Assume you have a DataFrame as below:
import pandas as pd
import numpy as np
np.random.seed(42)
N = 10
df = pd.DataFrame(
{| #!/usr/bin/env bash | |
| echo "Saving PYTHONPATH" | |
| ORIGINAL_PYTHONPATH=$PYTHONPATH | |
| echo "Prepending package to PYTHONPATH" | |
| export PYTHONPATH="$PWD/:$PWD/mypackage/::$ORIGINAL_PYTHONPATH" | |
| echo "Starting Jupyter" | |
| jupyter notebook | |
| echo "Reverting to the original PYTHONPATH" | |
| export PYTHONPATH=$ORIGINAL_PYTHONPATH |
| def predict_row(row, clf): | |
| """ | |
| Transform row to a 1-row pandas.DataFrame and predict | |
| When iterating of rows of a DataFrame, each row is represented as a | |
| pd.Series. The classifiers in use are expecting a DataFrame. This function | |
| turns the row into a 1 x n_featurs DataFrame and apply the prediction of a | |
| trained classier. | |
| Parameters |
| X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.4) | |
| parameters = { | |
| 'clf__C': [0.01, 0.1, 1, 2, 5, 10, 50, 100], | |
| 'clf__class_weight': [ | |
| {0: 1, 1: 1}, | |
| {0: 2, 1: 1}, {0:1, 1:2}, | |
| {0: 5, 1: 1}, {0:1, 1:5}] | |
| } |
Assume you have a DataFrame as below:
import pandas as pd
import numpy as np
np.random.seed(42)
N = 10
df = pd.DataFrame(
{| FROM continuumio/miniconda3 | |
| COPY environment.yml /tmp | |
| RUN apt-get update && apt-get install -y \ | |
| freetds-dev \ | |
| python-dev \ | |
| build-essential \ | |
| && rm -rf /var/lib/apt/lists/* |
| import json | |
| # Import smtplib for the actual sending function | |
| import smtplib | |
| # Import the email modules we'll need | |
| from email.mime.text import MIMEText | |
| from email.mime.multipart import MIMEMultipart | |
| from datetime import datetime | |
| def send_email(data): |