Skip to content

Instantly share code, notes, and snippets.

import os
from sqlalchemy import create_engine
from sqlalchemy.types import VARCHAR
from pandas.io.sql import SQLTable, pandasSQL_builder
import tempfile
import numpy as np
import boto3
import json
import pandas as pd
from sqlalchemy import text
def re_ranking(model, probFea,galFea,k1,k2,lambda_value):
query_num = probFea.shape[0]
all_num = query_num + galFea.shape[0]
feat = np.append(probFea,galFea,axis = 0)
feat = feat.astype(np.float16)
feat = torch.from_numpy(feat).half().cuda()
print('computing original distance')
sz = feat.shape[0]
d = []
def qwk(a1, a2):
"""
Source: https://www.kaggle.com/c/data-science-bowl-2019/discussion/114133#latest-660168
:param a1:
:param a2:
:param max_rat:
:return:
"""
max_rat = 3