column) which is the ratio of the some other two columns."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(np.random.random(size=(10000,2)), columns=['foo', 'bar'])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style>\n",
" .dataframe thead tr:only-child th {\n",
" text-align: right;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>foo</th>\n",
" <th>bar</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.065648</td>\n",
" <td>0.593402</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.592051</td>\n",
" <td>0.123502</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.621030</td>\n",
" <td>0.629470</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.210630</td>\n",
" <td>0.462535</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.263708</td>\n",
" <td>0.807304</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" foo bar\n",
"0 0.065648 0.593402\n",
"1 0.592051 0.123502\n",
"2 0.621030 0.629470\n",
"3 0.210630 0.462535\n",
"4 0.263708 0.807304"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Iterating over the rows\n",
"\n",
"Here we iterate over the rows, and access the indexes of the `pd.Series` which represents the row."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"518 ms ± 60 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"pd.Series([\n",
" x[1]['foo'] * x[1]['bar'] for x in df.iterrows()\n",
"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Applying a function\n",
"\n",
"Here we use `pd.DataFrame.apply` and provide the axis.\n",
"This is actually, the solution I had to use in a case which I now longer remember its details."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"299 ms ± 43.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"df.apply(lambda x: x['foo'] * x['bar'], axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Columns operations\n",
"\n",
"Best and fastest approach; at least for this simple case."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"97.2 µs ± 11.9 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"df.foo.mul(df.bar)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Summary\n",
"\n",
"Obviously, for the simple multiplication, the last option is the most pythonic (and the fastest as well).\n",
"But, still due to an edge case I decided to run this test.\n",
"Maybe someone would find it helpful."
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python [conda root]",
"language": "python",
"name": "conda-root-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment