Created
May 9, 2024 04:30
-
-
Save eduardoklosowski/47a9a15297772cd97f1b2a9c4f93e2f5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"provenance": [], | |
"toc_visible": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"# Qual número a, que dividido por b, tem como resultado b?" | |
], | |
"metadata": { | |
"id": "XcvzrXeqiYoE" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Inicia o [SymPy](https://www.sympy.org/pt/):" | |
], | |
"metadata": { | |
"id": "c5xVv-tje9uB" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"id": "qEyckJDgZR7M" | |
}, | |
"outputs": [], | |
"source": [ | |
"from sympy import *\n", | |
"\n", | |
"init_printing()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"## Primeira condição" | |
], | |
"metadata": { | |
"id": "tFAGC-fmjCYG" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Equação do anunciando:" | |
], | |
"metadata": { | |
"id": "xVq-UpRmfFpG" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"a, b = symbols('a b')\n", | |
"equacao = Eq(a / b, b)\n", | |
"equacao" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 47 | |
}, | |
"id": "aitmA6TNZw2b", | |
"outputId": "7810392b-00bd-4fef-ef34-49e3e2e03ef9" | |
}, | |
"execution_count": 2, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"a \n", | |
"─ = b\n", | |
"b " | |
], | |
"text/latex": "$\\displaystyle \\frac{a}{b} = b$" | |
}, | |
"metadata": {}, | |
"execution_count": 2 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Isola variável `a`:" | |
], | |
"metadata": { | |
"id": "JH9ECubwfjCH" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"solucao_a = solve(equacao, a)[-1]\n", | |
"Eq(a, solucao_a)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 38 | |
}, | |
"id": "eN-xh8N3aGDE", | |
"outputId": "9e0cc3d0-b23b-41cd-8e3f-6e0842443c44" | |
}, | |
"execution_count": 3, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" 2\n", | |
"a = b " | |
], | |
"text/latex": "$\\displaystyle a = b^{2}$" | |
}, | |
"metadata": {}, | |
"execution_count": 3 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Descobrimos que `a` precisa equivaler a `b²`." | |
], | |
"metadata": { | |
"id": "Vf2wbUOTirvE" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"### Gráfico de a / b" | |
], | |
"metadata": { | |
"id": "PX-B-RKFlcdy" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Substituindo `a` na expressão `a / b`, observamos que os valores de `x` usados para `b` são iguais aos valores de `y`:" | |
], | |
"metadata": { | |
"id": "GkUHv-S_lgnT" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"plot((a / b).subs({a: solucao_a}), (b, -1.5, 1.5))" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 505 | |
}, | |
"id": "WDFPkDJ3k6Ut", | |
"outputId": "b3fdc077-b0aa-49ae-a45c-12b8762f125d" | |
}, | |
"execution_count": 4, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 640x480 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ0UlEQVR4nO3deXQUdaL28W93J+mQkAVICAmENYGwhCSAIKCCAwqoCFdkCb7u+52ADLgAozLiwoiKrHecuTPKLBIWBbwo4gKiIggKWSDsMbInQCD73l3vH97JHUZAliTVy/M5p8+hK1VdTxdF56F+XVUWwzAMRERERMTtWc0OICIiIiJ1Q8VORERExEOo2ImIiIh4CBU7EREREQ+hYiciIiLiIVTsRERERDyEip2IiIiIh1CxExEREfEQKnYi4vEMw6CoqAhdj11EPJ2KnYh4vOLiYkJCQiguLjY7iohIvVKxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiIiIeAgVOxEREREPoWInIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ6jYiYiIiHgIFTsRERERD6FiJyIiIuIhVOxEREREPISKnYg0qK+++orhw4cTFRWFxWJh9erVF51/48aNWCyWnz1yc3MbJrCIiBtRsRORBlVaWkpCQgKLFi26rOX27dvHiRMnah/Nmzevp4QiIu7Lx+wAIuJdhg0bxrBhwy57uebNmxMaGlr3gUREroBhGFgsFrNj/IyO2ImIW0hMTCQyMpKbbrqJb7755qLzVlZWUlRUdM5DRKSubNx3kvH/vZXyKofZUX5GxU5EXFpkZCRvvfUW77//Pu+//z7R0dEMHDiQHTt2XHCZWbNmERISUvuIjo5uwMQi4qmqHU5mrd3Dfe98x5Yf8vnTVz+YHelnLIZhGGaHEBHvZLFYWLVqFSNHjrys5QYMGEDr1q35+9//ft6fV1ZWUllZWfu8qKiI6OhoCgsLCQ4OvprIIuKljpwpY0JqGulHCgC4+9o2/PbWzvj72swN9m/0HTsRcTu9e/dm06ZNF/y53W7Hbrc3YCIR8WRrd57gmfczKa6oIdjfh9l3dmdot0izY52Xip2IuJ309HQiI13zQ1VEPEdFtYOXPtrNP749DEBS61Dmj0siummAyckuTMVORBpUSUkJBw8erH2ek5NDeno6TZs2pXXr1kybNo1jx47xt7/9DYC5c+fSrl07unbtSkVFBX/+85/ZsGEDn376qVlvQUS8wMGTJaQs2cHe3GIAHhvQgSk3d8TX5tqnJ6jYiUiD+v7777nxxhtrn0+ePBmAe++9l8WLF3PixAkOHz5c+/OqqiqmTJnCsWPHCAgIoHv37nz++efnvIaISF16b/tRnlu9i/JqB80C/ZgzNpEBHcPNjnVJdPKEiHi8oqIiQkJCdPKEiFxUSWUNz6/excq0YwD0j2nGm2MSaR7sb3KyS6cjdiIiIuL1so4XkrIkjZzTpdisFn4zOJbHB8Zgs7reRYgvRsVOREREvJZhGPxtyyFe/mgPVQ4nUSH+zEtO4pq2Tc2OdkVU7ERERMQrFZZV8/T7GXySlQfA4M4RvD66O6EBfiYnu3IqdiIiIuJ1th86w8TUdI4VlONrszBtWGfu79/WJe//ejlU7ERERMRrOJ0Gb32VzRuf7sfhNGjbLIAFyT2IbxVidrQ6oWInIiIiXuFUcSWTl6fz9YHTAIxIjOKlkd0I8vc1OVndUbETERERj/f1gVP8ZlkGp0sq8fe1MvP2bozu1crth17/nYqdiIiIeKwah5M5n+3nD19mYxjQKSKIheOTiI0IMjtavVCxExEREY90rKCcialpbD90FoDk3q2ZMbwL/r42k5PVHxU7ERER8TifZOXy9HuZFJZXE2T3YdaoeG7rHmV2rHqnYiciIiIeo7LGway1e1m8+UcAElqFsCC5B62bBZgbrIGo2ImIiIhHyDldSsqSHWQdLwLg4evb8dSQOPx8rCYnazgqdiIiIuL2VqUd5dlVuyitctAkwJc3xiTwq7gIs2M1OBU7ERERcVtlVTU8/0EW720/CkCfdk2ZNy6JFiH+Jiczh4qdiIiIuKU9J4pIWbKD7FOlWC0w4VexTBwUi83qWdemuxwqdiIiIuJWDMPg3a2HmfnhbqpqnEQE25k7Nom+HZqZHc10KnYiIiLiNgrLq5m2MpO1O3MBuLFTOK+PTqBZY7vJyVyDip2IiIi4hbTDZ5mQmsbRs+X4WC08MzSOB69rh9WLh17/nYqdiIiIuDSn0+DPm35g9rp91DgNops2YkFyDxKjQ82O5nJU7ERERMRl5ZdUMmVFBhv3nQLg1vhIZo2KJ9jf1+RkrknFTkRERFzS5uzTTFqazsniSuw+Vp4f3oXxvVtjsWjo9UJU7ERERMSl1DiczN9wkAUbDmAYENO8MQvHJxHXItjsaC5PxU5ERERcxonCcp5Yms62nDMAjOnVit/d3pUAP1WWS6GtJCIiIi5h/Z48nlyRwdmyagL9bLxyRzwjEluaHcutqNiJiIiIqapqnLy6bi9/2ZQDQLeWwSxI7kG7sECTk7kfFTsRERExzaH8UiakppF5tBCA+/u3ZeqwOOw+NpOTuScVOxERETHFmozjTFu5k5LKGkIDfHntzgRu6hJhdiy3pmInIiIiDaq8ysHMD7NI3XYEgGvaNmHeuCSiQhuZnMz9qdiJiIhIg9mfV0zKkh3szyvBYoFfD4xh0uBYfGxWs6N5BBU7ERERqXeGYbDsuyP8bk0WFdVOwoPszB2bSP+YMLOjeRQVOxEREalXxRXVTF+1izUZxwG4PjaMOWMSCQ+ym5zM86jYiYiISL3JPFrAhNQ0DuWXYbNaePLmTjx6Q3usVt0WrD6o2ImIiEidMwyDt7/5kd9/vIdqh0HL0EbMT06iZ5smZkfzaCp2IiIiUqfOllbx5IoM1u89CcCQrhHMHpVASICvyck8n4qdiIiI1JltOWd4YmkaJwor8LNZefa2ztx9bRssFg29NgQVOxEREblqDqfBoi8OMvfz/TgNaB8WyILxSXSNCjE7mldRsRMREZGrcrKogknL0tmcnQ/AHUkteXFkNwLtqhkNTVtcRERErtjGfSeZsjyD/NIqAvxsvDiiG6N6tjI7ltdSsRMREZHLVu1w8vqn+/jjlz8A0DkymIXjk+gQ3tjkZN5NxU5EREQuy5EzZUxITSP9SAEA9/Rtw/RbOuPvazM3mKjYiYiIyKVbu/MEz7yfSXFFDcH+Psy+sztDu0WaHUv+l4qdiIiI/KKKagcvfbSbf3x7GICk1qHMH5dEdNMAk5PJv1KxExERkYs6eLKElCU72JtbDMBjAzow5eaO+NqsJieTf6diJyIiIudlGAbvbT/K8x9kUV7toFmgH3PGJjKgY7jZ0eQCVOxERETkZ0oqa3hu9S5WpR0DoH9MM94ck0jzYH+Tk8nFqNiJiIjIOXYdK2RCaho5p0uxWmDyTR15fGAMNqtuC+bqVOxEREQE+Gno9a+bf+SVtXupcjiJDPFnfnIS17RtanY0uUQqdiIiIkJBWRVPv5fJp7vzABjcOYLX7uxOk0A/k5PJ5VCxExER8XLbD51hYmo6xwrK8bVZmDasM/f3b4vFoqFXd6NiJyIi4qWcToM/fJnNnM/243AatG0WwILkHsS3CjE7mlwhFTsREREvdKq4ksnL0/n6wGkARiRG8fJ/xNPYrmrgzvS3JyIi4mW+PnCK3yzL4HRJJY18bbwwoiuje7bS0KsHULETERHxEjUOJ3M+288fvszGMKBTRBCL7koipnmQ2dGkjqjYiYiIeIFjBeVMTE1j+6GzAIzv05rnb+uCv6/N5GRSl1TsREREPNwnWbk8/V4mheXVBNl9+P2o7tzaPdLsWFIPVOxEREQ8VGWNg1lr97J4848AJLQKYUFyD1o3CzA3mNQbFTsREREP9MOpEiakppF1vAiAR25oz5M3d8LPx2pyMqlP+tsVkQb11VdfMXz4cKKiorBYLKxevfoXl9m4cSM9evTAbrcTExPD4sWL6z2niDtblXaU4Qs2kXW8iKaBfrxz3zVMv6WzSp0X0N+wiDSo0tJSEhISWLRo0SXNn5OTw6233sqNN95Ieno6kyZN4qGHHuKTTz6p56Qi7qesqoYnV2Twm2UZlFY5uLZ9U9ZOvJ4b45qbHU0aiMUwDMPsECLinSwWC6tWrWLkyJEXnOeZZ57ho48+YteuXbXTxo0bR0FBAevWrbuk9RQVFRESEkJhYSHBwcFXG1vEJe05UUTKkh1knyrFaoGJg2KZ8KtYbFZdm86b6Dt2IuLStmzZwuDBg8+ZNmTIECZNmmROIBEXYxgG7249zMwPd1NV4yQi2M68cUlc276Z2dHEBCp2IuLScnNziYiIOGdaREQERUVFlJeX06hRo58tU1lZSWVlZe3zoqKies8pYobC8mqmrcxk7c5cAG7sFM7roxNo1thucjIxi4qdiHicWbNm8cILL5gdQ6RepR0+y4TUNI6eLcfXZuGZoXE80L8dVg29ejWdPCEiLq1Fixbk5eWdMy0vL4/g4ODzHq0DmDZtGoWFhbWPI0eONERUkQbhdBr86atsRr+1haNny4lu2oj3HuvHQ9e3V6kTHbETEdfWt29f1q5de860zz77jL59+15wGbvdjt2uoSjxPPkllUxZkcHGfacAuLV7JLPuiCfY39fkZOIqVOxEpEGVlJRw8ODB2uc5OTmkp6fTtGlTWrduzbRp0zh27Bh/+9vfAHjsscdYuHAhTz/9NA888AAbNmxg+fLlfPTRR2a9BRFTbMnOZ9KyNPKKKrH7WJkxvCvJvaOxWHSUTv6Pip2INKjvv/+eG2+8sfb55MmTAbj33ntZvHgxJ06c4PDhw7U/b9euHR999BG/+c1vmDdvHq1ateLPf/4zQ4YMafDsImZwOA3mrT/Agg0HMAyIad6YheOTiGuhS/fIz+k6diLi8XQdO3FXuYUVTFyaxracMwCM6dWK393elQA/HZeR89OeISIi4oI27M1jyvIMzpZVE+hn45U74hmR2NLsWOLiVOxERERcSFWNk1fX7eUvm3IA6NYymAXJPWgXFmhyMnEHKnYiIiIu4lB+KRNS08g8WgjAff3aMu2WOOw+NpOTibtQsRMREXEBazKOM23lTkoqawhp5MvroxO4qUvELy8o8i9U7ERERExUXuVg5odZpG776ULavdo0YX5yElGh578At8jFqNiJiIiYZH9eMSlLdrA/rwSLBX49MIZJg2PxsenGUHJlVOxEREQamGEYLPvuCL9bk0VFtZOwxnbmjk3kutgws6OJm1OxExERaUDFFdVMX7WLNRnHAbg+Now5YxIJD9Jt8OTqqdiJiIg0kMyjBUxITeNQfhk2q4Unb+7Eoze0x2rVbcGkbqjYiYiI1DPDMHj7mx/5/cd7qHYYtAxtxPzkJHq2aWJ2NPEwKnYiIiL16GxpFU+9l8Hne04CMKRrBLNHJRAS4GtyMvFEKnYiIiL1ZFvOGSamppFbVIGfzcqzt3Xm7mvbYLFo6FXqh4qdiIhIHXM4DRZ9cZC5n+/HaUD7sEAWjE+ia1SI2dHEw6nYiYiI1KGTRRVMWpbO5ux8AO5IasmLI7sRaNevXKl/2stERETqyMZ9J5myPIP80ioC/Gy8OKIbo3q2MjuWeBEVOxERkatU7XDy+qf7+OOXPwDQOTKYheOT6BDe2ORk4m1U7ERERK7CkTNlTEhNI/1IAQD39G3D9Fs64+9rMzeYeCUVOxERkSv08c4TPP1+JsUVNQT7+zD7zu4M7RZpdizxYip2IiIil6mi2sFLH+3mH98eBiCpdSjzxyUR3TTA5GTi7VTsRERELsPBkyWkLNnB3txiAB4b0IEpN3fE12Y1OZmIip2IiMgle2/7UZ5bvYvyagfNAv2YMzaRAR3DzY4lUkvFTkRE5BeUVNbw/OpdrEw7BkD/mGa8OSaR5sH+JicTOZeKnYiIyEVkHS9kwpI0fjhditUCk2/qyOMDY7BZdVswcT0qdiIiIudhGAZ/23KIlz/aQ5XDSWSIP/OTk7imbVOzo4lckIqdiIjIvyksq+bp9zP4JCsPgMGdI3jtzu40CfQzOZnIxanYiYiI/Ivth84wMTWdYwXl+NosTBvWmfv7t8Vi0dCruD4VOxEREcDpNPjDl9nM+Ww/DqdB22YBLEjuQXyrELOjiVwyFTsREfF6p4ormbw8na8PnAZgRGIUL43sRpC/r8nJRC6Pip2IiHi1rw+c4jfLMjhdUom/r5WZt3djdK9WGnoVt6RiJyIiXqnG4eTNz/fzXxuzMQzoFBHEwvFJxEYEmR1N5Iqp2ImIiNc5VlDOE6lpfH/oLADJvVszY3gX/H1tJicTuToqdiIi4lU+zcrlqfcyKSyvJsjuw6xR8dzWPcrsWCJ1QsVORES8QmWNg1lr97J4848AJLQKYUFyD1o3CzA3mEgdUrETERGPl3O6lJQlO8g6XgTAw9e346khcfj5WE1OJlK3VOxERMSjrU47xm9X7aS0ykGTAF/eGJPAr+IizI4lUi9U7ERExCOVVdUw44MsVmw/CkCfdk2ZNy6JFiH+JicTqT8qdiIi4nH25haRsiSNgydLsFpgwq9imTgoFptV16YTz6ZiJyIiHsMwDJZsO8zMNbuprHESEWxn7tgk+nZoZnY0kQahYiciIh6hsLya6St38tHOEwDc2Cmc10cn0Kyx3eRkIg1HxU5ERNxe+pECUpbs4OjZcnysFp4ZGseD17XDqqFX8TIqdiIi4racToM/b/qB2ev2UeM0iG7aiAXJPUiMDjU7mogpVOxERMQt5ZdUMmVFBhv3nQLg1vhIZo2KJ9jf1+RkIuZRsRMREbezJTufScvSyCuqxO5jZcbwriT3jsZi0dCreDcVOxERcRsOp8G89QdYsOEAhgExzRuzcHwScS2CzY4m4hJU7ERExC3kFlYwcWka23LOADCmVyt+d3tXAvz0q0zkn/SvQUREXN6GvXlMWZ7B2bJqAv1svHJHPCMSW5odS8TlqNiJiIjLqqpxMnvdXv68KQeAbi2DWZDcg3ZhgSYnE3FNKnYiIuKSDuWXMiE1jcyjhQDc168t026Jw+5jMzmZiOtSsRMREZezJuM401bupKSyhpBGvrw+OoGbukSYHUvE5anYiYiIyyivcjDzwyxStx0BoFebJsxPTiIqtJHJyUTcg4qdiIi4hAN5xfx6yQ7255VgscCvB8YwaXAsPjar2dFE3IaKnYiImMowDJZ9d4TfrcmiotpJWGM7c8cmcl1smNnRRNyOip2IiJimuKKa6at2sSbjOADXx4YxZ0wi4UF2k5OJuCcVOxERMcXOo4WkpO7gUH4ZNquFJ2/uxKM3tMdq1W3BRK6Uip2IiDQowzB4+5sf+f3He6h2GLQMbcT85CR6tmlidjQRt6diJyIiDeZsaRVPvZfB53tOAjCkawSzRyUQEuBrcjIRz6BiJyIiDWJbzhmeWJrGicIK/GxWnr2tM3df2waLRUOvInVF55CLSINbtGgRbdu2xd/fnz59+rBt27YLzrt48WIsFss5D39//wZMK1fL4TRYsP4A4/60hROFFbQPC2TVr/txT9+2KnUidUxH7ESkQS1btozJkyfz1ltv0adPH+bOncuQIUPYt28fzZs3P+8ywcHB7Nu3r/a5yoD7OFlUwaRl6WzOzgfgjh4teXFENwLt+vUjUh90xE5EGtScOXN4+OGHuf/+++nSpQtvvfUWAQEBvP322xdcxmKx0KJFi9pHRIRuLeUOvtx/imHzvmZzdj4BfjbeGJ3AnDGJKnUi9UjFTkQaTFVVFdu3b2fw4MG106xWK4MHD2bLli0XXK6kpIQ2bdoQHR3NiBEjyMrKaoi4coWqHU5mfbyHe9/eRn5pFZ0jg1kz4TpG9WxldjQRj6f/NolIgzl9+jQOh+NnR9wiIiLYu3fveZfp1KkTb7/9Nt27d6ewsJDXX3+dfv36kZWVRatW5y8KlZWVVFZW1j4vKiqquzchF3XkTBkTl6aRdrgAgHv6tmH6LZ3x97WZG0zES6jYiYhL69u3L3379q193q9fPzp37swf//hHXnzxxfMuM2vWLF544YWGiij/6+OdJ3j6/UyKK2oI9vdh9p3dGdot0uxYIl5FQ7Ei0mDCwsKw2Wzk5eWdMz0vL48WLVpc0mv4+vqSlJTEwYMHLzjPtGnTKCwsrH0cOXLkqnLLxVVUO3hu9S4ef3cHxRU1JLUO5aOJ16vUiZhAxU5EGoyfnx89e/Zk/fr1tdOcTifr168/56jcxTgcDnbu3Elk5IVLg91uJzg4+JyH1I+DJ0sYuegb/v7tIQAeG9CB5Y/2JbppgMnJRLyThmJFpEFNnjyZe++9l169etG7d2/mzp1LaWkp999/PwD33HMPLVu2ZNasWQDMnDmTa6+9lpiYGAoKCnjttdc4dOgQDz30kJlvQ4D3th/ludW7KK920CzQjzljExnQMdzsWCJeTcVORBrU2LFjOXXqFM8//zy5ubkkJiaybt262hMqDh8+jNX6f4MJZ8+e5eGHHyY3N5cmTZrQs2dPNm/eTJcuXcx6C16vpLKG51fvYmXaMQD6xzTjzTGJNA/WhaNFzGYxDMMwO4SISH0qKioiJCSEwsJCDctepazjhaQsSSPndClWC0y+qSOPD4zBZtVFo0VcgY7YiYjILzIMg79tOcTLH+2hyuEkMsSf+clJXNO2qdnRRORfqNiJiMhFFZZV8/T7GXyS9dPZzIM7R/Dand1pEuhncjIR+XcqdiIickHbD51hYmo6xwrK8bVZmDasM/f3b6v79Yq4KBU7ERH5GafT4K2vsnnj0/04nAZtmgWwMLkH8a1CzI4mIhehYiciIuc4VVzJ5OXpfH3gNAAjEqN4aWQ3gvx9TU4mIr9ExU5ERGptOnCaScvSOV1Sib+vlZm3d2N0r1YaehVxEyp2IiJCjcPJm5/v5782ZmMY0CkiiIXjk4iNCDI7mohcBhU7EREvd6ygnCdS0/j+0FkAknu3ZsbwLvj72kxOJiKXS8VORMSLfZqVy1PvZVJYXk2Q3YdZo+K5rXuU2bFE5Aqp2ImIeKHKGgez1u5l8eYfAUhoFcKC5B60bhZgbjARuSoqdiIiXibndCkpS3aQdbwIgIeua8fTQ+Pw87H+wpIi4upU7EREvMjqtGP8dtVOSqscNAnw5Y0xCfwqLsLsWCJSR1TsRES8QFlVDTM+yGLF9qMA9GnXlHnjkmgR4m9yMhGpSyp2IiIebm9uESlL0jh4sgSrBSb8KpaJg2KxWXVtOhFPo2InIuKhDMNgybbDzFyzm8oaJxHBduaOTaJvh2ZmRxOReqJiJyLigQrLq5m+cicf7TwBwI2dwnl9dALNGttNTiYi9UnFTkTEw6QfKSBlyQ6Oni3Hx2rhmaFxPHhdO6waehXxeCp2IiIewuk0+POmH5i9bh81ToPopo1YkNyDxOhQs6OJSANRsRMR8QD5JZVMWZHBxn2nALg1PpJZo+IJ9vc1OZmINCQVOxERN7clO59Jy9LIK6rE7mNlxvCuJPeOxmLR0KuIt1GxExFxUw6nwbz1B1iw4QCGATHNG7NwfBJxLYLNjiYiJlGxExFxQ7mFFUxcmsa2nDMAjOnVit/d3pUAP32si3gzfQKIiLiZDXvzmLI8g7Nl1QT62XjljnhGJLY0O5aIuAAVOxERN1FV42T2ur38eVMOAN1aBrMwuQdtwwJNTiYirkLFTkTEDRzOL2NC6g4yjhYCcH//tkwdFofdx2ZyMhFxJSp2IiIubk3Gcaav3ElxZQ2hAb68dmcCN3WJMDuWiLggFTsRERdVXuVg5odZpG47AsA1bZswb1wSUaGNTE4mIq5KxU5ExAXtzysmZckO9ueVYLFAyo0xPDEoFh+b1exoIuLCVOxERFyIYRgs++4Iv1uTRUW1k7DGduaOTeS62DCzo4mIG1CxExFxEcUV1UxftYs1GccBuD42jDljEgkPspucTETchYqdiIgLyDxawITUNA7ll2GzWnjy5k48ekN7rFbdFkxELp2KnYiIiQzD4O1vfuT3H++h2mHQMrQR85OT6NmmidnRRMQNqdiJiJjkbGkVT67IYP3ekwAM6RrB7FEJhAT4mpxMRNyVip2IiAm25ZxhYmoauUUV+Nms/PbWztzTtw0Wi4ZeReTKqdiJiDQgh9Ng0RcHmfv5fpwGtA8LZMH4JLpGhZgdTUQ8gIqdiEgDOVlUwaRl6WzOzgfgjqSWvDiyG4F2fRSLSN3Qp4mISAPYuO8kU5ZnkF9aRYCfjRdHdGNUz1ZmxxIRD6NiJyJSj6odTl7/dB9//PIHAOJaBLHorh50CG9scjIR8UQqdiIi9eTImTImLk0j7XABAPf0bcP0Wzrj72szN5iIeCwVOxGRevDxzhM8/X4mxRU1BPv7MPvO7gztFml2LBHxcCp2IiJ1qKLawUsf7eYf3x4GIKl1KPPHJRHdNMDkZCLiDVTsRETqyMGTJaQs2cHe3GIAHhvQgSk3d8TXZjU5mYh4CxU7EZE68N72ozy3ehfl1Q6aBfoxZ2wiAzqGmx1LRLyMip2IyFUorazhudW7WJl2DID+Mc14c0wizYP9TU4mIt5IxU5E5AplHS9kwpI0fjhditUCk2/qyOMDY7BZdVswETGHip2IyGUyDIO/f3uIlz7aQ1WNk8gQf+YnJ3FN26ZmRxMRL6diJyJyGQrLqnnm/UzWZeUCMLhzBK/d2Z0mgX4mJxMRUbETEblk2w+dYWJqOscKyvG1WZg2rDP392+LxaKhVxFxDSp2IiK/wOk0eOurbN74dD8Op0HbZgEsSO5BfKsQs6OJiJxDxU5E5CJOFVcyeXk6Xx84DcCIxCheGtmNIH9fk5OJiPycip2IyAVsOnCaScvSOV1Sib+vlZm3d2N0r1YaehURl6ViJ+Klqquryc3NpaysjPDwcJo21Rmd/1TjcPLm5/v5r43ZGAZ0ighi4fgkYiOCzI4mInJRKnYiXqS4uJh//OMfLF26lG3btlFVVYVhGFgsFlq1asXNN9/MI488wjXXXGN2VNMcKyjnidQ0vj90FoDk3q2ZMbwL/r42k5OJiPwyFTsRLzFnzhxefvllOnTowPDhw5k+fTpRUVE0atSIM2fOsGvXLr7++mtuvvlm+vTpw4IFC4iNjTU7doP6JCuXp9/LpLC8miC7D7NGxXNb9yizY4mIXDKLYRiG2SFEpP4lJyfz7LPP0rVr14vOV1lZyTvvvIOfnx8PPPBAA6WrX0VFRYSEhFBYWEhwcPDPfl5Z42DW2r0s3vwjAAmtQliQ3IPWzQIaOKmIyNVRsRMRj3exYvfDqRImpKaRdbwIgIevb8dTQ+Lw87GaEVVE5KpoKFbEi505cwan00lYWJjZUUyxKu0oz67aRWmVg6aBfrwxOoEb45qbHUtE5Irpv6QiXmjXrl10796d8PBwIiIiaN26NTNmzKC0tLRB1r9o0SLatm2Lv78/ffr0Ydu2bRedf8WKFcTFxeHv7098fDxr1669qvWXVdXw5IoMfrMsg9IqB9e2b8raider1ImI21OxE/FCDzzwAGFhYWzatImsrCxeeOEF/ud//odevXpx9uzZel33smXLmDx5MjNmzGDHjh0kJCQwZMgQTp48ed75N2/eTHJyMg8++CBpaWmMHDmSkSNHsmvXrita/97cIoYv2MR7249itcCkwbG8+9C1tAjxv5q3JSLiEvQdOxEvFBgYyPbt24mLi6udZhgGo0ePxt/fn3/84x/1tu4+ffpwzTXXsHDhQgCcTifR0dFMmDCBqVOn/mz+sWPHUlpayocfflg77dprryUxMZG33nrrktb5z+/Y/enznbz2xRGqapxEBNuZNy6Ja9s3q5s3JiLiAnTETsQL9erVi4KCgnOmWSwWXn75Zf7nf/6n3tZbVVXF9u3bGTx4cO00q9XK4MGD2bJly3mX2bJlyznzAwwZMuSC859PYXk1AC9+uIeqGic3dgpn7cTrVepExONc0skThmFQXFxc31lEpB6NHTuW+Ph4unbtyj333ENKSgpLly6lefP/+17ZiRMnCAoKoqioqF4ynDhxAofDQePGjc9ZR2hoKFlZWedd7/kyBQcHc/z48QvmrKyspLKyEoCsE8VMfz8dAFtNOZOHdOTua9tidVZSVFRZh+9ORKR+BQUF/eItDS9pKPafwxgiIiIiYo4LXYvzX11SsWvoI3ZFRUVER0dz5MiRX3wDcvW0vRue2dv85MmTZGZmsnPnTnbu3ElmZibZ2dnYbDZiY2Mva5jzclRVVREREcHf//53brvtttrpjz76KIWFhSxduvRny3Tp0oWUlBT+8z//s3baK6+8wocffsjmzZvPu57cM8U89z+72ZJTAEDfSBvLnxnF7t27admyZd2+KfkZs/dvb6Rt3rDM2t6XcsTukoZiLRaLKTtKcHCwdtAGpO3d8Mza5sHBwcTExHDHHXfUTisvLyczM5P09PR6zdSrVy+2bNnC+PHjgZ9Onvj6669JSUk573r79+/PN998c86JFV999RXXXXfdeeffnH2aSUv3cLK4ikaBjZkxvCvXR1lY/sxPH4raxxuOPlManrZ5w3LF7a0LFIsIAI0aNaJPnz706dOnXtczefJk7r33Xnr16kXv3r2ZO3cupaWl3H///QDcc889tGzZklmzZgHwxBNPMGDAAN544w1uvfVWli5dyvfff8+f/vSnc163xuFk/oaDLNhwAMOAmOaNWTg+ibgWwRw9erRe35OIiKtQsRPxEocPH6Z169aXPP+xY8fqZdhy7NixnDp1iueff57c3FwSExNZt24dERERtTmt1v87Yb9fv34sWbKEZ599lunTpxMbG8vq1avp1q1b7TwnCst5Ymk623LOADCmVyt+d3tXAvz0ESci3sUlP/XsdjszZszAbrebHcUraHs3PDO2+TXXXMPIkSN56KGHuOaaa847T2FhIcuXL2fevHk88sgjTJw4sV6ypKSkkJKSct6fbdy48WfTRo8ezejRo887//o9eTy5IoOzZdUE+tl45Y54RiSeW0j/uZ21jzcMfaY0PG3zhuXK21sXKBbxEg888ABNmjThL3/5C/7+/vTs2ZOoqCj8/f05e/Ysu3fvJisrix49evDcc89xyy23mB35oqpqnLy6bi9/2ZQDQLeWwSxM7kHbsMCfzfvPM/sv5YwyERF3pmIn4iX8/Pw4cuQIQUFBhIeHk5ycTH5+PuXl5YSFhZGUlMSQIUPOGeJ0VYfyS5mQmkbm0UIA7u/flqnD4rD72M47v4qdiHgLlxyKFZG6FxUVRXp6OkOGDKG8vJxXXnnlnIsTu4s1GceZtnInJZU1hAb48tqdCdzUJcLsWCIiLkHFTsRLTJkyheHDh9OnTx8sFgvvvvsu1113Hd26daNRo0Zmx/tF5VUOZn6YReq2IwBc07YJ88YlERXq+tlFRBqKhmJFvEhmZiZr1qzhueeeo3379vz4449YLBZiYmJISEggMTGRhIQEhg0bZnbUcxzIK+bXS3awP68EiwVSbozhiUGx+Ngu7XbXGooVEW9xaZ+K9ezll1+mX79+BAQEEBoaeknL3HfffVgslnMeQ4cOrd+gHuRKtrlhGDz//PNERkbSqFEjBg8ezIEDB+o3qIc4c+YMd911F8HBwYSGhvLggw9SUlJy0WUGDhz4s338scceu6oc3bt357e//S0dOnTg22+/pbi4mE2bNjFp0iSaNGnCBx98wJgxY65qHXXJMAyWbjvM8IWb2J9XQniQnX882IcpN3f6WalbtGgRbdu2xd/fnz59+rBt27aLvvaKFSuIi4vD39+f+Ph41q5dW59vxeNczvZevHjxz/Zlf3//Bkzr3r766iuGDx9OVFQUFouF1atX/+IyGzdupEePHtjtdmJiYli8eHG95/Qkl7vNN27c+LN93GKxkJub2zCB/4VLFLuqqipGjx7N448/flnLDR06lBMnTtQ+UlNT6ymh57mSbT579mzmz5/PW2+9xdatWwkMDGTIkCFUVFTUY1LPcNddd5GVlcVnn33Ghx9+yFdffcUjjzzyi8s9/PDD5+zjs2fPrpM8Bw4cICwsrPaixI8++ih/+MMf2LJlC0VFRXWyjqtVXFHNxKXpTF25k4pqJ9fHhrF24vX0jwn72bzLli1j8uTJzJgxgx07dpCQkMCQIUM4efLkeV978+bNJCcn8+CDD5KWlsbIkSMZOXIku3btqu+35REud3vDT1fo/9d9+dChQw2Y2L2VlpaSkJDAokWLLmn+nJwcbr31Vm688UbS09OZNGkSDz30EJ988kk9J/Ucl7vN/2nfvn3n7OemfI/ZcCHvvPOOERIScknz3nvvvcaIESPqNY83uNRt7nQ6jRYtWhivvfZa7bSCggLDbrcbqamp9ZjQ/e3evdsAjO+++6522scff2xYLBbj2LFjF1xuwIABxhNPPNEACV1PxpGzxg2zNxhtnvnQaD/tI+O/vjhoOBzOC87fu3dv49e//nXtc4fDYURFRRmzZs0yDMMwCgsLDcAoLCw0DMMwxowZY9x6663nvEafPn2MRx99tB7ejef5pe397y7ns10uDjBWrVp10Xmefvppo2vXrudMGzt2rDFkyJB6TOa5LmWbf/HFFwZgnD17tkEyXYxLHLG7Uhs3bqR58+Z06tSJxx9/nPz8fLMjeaycnBxyc3MZPHhw7bSQkBD69OlTbzeM9xRbtmwhNDSUXr161U4bPHgwVquVrVu3XnTZd999l7CwMLp168a0adMoKyur77imMgyDv2zKYdQfNnMov4yWoY1Y/mhfHh/YAav1/De+rqqqYvv27efsm1arlcGDB19w39yyZcs58wMMGTJE+/IluJLtDVBSUkKbNm2Ijo5mxIgRZGVlNURcr6T92zyJiYlERkZy00038c0335iSwW3Pih06dCh33HEH7dq1Izs7m+nTpzNs2DC2bNmCzXb+a1nJlfvn9wT+edunf4qIiDDlOwTuJDc392eH4318fGjatOlFt9348eNp06YNUVFRZGZm8swzz7Bv3z5WrlxZ35FNcaa0iqdWZLB+70/DeUO6RjB7VAIhAb4XXe706dM4HI7z7pt79+497zK5ubnal6/QlWzvTp068fbbb9O9e3cKCwt5/fXX6devH1lZWbRq1aohYnuVC+3fRUVFlJeXu8VZ8O4mMjKSt956i169elFZWcmf//xnBg4cyNatW+nRo0eDZqm3Yjd16lReffXVi86zZ88e4uLiruj1x40bV/vn+Ph4unfvTocOHdi4cSODBg26otd0d/W9zeVcl7q9r9S/fgcvPj6eyMhIBg0aRHZ2Nh06dLji13VFW3/I54ml6eQWVeBns/LsbZ25+9o2WCznP0on7qVv37707du39nm/fv3o3Lkzf/zjH3nxxRdNTCZSNzp16kSnTp1qn/fr14/s7GzefPNN/v73vzdolnordlOmTOG+++676Dzt27evs/W1b9+esLAwDh486LXFrj63eYsWLQDIy8sjMjKydnpeXh6JiYlX9Jru7lK3d4sWLX72pfKamhrOnDlTu10vRZ8+fQA4ePCgxxQ7h9Ng4YaDzFu/H6cB7cMCWTA+ia5RIZf8GmFhYdhsNvLy8s6ZnpeXd8Ht26JFi8uaX/7PlWzvf+fr60tSUhIHDx6sj4he70L7d3BwsI7WNaDevXuzadOmBl9vvRW78PBwwsPD6+vlf+bo0aPk5+efUzq8TX1u83bt2tGiRQvWr19fW+SKiorYunXrZZ/N7CkudXv37duXgoICtm/fTs+ePQHYsGEDTqeztqxdivT0dACP2cdPFlXwxNJ0tvzw03dj70hqycyR3Whsv7yPJT8/P3r27Mn69esZOXIkAE6nk/Xr15OSknLeZfr27cv69euZNGlS7bTPPvvsnKNKcn5Xsr3/ncPhYOfOnS5/P2J31bdv359dvkf7d8NLT0835/Pa7LM3DMMwDh06ZKSlpRkvvPCC0bhxYyMtLc1IS0sziouLa+fp1KmTsXLlSsMwDKO4uNh48sknjS1bthg5OTnG559/bvTo0cOIjY01KioqzHobbuVyt7lhGMbvf/97IzQ01Pjggw+MzMxMY8SIEUa7du2M8vJyM96CWxk6dKiRlJRkbN261di0aZMRGxtrJCcn1/786NGjRqdOnYytW7cahmEYBw8eNGbOnGl8//33Rk5OjvHBBx8Y7du3N2644Qaz3kKd+mJvntFj5qdGm2c+NDo/97Hx3vdHrur1li5datjtdmPx4sXG7t27jUceecQIDQ01cnNzDcP46YxA/uWs2G+++cbw8fExXn/9dWPPnj3GjBkzDF9fX2Pnzp1X/d68wS9t77vvvtuYOnVq7fwvvPCC8cknnxjZ2dnG9u3bjXHjxhn+/v5GVlaWWW/BrRQXF9d+RgPGnDlzjLS0NOPQoUOGYRjG1KlTjbvvvrt2/h9++MEICAgwnnrqKWPPnj3GokWLDJvNZqxbt86st+B2Lnebv/nmm8bq1auNAwcOGDt37jSeeOIJw2q1Gp9//nmDZ3eJYnfvvfcawM8eX3zxRe08gPHOO+8YhmEYZWVlxs0332yEh4cbvr6+Rps2bYyHH3649kNFftnlbnPD+OmSJ88995wRERFh2O12Y9CgQca+ffsaPrwbys/PN5KTk43GjRsbwcHBxv33339Oic7JyTln+x8+fNi44YYbjKZNmxp2u92IiYkxnnrqqdpi4q6qahzGK2t3G22e+dBo88yHxpA3vzQOniz+5QUvwYIFC4zWrVsbfn5+Ru/evY1vv/229mf9+/c/p9gZhmEsX77c6Nixo+Hn52d07drV+Oijj+okh7e42PYeMGCAce+999Y+nzRpUu28ERERxi233GLs2LHDhNTu6Z+X0vj3xz+38b333msMGDDgZ8skJiYafn5+Rvv27c/5LJdfdrnb/NVXXzU6dOhg+Pv7G02bNjUGDhxobNiwwZTsuqWYiDSII2fKmJCaRvqRAgDuvrYNv721M/6+9X8Wu24pJiLewm0vdyIi7uPjnSd4+v1MiitqCPL3Yfao7gyL94zvCoqIuBIVOxGpNxXVDl76aDf/+PYwAEmtQ5k/LonopgEmJxMR8UwqdiJSLw6eLCFlyQ725hYD8NiADky5uSO+Nre+4Y2IiEtTsROROvfe9qM8t3oX5dUOmgX6MWdsIgM6Ntzlj0REvJWKnYjUmZLKGp5fvYuVaccA6B/TjDfHJNI82N/kZCIi3kHFTkTqxK5jhUxITSPndClWC0y+qSOPD4zBZtVtwUREGoqKnYhcFcMw+OvmH3ll7V6qHE4iQ/yZn5zENW2bmh1NRMTrqNiJyBUrLKvmqfcy+HT3T/elHNw5gtfu7E6TQD+Tk4mIeCcVOxG5ItsPnWFiajrHCsrxtVmYNqwz9/dvi8XiWkOvU6dOJS0tzewYIiINQtcdEJHL4nQaLPriIGP++C3HCspp0yyAlY/354Hr2rlcqYOfbsQdHx9vdgwRkQahI3YicslOFVcyeXk6Xx84DcCIxCheGtmNIH9fk5NdWHp6OmPHjjU7hohIg9AROxG5JJsOnGbYvK/5+sBp/H2tzB7VnbljE1261OXm5pKXl4fD4QAgIiKCa665hp07d5qcTESkfqjYichF1TicvPbJXu5+eyunSyrpFBHEmpTrGHNNtEsOvf6r9PR0AP7whz8A8OWXX9K4cWOSk5NNTCUiUn9U7ETkgo4VlDPuT9+y6ItsDAOSe7fmg5T+xEYEmR3tkqSnp+Pv78+SJUsAiIuL4+WXXyYrK4vTp0+bnE5EpO7pO3Yicl6fZuXy1HuZFJZXE2T3YdaoeG7rHmV2rMuSnp7OmDFjiIyMrJ3WpEkTAJxOp1mxRETqjYqdiJyjssbBrLV7Wbz5RwC6twphYXIPWjcLMDfYFUhPT+fRRx89Z9q3335Ly5Ytad68uUmpRETqj4qdiNTKOV1KypIdZB0vAuCh69rx9NA4/Hzc71sbZWVlHDhwoPbECfjpKN28efO47777zAsmIlKPVOxEBIDVacf47aqdlFY5aBLgyxtjEvhVXITZsa5YZmYmNpuNd955h549ewJw7733Ul5ezjPPPGNyOhGR+qFiJ+LlyqpqmPFBFiu2HwWgT7umzBuXRIsQf5OTXZ309HQ6duzI888/z1133QWAr68vmzdvJijIPU7+EBG5XBbDMAyzQ4iIOfacKCJlyQ6yT5VitcCEX8UycVAsNqtrX8bkchUVFRESEkJhYSHBwcFmxxERqTc6YifihQzD4N2th5n54W6qapxEBNuZOzaJvh2amR1NRESugoqdiJcpLK9m2spM1u7MBeDGTuG8PjqBZo3tJicTEZGrpWIn4kXSDp9lQmoaR8+W42O18MzQOB68rh1WDxt6FRHxVip2Il7A6TT4769/4LVP9lHjNIhu2ogFyT1IjA41O5qIiNQhFTsRD5dfUsmUFRls3HcKgFvjI5k1Kp5gf1+Tk4mISF1TsRPxYFuy83liaRoniyux+1iZMbwryb2jsVg09Coi4olU7EQ8UI3DyfwNB1mw4QCGATHNG7NwfBJxLXSpDxERT6ZiJ+JhThSW88TSdLblnAFgdM9WvDCiKwF++ucuIuLp9Ekv4kHW78njyRUZnC2rJtDPxit3xDMisaXZsUREpIGo2Il4gKoaJ6+u28tfNuUA0K1lMAuSe9AuLNDkZCIi0pBU7ETc3KH8UiakppF5tBCA+/u3ZeqwOOw+NpOTiYhIQ1OxE3FjazKOM33lToorawgN8OW1OxO4qUuE2bFERMQkKnYibqi8ysHMD7NI3XYEgGvaNmHeuCSiQhuZnExERMykYifiZg7kFfPrJTvYn1eCxQIpN8bwxKBYfGxWs6OJiIjJVOxE3IRhGCz//ggz/ieLimon4UF25o5NpH9MmNnRRETERajYibiB4opqpq/axZqM4wBcHxvGnDGJhAfZTU4mIiKuRMVOxMVlHi1gQmoah/LLsFktPHlzJx69oT1Wq24LJiIi51KxE3FRhmHw9jc/8vuP91DtMGgZ2oj5yUn0bNPE7GgiIuKiVOxEXNDZ0iqeXJHB+r0nARjSNYLZoxIICfA1OZmIiLgyFTsRF7Mt5wwTU9PILarAz2bl2ds6c/e1bbBYNPQqIiIXp2In4iIcToNFXxxk7uf7cRrQPiyQBeOT6BoVYnY0ERFxEyp2Ii7gZFEFk5alszk7H4A7klry4shuBNr1T1RERC6drmgqYrKN+04ybN7XbM7OJ8DPxhujE5gzNtEjS92ZM2e46667CA4OJjQ0lAcffJCSkpKLLjNw4EAsFss5j8cee6yBEouIuBfP+80h4iaqHU5e/3Qff/zyBwA6RwazcHwSHcIbm5ys/tx1112cOHGCzz77jOrqau6//34eeeQRlixZctHlHn74YWbOnFn7PCAgoL6jioi4JRU7ERMcOVPGhNQ00o8UAHBP3zZMv6Uz/r42c4PVoz179rBu3Tq+++47evXqBcCCBQu45ZZbeP3114mKirrgsgEBAbRo0aKhooqIuC0NxYo0sHW7TnDL/K9JP1JAsL8Pb/2/Hswc0c2jSx3Ali1bCA0NrS11AIMHD8ZqtbJ169aLLvvuu+8SFhZGt27dmDZtGmVlZRedv7KykqKionMeIiLeQEfsRBpIRbWDlz/aw9+/PQRAUutQ5o9LIrqpdwwr5ubm0rx583Om+fj40LRpU3Jzcy+43Pjx42nTpg1RUVFkZmbyzDPPsG/fPlauXHnBZWbNmsULL7xQZ9lFRNyFip1IAzh4soSUJTvYm1sMwGMDOjDl5o742tz/oPnUqVN59dVXLzrPnj17rvj1H3nkkdo/x8fHExkZyaBBg8jOzqZDhw7nXWbatGlMnjy59nlRURHR0dFXnEFExF2o2InUs/e2H+W51bsor3bQLNCPOWMTGdAx3OxYdWbKlCncd999F52nffv2tGjRgpMnT54zvaamhjNnzlzW9+f69OkDwMGDBy9Y7Ox2O3a7/ZJfU0TEU6jYidSTksoanl+9i5VpxwDoH9OMN8ck0jzY3+RkdSs8PJzw8F8uqn379qWgoIDt27fTs2dPADZs2IDT6awta5ciPT0dgMjIyCvKKyLiySyGYRhmhxDxNLuOFTIhNY2c06VYLTD5po48PjAGm9W7bws2bNgw8vLyeOutt2ovd9KrV6/ay50cO3aMQYMG8be//Y3evXuTnZ3NkiVLuOWWW2jWrBmZmZn85je/oVWrVnz55ZeXvN6ioiJCQkIoLCwkODi4vt6eiIjpdMROpA4ZhsFfN//IK2v3UuVwEhniz/zkJK5p29TsaC7h3XffJSUlhUGDBmG1Whk1ahTz58+v/Xl1dTX79u2rPevVz8+Pzz//nLlz51JaWkp0dDSjRo3i2WefNestiIi4NB2xE6kjBWVVPP1eJp/uzgNgcOfmvHZnAk0C/UxOJjpiJyLeQkfsROrA9kNnmJiazrGCcnxtFqYN68z9/dtisXj30KuIiDQsFTuRq+B0Gvzhy2zmfLYfh9OgTbMAFib3IL5ViNnRRETEC6nYiVyhU8WVTF6eztcHTgMwIjGKl0Z2I8jf1+RkIiLirVTsRK7ApgOnmbQsndMllfj7Wpl5ezdG92qloVcRETGVip3IZahxOHnz8/3818ZsDAM6RQSxcHwSsRFBZkcTERFRsRO5VMcKynkiNY3vD50FILl3a2YM74K/r83kZCIiIj9RsRO5BJ9m5fLUe5kUllcTZPdh1qh4buseZXYsERGRc6jYiVxEZY2DWWv3snjzjwAktAphQXIPWjcLMDeYiIjIeajYiVxAzulSUpbsIOt4EQAPX9+Op4bE4edjNTmZiIjI+anYiZzH6rRj/HbVTkqrHDQJ8OWNMQn8Ki7C7FgiIiIXpWIn8i/KqmqY8UEWK7YfBaBPu6bMG5dEixB/k5OJiIj8MhU7kf+150QRKUt2kH2qFKsFJvwqlomDYrFZdW06ERFxDyp24vUMw+DdrYeZ+eFuqmqcNA+yM29cEn07NDM7moiIyGVRsROvVlhezbSVmazdmQvAjZ3CeX10As0a201OJiIicvlU7MRrpR0+y4TUNI6eLcfHauGZoXE8eF07rBp6FRERN6ViJ17H6TT4769/4LVP9lHjNIhu2ogFyT1IjA41O5qIiMhVUbETr5JfUsmUFRls3HcKgFvjI5k1Kp5gf1+Tk4mIiFw9FTvxGpuzTzNpaToniyux+1iZMbwryb2jsVg09CoiIp5BxU48Xo3DyfwNB1mw4QCGATHNG7NwfBJxLYLNjiYiIlKnVOzEo50oLOeJpelsyzkDwJherfjd7V0J8NOuLyIinke/3cRjrd+Tx5MrMjhbVk2gn41X7ohnRGJLs2OJiIjUGxU78ThVNU5eXbeXv2zKAaBby2AWJPegXVigyclERETql4qdeJRD+aVMSE0j82ghAPf1a8u0W+Kw+9hMTiYiIlL/VOzEY6zJOM60lTspqawhpJEvr49O4KYuEWbHEhERaTAqduL2yqsczPwwi9RtRwDo1aYJ85OTiAptZHIyERGRhqViJ25tf14xKUt2sD+vBIsFUm6M4YlBsfjYrGZHExERaXAqduKWDMNg2XdH+N2aLCqqnYQH2Zk7NpH+MWFmRxMRETGNip24neKKaqav2sWajOMAXB8bxpwxiYQH2U1OJiIiYi4VO3ErO48WkpK6g0P5ZdisFp68uROP3tAeq1W3BRMREVGxE7dgGAZvf/Mjv/94D9UOg5ahjZifnETPNk3MjiYiIuIyVOzE5Z0treLJFRms33sSgKFdW/DqqO6EBPianExERMS1qNiJS9uWc4aJqWnkFlXg52PluVs78/+ubYPFoqFXERGRf6diJy7J4TRY9MVB5n6+H6cB7cMCWTi+B12igs2OJiIi4rJU7MTlnCyqYNKydDZn5wNwR4+WvDiiG4F27a4iIiIXo9+U4lI27jvJlOUZ5JdWEeBn48UR3RjVs5XZsURERNyCip24hGqHk9c/3ccfv/wBgM6RwSwcn0SH8MYmJxMREXEfKnZiuiNnypiQmkb6kQIA7unbhum3dMbf12ZuMBERETejYiem+njnCZ5+P5PiihqC/X2YfWd3hnaLNDuWiIiIW1KxE1NUVDt46aPd/OPbwwAktQ5l/rgkopsGmJxMRETEfanYSYM7eLKElCU72JtbDMBjAzow5eaO+NqsJicTERFxbyp20qDe236U51bvorzaQbNAP+aMTWRAx3CzY4mIiHgEFTtpECWVNTy/ehcr044B0D+mGW+OSaR5sL/JyURERDyHip3Uu6zjhaQsSSPndClWC0y+qSOPD4zBZtVtwUREROqSip3UG8Mw+NuWQ7z80R6qHE4iQ/yZn5zENW2bmh1NRETEI6nYSb0oKKvi6fcy+XR3HgCDO0fw2p3daRLoZ3IyERERz6ViJ3Vu+6EzTExN51hBOb42C9OGdeb+/m2xWDT0KiIiUp9U7KTOOJ0Gf/gymzmf7cfhNGjbLIAFyT2IbxVidjQRERGvoGIndeJUcSWTl6fz9YHTAIxIjOKlkd0I8vc1OZmIiIj3ULGTq/b1gVP8ZlkGp0sq8fe1MvP2bozu1UpDryIiIg1MxU6uWI3DyZzP9vOHL7MxDOgUEcTC8UnERgSZHU1ERMQrqdjJFTlWUM7E1DS2HzoLQHLv1swY3gV/X5vJyURERLyXip1ctk+zcnnqvUwKy6sJsvswa1Q8t3WPMjuWiIiI11Oxk0tWWeNg1tq9LN78IwAJrUJYkNyD1s0CzA0mIiIigIqdXKKc06WkLNlB1vEiAB6+vh1PDYnDz8dqcjIRERH5JxU7+UWr047x21U7Ka1y0DTQjzdGJ3BjXHOzY4mIiMi/UbGTCyqrqmHGB1ms2H4UgGvbN2Xu2CRahPibnExERETOR8VOzmvPiSJSluwg+1QpVgtMHBTLhF/FYrPq2nQiIiKuSl+QknMYhsE/vj3EiEXfkH2qlIhgO0sevpZJgzuq1MlVe/nll+nXrx8BAQGEhoZe0jKGYfD8888TGRlJo0aNGDx4MAcOHKjfoCIibkrFTmoVllfz6yU7eHb1LqpqnNzYKZy1E6/n2vbNzI4mHqKqqorRo0fz+OOPX/Iys2fPZv78+bz11lts3bqVwMBAhgwZQkVFRT0mFRFxTxbDMAyzQ4j50g6fZUJqGkfPluNrs/DM0Dge6N8Oq47SST1YvHgxkyZNoqCg4KLzGYZBVFQUU6ZM4cknnwSgsLCQiIgIFi9ezLhx4y5pfUVFRYSEhFBYWEhwcPDVxhcRcVn6jp2XczoN/vvrH3jtk33UOA2imzZiYXIPEqJDzY4mQk5ODrm5uQwePLh2WkhICH369GHLli0XLHaVlZVUVlbWPi8qKqr3rCIirkDFzovll1QyZUUGG/edAuDW7pHMuiOeYH9fk5OJ/CQ3NxeAiIiIc6ZHRETU/ux8Zs2axQsvvFCv2UREXJG+Y+elNmefZti8r9m47xR2Hyuv/Ec8C5OTVOrksk2dOhWLxXLRx969exs007Rp0ygsLKx9HDlypEHXLyJiFh2x8zI1DifzNxxkwYYDGAbENG/MwvFJxLXQ947kykyZMoX77rvvovO0b9/+il67RYsWAOTl5REZGVk7PS8vj8TExAsuZ7fbsdvtV7ROERF3pmLnRU4UlvPE0nS25ZwBYEyvVvzu9q4E+Gk3kCsXHh5OeHh4vbx2u3btaNGiBevXr68tckVFRWzduvWyzqwVEfEW+o3uJdbvyePJFRmcLasm0M/Gy/8Rz8iklmbHEi9z+PBhzpw5w+HDh3E4HKSnpwMQExND48aNAYiLi2PWrFn8x3/8BxaLhUmTJvHSSy8RGxtLu3bteO6554iKimLkyJHmvRERERelYufhqmqcvLpuL3/ZlANAt5bBLEjuQbuwQJOTiTd6/vnn+etf/1r7PCkpCYAvvviCgQMHArBv3z4KCwtr53n66acpLS3lkUceoaCggOuuu45169bh769b24mI/Dtdx86DHcovZUJqGplHf/oleX//tkwdFofdx2ZyMpGGpevYiYi30BE7D7Um4zjTVu6kpLKG0ABfXrszgZu6RPzygiIiIuK2VOw8THmVg5kfZpG67afLO1zTtgnzxiURFdrI5GQiIiJS31TsPMj+vGJSluxgf14JFgv8emAMkwbH4mPT5QpFRES8gYqdBzAMg2XfHeF3a7KoqHYSHmRn7thE+seEmR1NREREGpCKnZsrrqhm+qpdrMk4DsD1sWHMGZNIeJAuzioiIuJtVOzcWObRAiakpnEovwwfq4Unh3TikevbY7VazI4mIiIiJlCxc0OGYfD2Nz/y+4/3UO0waBnaiAXjk+jRuonZ0URERMREKnZu5mxpFU+uyGD93pMADO3agldHdSckwNfkZCIiImI2FTs3si3nDBNT08gtqsDPx8pzt3Xh//VpjcWioVcRERFRsXMLDqfBoi8OMvfz/TgNaB8eyMLkHnSJ0hX0RURE5P+o2Lm4k0UVTFqWzubsfABG9WjFzBFdCbTrr05ERETOpXbgwjbuO8mU5Rnkl1YR4GfjpZHduKNHK7NjiYiIiItSsXNB1Q4nr3+6jz9++QMAnSODWTg+iQ7hjU1OJiIiIq5Mxc7FHDlTxoTUNNKPFABwT982TL+lM/6+NnODiYiIiMtTsXMhH+88wdPvZ1JcUUOwvw+z7+zO0G6RZscSERERN6Fi5wIqqh289NFu/vHtYQCSWocyf1wS0U0DTE4mIiIi7kTFzmQHT5aQsmQHe3OLAXhsQAem3NwRX5vV5GQiIiLiblTsTPTe9qM8t3oX5dUOmgX6MWdsIgM6hpsdS0RERNyUip0JSitreG71LlamHQOgf0wz3hyTSPNgf5OTiYiIiDtTsWtgWccLSVmSRs7pUqwWmHxTRx4fGIPNqtuCiYiIyNVRsWsghmHwty2HePmjPVQ5nESG+DNvXBK92zU1O5qIiIh4CBW7BlBQVsXT72Xy6e48AAZ3juC1O7vTJNDP5GQiIiLiSVTs6tn2Q2eYmJrOsYJyfG0Wpg3rzP3922KxaOhVRERE6paKXT1xOg3+8GU2cz7bj8Np0LZZAAuSexDfKsTsaCIiIuKhVOzqwaniSiYvT+frA6cBGJEYxUsjuxHk72tyMhEREfFkKnZ1bNOB00xals7pkkr8fa3MvL0bo3u10tCriIiI1DsVuzpS43Dy5uf7+a+N2RgGdIoIYuH4JGIjgsyOJiIiIl5Cxa4OHCso54nUNL4/dBaA5N6tmTG8C/6+NpOTiYiIiDdRsbtKn2bl8tR7mRSWVxNk92HWqHhu6x5ldiwRERHxQip2V6iyxsGstXtZvPlHABJahbAguQetmwWYG0xERES8lordFcg5XUrKkh1kHS8C4OHr2/HUkDj8fKwmJxMRERFvpmJ3mVanHeO3q3ZSWuWgSYAvb4xJ4FdxEWbHEhEREVGxu1RlVTXM+CCLFduPAtCnXVPmjUuiRYi/yclEREREfqJidwn2nCgiZckOsk+VYrXAhF/FMnFQLDarrk0nIiIirkPF7iIMw+DdrYeZ+eFuqmqcRATbmTs2ib4dmpkdTURERORnVOwuoLC8mmkrM1m7MxeAGzuF8/roBJo1tpucTEREROT8VOzOI+3wWSakpnH0bDk+VgvPDI3jwevaYdXQq4iIiLgwFbt/4XQa/PfXP/DaJ/uocRpEN23EguQeJEaHmh1NRERE5Bep2P2v/JJKpqzIYOO+UwDcGh/JrFHxBPv7mpxMRERE5NKo2AGbs08zaWk6J4srsftYmTG8K8m9o7FYNPQqIiIi7sOri53DaTBv/QEWbDiAYUBM88YsHJ9EXItgs6OJiIiIXDavLXYnCst5Ymk623LOADC2VzQzbu9CgJ/XbhIRERFxc17ZYtbvyePJFRmcLasm0M/GK3fEMyKxpdmxRERERK6KVxW7qhonr67by1825QDQrWUwC5N70DYs0ORkIiIiIlfPa4rdofxSJqSmkXm0EID7+7dl6rA47D42k5OJiIiI1A2vKHZrMo4zbeVOSiprCA3w5bU7E7ipS4TZsURERETqlEcXu/IqBzM/zCJ12xEArmnbhHnjkogKbWRyMhEREZG657HFbn9eMSlLdrA/rwSLBVJujOGJQbH42KxmRxMRERGpFx5X7AzDYNl3R/jdmiwqqp2EB9mZOzaR/jFhZkcTERERqVceVeyKK6qZvmoXazKOA3B9bBhzxiQSHmQ3OZmIiIhI/fOYYpd5tIAJqWkcyi/DZrXw5M2dePSG9litui2YiIiIeAe3L3aGYfD2Nz/y+4/3UO0waBnaiPnJSfRs08TsaCIiIiINyq2L3ZnSKp5akcH6vScBGNI1gtmjEggJ8DU5mYiIiEjDc9tit/WHfJ5Ymk5uUQV+NivP3taZu69tg8WioVcRERHxTm5X7BxOg4UbDjJv/X6cBrQPC2TB+CS6RoWYHU1ERETEVG5V7PKKKpi0NJ0tP+QDcEdSS14c2Y1Au1u9DREREZF64TaNaOO+k0xZnkF+aRUBfjZeHNGNUT1bmR1LRERExGW4/G0Yqh1OZq3dw33vfEd+aRVxLYJYM+E6lToRN/Tyyy/Tr18/AgICCA0NvaRl7rvvPiwWyzmPoUOH1m9QERE35dJH7I6cKWNCahrpRwoAuPvaNvz21s74+9rMDSYiV6SqqorRo0fTt29f/vKXv1zyckOHDuWdd96pfW6366LjIiLn47LFbu3OEzzzfibFFTUE+fswe1R3hsVHmh1LRK7CCy+8AMDixYsvazm73U6LFi3qIZGIiGdxuaHYimoHv121k/98dwfFFTUktQ5l7cTrVepEvNjGjRtp3rw5nTp14vHHHyc/P9/sSCIiLsnljtj98csfeHfrYQAeG9CBKTd3xNfmcv1TRBrI0KFDueOOO2jXrh3Z2dlMnz6dYcOGsWXLFmy2838to7KyksrKytrnRUVFDRVXRMRULteYHrmhPX3bN+OvD/Rm6rA4lToRFzd16tSfndzw74+9e/de8euPGzeO22+/nfj4eEaOHMmHH37Id999x8aNGy+4zKxZswgJCal9REdHX/H6RUTcicUwDMPsEP/OMAzdQULETZw6deoXh0bbt2+Pn59f7fPFixczadIkCgoKrmid4eHhvPTSSzz66KPn/fn5jthFR0dTWFhIcHDwFa1TRMQduNxQLKBSJ+JGwsPDCQ8Pb7D1HT16lPz8fCIjL/y9W7vdrjNnRcQraZxTRBrM4cOHSU9P5/DhwzgcDtLT00lPT6ekpKR2nri4OFatWgVASUkJTz31FN9++y0//vgj69evZ8SIEcTExDBkyBCz3oaIiMtyySN2IuKZnn/+ef7617/WPk9KSgLgiy++YODAgQDs27ePwsJCAGw2G5mZmfz1r3+loKCAqKgobr75Zl588UUdkRMROQ+X/I6diEhdKioqIiQkRN+xExGPp6FYEREREQ+hYiciIiLiIVTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiIiIeAgVOxEREREPoWInIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ1gMwzDMDiEiUp8Mw6C4uJigoCAsFovZcURE6o2KnYiIiIiH0FCsiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ6jYiYiIiHgIFTsRERERD6FiJyIiIuIh/j93btg4hU2MGQAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<sympy.plotting.plot.Plot at 0x79b4b4af2140>" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 4 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"E subtraindo `b` do resultado do gráfico a cima, vemos que o resultado é sempre `0`, comprovando a igualdade." | |
], | |
"metadata": { | |
"id": "GnqgMPowmEta" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"plot((a / b).subs({a: solucao_a}) - b, (b, -1.5, 1.5))" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 504 | |
}, | |
"id": "m1m5b39Fl6MG", | |
"outputId": "6ac7ab99-1feb-45bc-f734-fbc3a642c125" | |
}, | |
"execution_count": 5, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 640x480 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHVCAYAAAB8NLYkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmxElEQVR4nO3de3SU9Z3H8c+EkAQvSQwJGaLhphQolwSChNCtoEkNl2PNipVmWbnIirJKobBW8AJrW0u9KysFbbuwrqAsXrAijQeD1FrGiAkpEC6iRUB0goJMwi0J5Ld/eBibEiBgJpN8eb/OmXPgmd+T+T7PmZPzPs9c4nHOOQEAAKDFiwj3AAAAAGgchB0AAIARhB0AAIARhB0AAIARhB0AAIARhB0AAIARhB0AAIARhB0A85xzqqioEF/bCcA6wg6AeZWVlYqLi1NlZWW4RwGAkCLsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsAAAAjCDsADS6efPmqVOnToqJiVFmZqbef//9065ftmyZunfvrpiYGPXu3VsrV6485drbb79dHo9HTz75ZCNPDQAtH2EHoFEtXbpU06ZN0+zZs1VSUqK0tDTl5uZq79699a5fu3at8vPzNWHCBK1fv155eXnKy8vTpk2bTlr76quv6r333lNKSkqoDwMAWiSPc86FewgAdmRmZurKK6/U008/LUmqra1VamqqJk+erBkzZpy0ftSoUTp06JBWrFgR3DZw4EClp6drwYIFwW179uxRZmam3nzzTY0YMUJTp07V1KlT652hqqpKVVVVwf9XVFQoNTVVgUBAsbGxjXSkAND8cMUOQKOprq5WcXGxcnJygtsiIiKUk5Mjn89X7z4+n6/OeknKzc2ts762tlY333yz7rrrLvXs2fOMc8yZM0dxcXHBW2pq6jkeEQC0LIQdgEbz5Zdf6vjx40pOTq6zPTk5WX6/v959/H7/Gdc/9NBDioyM1E9+8pMGzTFz5kwFAoHgbffu3Wd5JADQMkWGewAAOJ3i4mI99dRTKikpkcfjadA+0dHRio6ODvFkAND8cMUOQKNJTExUq1atVF5eXmd7eXm5vF5vvft4vd7Trv/zn/+svXv3qkOHDoqMjFRkZKR27typ6dOnq1OnTiE5DgBoqQg7AI0mKipKGRkZKiwsDG6rra1VYWGhsrKy6t0nKyurznpJWrVqVXD9zTffrA0bNqi0tDR4S0lJ0V133aU333wzdAcDAC0QL8UCaFTTpk3T2LFj1b9/fw0YMEBPPvmkDh06pPHjx0uSxowZo0svvVRz5syRJE2ZMkWDBw/WY489phEjRujFF1/UBx98oGeffVaS1LZtW7Vt27bOY7Ru3Vper1fdunVr2oMDgGaOsAPQqEaNGqUvvvhCs2bNkt/vV3p6ugoKCoIfkNi1a5ciIr55sWDQoEFasmSJ7rvvPt1zzz3q2rWrli9frl69eoXrEACgxeJ77ACYV1FRobi4OL7HDoB5vMcOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOQKObN2+eOnXqpJiYGGVmZur9998/7fply5ape/fuiomJUe/evbVy5crgfTU1Nbr77rvVu3dvXXjhhUpJSdGYMWP02WefhfowAKDFIewANKqlS5dq2rRpmj17tkpKSpSWlqbc3Fzt3bu33vVr165Vfn6+JkyYoPXr1ysvL095eXnatGmTJOnw4cMqKSnR/fffr5KSEr3yyivatm2bfvjDHzblYQFAi+BxzrlwDwHAjszMTF155ZV6+umnJUm1tbVKTU3V5MmTNWPGjJPWjxo1SocOHdKKFSuC2wYOHKj09HQtWLCg3sdYt26dBgwYoJ07d6pDhw4n3V9VVaWqqqrg/ysqKpSamqpAIKDY2Nhve4gA0GxxxQ5Ao6murlZxcbFycnKC2yIiIpSTkyOfz1fvPj6fr856ScrNzT3lekkKBALyeDyKj4+v9/45c+YoLi4ueEtNTT37gwGAFoiwA9BovvzySx0/flzJycl1ticnJ8vv99e7j9/vP6v1R48e1d133638/PxTXn2bOXOmAoFA8LZ79+5zOBoAaHkiwz0AADRUTU2NbrrpJjnnNH/+/FOui46OVnR0dBNOBgDNA2EHoNEkJiaqVatWKi8vr7O9vLxcXq+33n28Xm+D1p+Iup07d2r16tW8Vw4A6sFLsQAaTVRUlDIyMlRYWBjcVltbq8LCQmVlZdW7T1ZWVp31krRq1ao6609E3fbt2/XWW2+pbdu2oTkAAGjhuGIHoFFNmzZNY8eOVf/+/TVgwAA9+eSTOnTokMaPHy9JGjNmjC699FLNmTNHkjRlyhQNHjxYjz32mEaMGKEXX3xRH3zwgZ599llJX0fdjTfeqJKSEq1YsULHjx8Pvv8uISFBUVFR4TlQAGiGCDsAjWrUqFH64osvNGvWLPn9fqWnp6ugoCD4AYldu3YpIuKbFwsGDRqkJUuW6L777tM999yjrl27avny5erVq5ckac+ePfrDH/4gSUpPT6/zWG+//baGDBnSJMcFAC0B32MHwLyKigrFxcXxPXYAzOM9dgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEYQdgAAAEZEhnsAAI2vpqZGfr9fhw8fVlJSkhISEsI9EgCgCXDFDjCisrJS8+fP1+DBgxUbG6tOnTqpR48eSkpKUseOHXXrrbdq3bp14R4TABBChB1gwOOPP65OnTpp4cKFysnJ0fLly1VaWqoPP/xQPp9Ps2fP1rFjx3Tttddq6NCh2r59e7hHBgCEgMc558I9BIBvJz8/X/fdd5969ux52nVVVVVauHChoqKidMsttzTRdOFXUVGhuLg4BQIBxcbGhnscAAgZwg4wprKyUhdffHG4x2hWCDsA5wteigWM+f73vy+/3x/uMQAAYUDYAcb07dtXmZmZ2rp1a53tpaWlGj58eJPMMG/ePHXq1EkxMTHKzMzU+++/f9r1y5YtU/fu3RUTE6PevXtr5cqVde53zmnWrFlq37692rRpo5ycHN4nCAD1IOwAYxYuXKhx48bpn/7pn/Tuu+/qww8/1E033aSMjAy1atUq5I+/dOlSTZs2TbNnz1ZJSYnS0tKUm5urvXv31rt+7dq1ys/P14QJE7R+/Xrl5eUpLy9PmzZtCq55+OGHNXfuXC1YsEBFRUW68MILlZubq6NHj4b8eACgJWl277FzzulIzfFwjwG0eI888qh+/etfq/b4cQ25eojuvfc+9e+fEfLHHTJ4iPplZOjxxx+TJNXW1qpbt266/fbbNX369JPWjxkzVocPHdJLL7/0zc8YcrX69OmjuXOfknNOV1xxhX7yk59oypQpkqRAoEJdOnfWM888oxt/dOMZZ6qoqFD7pLb6/It9vMcOQKNp07qVPB5PuMeoo0Fh55xTZWVlU8yjw9XHNODBwiZ5LADnh9qqw9ozf5wunbRIEdEXhHscAEa8f2+2Lohqur/1cPHFF58xJBsUdic+UQYAAIDwaMgn+5vdFTvnnPbuP6DvfOc7+vDDD/nahiZQWVnJ+W5ioTznr726XNf/c16dbRs3bNDNY8Zo2LDhmjPnV436eH/P7/erb9++ev31FXVe9v3FL36h99b69MYfV560T4fUDpo79ynl/fM/B7ctWrhIjz3+mDZu3Kh16z7QD394nUpLS5WcnBxcM3HibfJ4PHrmmQUn/cyqqmpVV1d9M9fnn+uq72Wp5K8b1T4lpbEOF6fA75SmxzlvWifO966/fdSkF74acsWuQdcPPR5Pk74vxePxSMeqldz2Et4P0wQuiIrkfDexUJ7z2249+YuHvdcM0XvvvqNhw4bJmxi6vxubEHuRWrnjOnb0UJ3HOXhgvy5LSa73sb1JCTp6qLLOfUcOBpTSLlHexAT17HaFdKxarqaqzprAvr1KT09v0PG0af31h0aSEuJDevz4Gr9Tmh7nvGmdON9xcXHN7nzzqVjgPNGpUyetXbs2pI8RFRWljIwMFRZ+8z7Z2tpaFRYWKisrq959srKy6qyXpFWrVgXXd+7cWV6vt86aiooKFRUVnfJnAsD5irADDNi1a1eD1l1yySWSpD179oRslmnTpum3v/2t/ud//kdbtmzRpEmTdOjQIY0fP16SNGbMGM2cOTO4fsqUKSooKNBjjz2mrVu36j//8z/1wQcf6M4775T09RX8qVOn6pe//KX+8Ic/aOPGjRozZoxSUlKUl5cXsuMAgJaoWYZddHS0Zs+erejo6HCPcl7gfDe9xj7nV155pW677TatW7fulGsCgYB++9vfqlevXnr55Zcb5XHrM2rUKD366KOaNWuW0tPTVVpaqoKCguD743bt2qXPP/88uH7QoEFasmSJnn32WaWlpemll17S8uXL1atXr+Can/3sZ5o8ebImTpyoK6+8UgcPHlRBQYFiYmIaNNOJ88xzvGnwO6Xpcc6bVnM+383ue+wAnL1bbrlFl1xyiX7/+98rJiZGGRkZSklJUUxMjL766itt3rxZZWVl6tevn+6///4m+wsUzQV/KxbA+YKwAwyIiorS7t27dfHFFyspKUn5+fnat2+fjhw5osTERPXt21e5ubl1roKdTwg7AOeLpvtWPQAhk5KSotLSUuXm5urIkSP61a9+pXbt2oV7LABAE2uW77EDcHamT5+u6667Tt///vfl8Xi0ePFirVu3TkeOHAn3aACAJsRLsYARGzZs0Ouvv677779fXbp00SeffCKPx6MrrrhCaWlpSk9PV1pamoYNGxbuUZscL8UCOF8QdoAxXbt2lc/n04UXXqgNGzaotLQ0eNu0aVOT/RWZ5oSwA3C+aBYvxT744IMaNGiQLrjgAsXHxzdon3Hjxsnj8dS5DR06NLSDGnIu59w5p1mzZql9+/Zq06aNcnJytH379tAOasT+/fs1evRoxcbGKj4+XhMmTNDBgwdPu8+QIUNOeo7ffvvtZ3ys7du3KzExUW3atFFmZqZuu+02zZ8/Xz6fTxUVFY11SM3OvHnz1KlTJ8XExCgzM1Pvv//+adcvW7ZM3bt3V0xMjHr37q2VK0/+c2c4tbM534sWLTrpudzQr6qB9M477+i6665TSkqKPB6Pli9ffsZ91qxZo379+ik6OlpXXHGFFi1aFPI5LTnbc75mzZqTnuMej0d+v79pBv47zSLsqqur9aMf/UiTJk06q/2GDh2qzz//PHh74YUXQjShPedyzh9++GHNnTtXCxYsUFFRkS688ELl5ubq6NGjIZzUhtGjR6usrEyrVq3SihUr9M4772jixIln3O/WW2+t8xx/+OGHv9UcZ/obgy3V0qVLNW3aNM2ePVslJSVKS0tTbm6u9u7dW+/6tWvXKj8/XxMmTND69euVl5envLw8bdq0qYknb5nO9nxLUmxsbJ3n8s6dO5tw4pbt0KFDSktL07x58xq0fseOHRoxYoSuvvpqlZaWaurUqfq3f/s3vfnmmyGe1I6zPecnbNu2rc7zPCwfYnPNyMKFC11cXFyD1o4dO9Zdf/31IZ3nfNDQc15bW+u8Xq975JFHgtsOHDjgoqOj3QsvvBDCCVu+zZs3O0lu3bp1wW1//OMfncfjcXv27DnlfoMHD3ZTpkxpgglbvgEDBrg77rgj+P/jx4+7lJQUN2fOHOecc4FAwElygUDAOefcTTfd5EaMGFHnZ2RmZrrbbrut6YZuwc50vv/R2fxux+lJcq+++upp1/zsZz9zPXv2rLNt1KhRLjc3N4ST2dWQc/722287Se6rr75qkplOp1lcsTtXa9asUbt27dStWzdNmjRJ+/btC/dIZu3YsUN+v185OTnBbXFxccrMzJTP5wvjZM2fz+dTfHy8+vfvH9yWk5OjiIgIFRUVnXbfxYsXKzExUb169dLMmTN1+PDhUI/b4lRXV6u4uLjOczMiIkI5OTmnfG76fL466yUpNzeX53IDnMv5lqSDBw+qY8eOSk1N1fXXX6+ysrKmGPe8xPM7fNLT09W+fXv94Ac/0F/+8pewzNBiv8du6NChuuGGG9S5c2d9/PHHuueeezRs2DD5fD61atUq3OOZc+J9Aif+LNQJycnJYXkPQUvi9/tPuhwfGRmphISE0567f/mXf1HHjh2VkpKiDRs26O6779a2bdv0yiuvhHrkFuXLL7/U8ePH631ubt26td59/H4/z+VzdC7nu1u3bvrv//5v9enTR4FAQI8++qgGDRqksrIyXXbZZU0x9nnlVM/viooKHTlyRG3atAnTZHa1b99eCxYsUP/+/VVVVaXf/e53GjJkiIqKitSvX78mnSVkYTdjxgw99NBDp12zZcsWde/e/Zx+/o9//OPgv3v37q0+ffro8ssv15o1a5SdnX1OP7OlC/U5R10NPd/n6u/fg9e7d2+1b99e2dnZ+vjjj3X55Zef888FmlpWVpaysrKC/x80aJB69OihZ555Rr/4xS/COBnQOLp166Zu3boF/z9o0CB9/PHHeuKJJ/S///u/TTpLyMJu+vTpGjdu3GnXdOnSpdEer0uXLkpMTNRHH3103oZdKM+51+uVJJWXl6t9+/bB7eXl5UpPTz+nn9nSNfR8e73ek95UfuzYMe3fvz94XhsiMzNTkvTRRx8Rdn8nMTFRrVq1Unl5eZ3t5eXlpzy/Xq/3rNbjG+dyvv9R69at1bdvX3300UehGPG8d6rnd2xsLFfrmtCAAQP07rvvNvnjhizskpKSlJSUFKoff5JPP/1U+/btqxMd55tQnvPOnTvL6/WqsLAwGHIVFRUqKio6608zW9HQ852VlaUDBw6ouLhYGRkZkqTVq1ertrY2GGsNUVpaKknn9XO8PlFRUcrIyFBhYaHy8vIkSbW1tSosLNSdd95Z7z5ZWVkqLCzU1KlTg9tWrVpV56oS6ncu5/sfHT9+XBs3btTw4cNDOOn5Kysr66Sv7+H53fRKS0vD8/s63J/ecM65nTt3uvXr17sHHnjAXXTRRW79+vVu/fr1rrKyMrimW7du7pVXXnHOOVdZWen+4z/+w/l8Prdjxw731ltvuX79+rmuXbu6o0ePhuswWpSzPefOOffrX//axcfHu9dee81t2LDBXX/99a5z587uyJEj4TiEFmXo0KGub9++rqioyL377ruua9euLj8/P3j/p59+6rp16+aKioqcc8599NFH7uc//7n74IMP3I4dO9xrr73munTp4q666qpwHUKz9uKLL7ro6Gi3aNEit3nzZjdx4kQXHx/v/H6/c+7rTwTq7z4V+5e//MVFRka6Rx991G3ZssXNnj3btW7d2m3cuDGch9FinOl833zzzW7GjBnB9Q888IB788033ccff+yKi4vdj3/8YxcTE+PKysrCdQgtSmVlZfB3tCT3+OOPu/Xr17udO3c655ybMWOGu/nmm4Pr//a3v7kLLrjA3XXXXW7Lli1u3rx5rlWrVq6goCBch9DinO05f+KJJ9zy5cvd9u3b3caNG92UKVNcRESEe+utt5p89mYRdmPHjnWSTrq9/fbbwTWS3MKFC51zzh0+fNhde+21LikpybVu3dp17NjR3XrrrcFfKjizsz3nzn39lSf333+/S05OdtHR0S47O9tt27at6Ydvgfbt2+fy8/PdRRdd5GJjY9348ePrRPSOHTvqnP9du3a5q666yiUkJLjo6Gh3xRVXuLvuuisYJjjZf/3Xf7kOHTq4qKgoN2DAAPfee+8F7/ve975XJ+ycc+7//u//3He+8x0XFRXlevbs6d54441wjN1ine58Dx482I0dOzb4/6lTpwbXJicnu+HDh7uSkpIwTN0ynfgqjX+8nTjHY8eOdYMHDz5pn/T0dBcVFeW6dOlS53c5zuxsz/lDDz3kLr/8chcTE+MSEhLckCFD3OrVq8MyO39SDIB5/EkxAOeLFv09dgAAAPgGYQcAAGAEYQcAAGAEYQcAAGAEYQcAAGAEYQcAAGAEYQcAAGAEYQcAAGAEYQcAAGAEYQcAAGAEYQfArBdeeEFt2rSR3+8Pbhs/frz69OmjQCAQxskAIDT4W7EAzHLOKT09XQMHDtSzzz6ru+++W4sXL9Z7772nSy+9NNzjAUCjI+wAmLZixQqNHDlS1dXVio+P17vvvquePXuGeywACAnCDoB5aWlp2rBhg9544w0NHz483OMAQMjwHjsAphUUFOjDDz+UJLVr1y7M0wBAaBF2AMwqKSnRTTfdpKefflqS9Mtf/jLMEwFAaPFSLACTPvnkE2VlZWnKlCn693//d8XFxUmSiouL1a9fvzBPBwChQdgBMGf//v0aNGiQhgwZogULFqiiokJxcXH6wQ9+oIiICBUUFIR7RAAICcIOgHknwi4QCCg2Njbc4wBAyPAeOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwAAACMIOwCNYv/+/Ro9erRiY2MVHx+vCRMm6ODBg6fd5+jRo7rjjjvUtm1bXXTRRRo5cqTKy8uD9//1r39Vfn6+UlNT1aZNG/Xo0UNPPfVUqA8FAFoswg5Aoxg9erTKysq0atUqrVixQu+8844mTpx42n1++tOf6vXXX9eyZcv0pz/9SZ999pluuOGG4P3FxcVq166dnn/+eZWVlenee+/VzJkz9fTTT4f6cACgRfI451y4hwDQsm3ZskXf/e53tW7dOvXv31+SVFBQoOHDh+vTTz9VSkrKSfsEAgElJSVpyZIluvHGGyVJW7duVY8ePeTz+TRw4MB6H+uOO+7Qli1btHr16gbPV1FRobi4OAUCAcXGxp7DEQJAy8AVOwDfms/nU3x8fDDqJCknJ0cREREqKiqqd5/i4mLV1NQoJycnuK179+7q0KGDfD7fKR8rEAgoISHhtPNUVVWpoqKizg0AzgeEHYBvze/3q127dnW2RUZGKiEhQX6//5T7REVFKT4+vs725OTkU+6zdu1aLV269Iwv8c6ZM0dxcXHBW2pqasMPBgBaMMIOwCnNmDFDHo/ntLetW7c2ySybNm3S9ddfr9mzZ+vaa6897dqZM2cqEAgEb7t3726SGQEg3CLDPQCA5mv69OkaN27cadd06dJFXq9Xe/furbP92LFj2r9/v7xeb737eb1eVVdX68CBA3Wu2pWXl5+0z+bNm5Wdna2JEyfqvvvuO+Pc0dHRio6OPuM6ALCGsANwSklJSUpKSjrjuqysLB04cEDFxcXKyMiQJK1evVq1tbXKzMysd5+MjAy1bt1ahYWFGjlypCRp27Zt2rVrl7KysoLrysrKdM0112js2LF68MEHG+GoAMAuPhULoFEMGzZM5eXlWrBggWpqajR+/Hj1799fS5YskSTt2bNH2dnZeu655zRgwABJ0qRJk7Ry5UotWrRIsbGxmjx5sqSv30snff3y6zXXXKPc3Fw98sgjwcdq1apVg4LzBD4VC+B8wRU7AI1i8eLFuvPOO5Wdna2IiAiNHDlSc+fODd5fU1Ojbdu26fDhw8FtTzzxRHBtVVWVcnNz9Zvf/CZ4/0svvaQvvvhCzz//vJ5//vng9o4dO+qTTz5pkuMCgJaEK3YAzOOKHYDzBZ+KBQAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwA9Ao9u/fr9GjRys2Nlbx8fGaMGGCDh48eNp9jh49qjvuuENt27bVRRddpJEjR6q8vLzetfv27dNll10mj8ejAwcOhOAIAKDlI+wANIrRo0errKxMq1at0ooVK/TOO+9o4sSJp93npz/9qV5//XUtW7ZMf/rTn/TZZ5/phhtuqHfthAkT1KdPn1CMDgBmeJxzLtxDAGjZtmzZou9+97tat26d+vfvL0kqKCjQ8OHD9emnnyolJeWkfQKBgJKSkrRkyRLdeOONkqStW7eqR48e8vl8GjhwYHDt/PnztXTpUs2aNUvZ2dn66quvFB8f3+D5KioqFBcXp0AgoNjY2G93sADQjHHFDsC35vP5FB8fH4w6ScrJyVFERISKiorq3ae4uFg1NTXKyckJbuvevbs6dOggn88X3LZ582b9/Oc/13PPPaeIiIb9yqqqqlJFRUWdGwCcDwg7AN+a3+9Xu3bt6myLjIxUQkKC/H7/KfeJioo66cpbcnJycJ+qqirl5+frkUceUYcOHRo8z5w5cxQXFxe8paamnt0BAUALRdgBOKUZM2bI4/Gc9rZ169aQPf7MmTPVo0cP/eu//utZ7xcIBIK33bt3h2hCAGheIsM9AIDma/r06Ro3btxp13Tp0kVer1d79+6ts/3YsWPav3+/vF5vvft5vV5VV1frwIEDda7alZeXB/dZvXq1Nm7cqJdeekmSdOItwYmJibr33nv1wAMP1Puzo6OjFR0d3ZBDBABTCDsAp5SUlKSkpKQzrsvKytKBAwdUXFysjIwMSV9HWW1trTIzM+vdJyMjQ61bt1ZhYaFGjhwpSdq2bZt27dqlrKwsSdLLL7+sI0eOBPdZt26dbrnlFv35z3/W5Zdf/m0PDwDM4VOxABrFsGHDVF5ergULFqimpkbjx49X//79tWTJEknSnj17lJ2dreeee04DBgyQJE2aNEkrV67UokWLFBsbq8mTJ0uS1q5dW+9jrFmzRldffTWfigWAU+CKHYBGsXjxYt15553Kzs5WRESERo4cqblz5wbvr6mp0bZt23T48OHgtieeeCK4tqqqSrm5ufrNb34TjvEBwASu2AEwjyt2AM4XfCoWAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACMIOAADACI9zzoV7CAAIJeecKisrdfHFF8vj8YR7HAAIGcIOAADACF6KBQAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMIKwAwAAMOL/AbUEV/92acqxAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<sympy.plotting.plot.Plot at 0x79b4c9f15900>" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 5 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"## Segunda condição" | |
], | |
"metadata": { | |
"id": "QVWznw8XjGZ9" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Depois disso, uma segunda condição foi apresentada:" | |
], | |
"metadata": { | |
"id": "wNLaDFeCi9RA" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"ineq = StrictLessThan(a, b)\n", | |
"ineq" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 38 | |
}, | |
"id": "OHJg41FEhiWL", | |
"outputId": "29da160d-a7d3-4f06-b82a-3bde47ee566c" | |
}, | |
"execution_count": 6, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"a < b" | |
], | |
"text/latex": "$\\displaystyle a < b$" | |
}, | |
"metadata": {}, | |
"execution_count": 6 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Usando o conhecimento adquirido de que `a` equivale a `b²`, substituindo `a` temos:" | |
], | |
"metadata": { | |
"id": "X2ffdaQojSmu" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"ineq2 = ineq.subs({a: solucao_a})\n", | |
"ineq2" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 38 | |
}, | |
"id": "dtv_Y3iKhz1n", | |
"outputId": "1d9e0a27-999d-47bc-eec0-4218ca0ad69b" | |
}, | |
"execution_count": 7, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" 2 \n", | |
"b < b" | |
], | |
"text/latex": "$\\displaystyle b^{2} < b$" | |
}, | |
"metadata": {}, | |
"execution_count": 7 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Com a inequação podemos buscar os valores pertencentes aos reais que a solucionam:" | |
], | |
"metadata": { | |
"id": "dL4Ua2oIjeNX" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"solveset(ineq2, b, domain=S.Reals)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 37 | |
}, | |
"id": "n3sXUA-0iMAO", | |
"outputId": "6fd23bfa-412f-46a6-ff1f-fc7aae408699" | |
}, | |
"execution_count": 8, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(0, 1)" | |
], | |
"text/latex": "$\\displaystyle \\left(0, 1\\right)$" | |
}, | |
"metadata": {}, | |
"execution_count": 8 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Logo qualquer valor maior que `0` e menor que `1` (intervalo aberto) para `b`, resolve o problema proposto, e sabemos que `a = b²`." | |
], | |
"metadata": { | |
"id": "jXNxB8hmj0qN" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"### Gráfico comparando os valores de a e b" | |
], | |
"metadata": { | |
"id": "v1XWII0TkEBb" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Gráfico de `a` (azul) e `b` (laranja):" | |
], | |
"metadata": { | |
"id": "M3fqwNWOgQl5" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"p1 = plot(solucao_a, (b, -1.5, 1.5), show=False)\n", | |
"p2 = plot(b, (b, -1.5, 1.5), show=False)\n", | |
"p1.append(p2[0])\n", | |
"p1.show()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 487 | |
}, | |
"id": "WFXAGaJgaIwA", | |
"outputId": "d89d826e-d5da-446f-95f8-87019ee12443" | |
}, | |
"execution_count": 9, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 640x480 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxaUlEQVR4nO3dd3hUZcLG4d+k94RAEhIIvfceQKRLs+siIiooKhZWEZWiFFGRBcuqLIodFRE7KtI7QgApkR46oSWUkN4z5/vjaPZjpZPkzEye+7rmYt+TMzNPxmx4OOV9bYZhGIiIiIiI03OzOoCIiIiIFA8VOxEREREXoWInIiIi4iJU7ERERERchIqdiIiIiItQsRMRERFxESp2IiIiIi5CxU5ERETERajYiYjLMwyDtLQ0NB+7iLg6FTsRcXnp6ekEBweTnp5udRQRkRKlYiciIiLiIlTsRERERFyEip2IiIiIi1CxExEREXERKnYiIiIiLkLFTkRERMRFqNiJiIiIuAgVOxEREREXoWInIiIi4iJU7ERERERchIqdiIiIiItQsRMRERFxESp2IiIiIi5CxU5ERETERajYiYiIiLgIFTsRERERF6FiJyIiIuIiVOxEREREXITDFbuTaTk8++0ffLvxiNVRRERERP7mm41HePbbPziZlmN1lL9xuGL38x/H+W7TUaYsjCcjt8DqOCIiIiJF0nPymbJgN99tOsrPfxy3Os7fOFyxu79dNaqV9+NUei7Tlu+zOo6IiIhIkf8s38fpjDyqV/Dn/nbVrI7zNw5X7Lw83BhzYwMAPl59kIQzWRYnEhEREYHDZzL59LdDALzQpz5eHg5Xoxyv2AF0qx/O9bUrkFdoZ+K8nVbHEREREWHir7vIK7Rzfe0KdKsfbnWc83LIYmez2Rh7UwPc3Wws3JHE2v2nrY4kIiIiZdjafadZtDMJdzezo9hsNqsjnZdDFjuAOhGBDIipAsBLv+yk0G5YnEhERETKooJCOy/NNc8gDoipQp2IQIsTXZjDFjuAp7vXIdjXk92J6cz+PcHqOCIiIlIGzf79CLsT0wn29eTp7nWsjnNRDl3syvl78XT32gC8sWgPqdn5FicSERGRsiQ1O583F+8B4OnutSnn72Vxootz6GIHMKBtVWqFB5CcmcfUpXutjiMiIiJlyDtL95KcmUet8AAGtK1qdZxLcvhi5+nuxtibzOlPZqw9xP5TGRYnEhERkbJg/6kMPlt7CICxNzXA093ha5PjFzuATnXC6FovnAK7wcRfd1kdR0RERMqAib/uosBu0LVeOJ3qhFkd57I4RbEDeOHG+ni42Vi2+yQr95yyOo6IiIi4sJV7TrFs90k83Gy8cGN9q+NcNqcpdjXDAhjYvhoAL8/dSX6h3dpAIiIi4pLyC+28/Of0JgPbV6NmWIDFiS6f0xQ7gCe71SbU34t9JzP4ct1hq+OIiIiIC/py3WH2ncwg1N+LJ7vVtjrOFXGqYhfs68kzPcz5Y/69ZC9nM/MsTiQiIiKu5GxmHv9eYs7CMfwGcz5dZ+JUxQ7g7tZVqFcxkNTsfN5assfqOCIiIuJC/r3EnDe3XsVA7m4dbXWcK+Z0xc7dzca4m83pT2auTyA+Md3iRCIiIuIK4hPT+XK9udLVuJsa4OEE05v8L+dLDLSvWYFeDStSaDd48ecdGIbWkRUREZGrZxgG43/eTqHdoGfDCNrXqmB1pKvilMUOzOlPvD3ciD1whrlbT1gdR0RERJzYL1tPsO5AMt4e/10YwRk5bbGLDvXj8c61AHMCwczcAosTiYiIiDPKzC1g4q/m9CZPdKlF5XJ+Fie6ek5b7ACGdKpBlVA/EtNymLpsn9VxRERExAlNXbaPpLRcqoT68UjHGlbHuSZOXex8PN0Z/+eNFB//dkDryIqIiMgV2X8qg49/OwCYN0z4eLpbnOjaOHWxA+hWP4Ku9cLJL9SNFCIiInL5DMPsDvmFBl3qhtGtfrjVka6Z0xc7gPE3N8DL3Y3Ve0+zcEei1XFE5AImTZpE69atCQwMJDw8nNtuu434+PhLPu/bb7+lXr16+Pj40LhxY+bNm1cKaUXE1S3amcTqvafxcndj3M0NsdlsVke6Zi5R7KqW92dIJ/Oc+Mtzd5GdV2hxIhE5n5UrV/LEE0+wbt06Fi9eTH5+Pj169CAzM/OCz1m7di39+/dn8ODBbNmyhdtuu43bbruN7du3l2JyEXE12XmFvPSLecPEwx2rU72Cv8WJiofNcJFzl9l5hXR/cyXHUrIZ2qUWz/asa3UkEbmEU6dOER4ezsqVK+nYseN59+nXrx+ZmZnMnTu3aFvbtm1p1qwZ06dPv6z3SUtLIzg4mNTUVIKCgoolu4g4tzcX7+GdpXuJCvZhyTOd8PPysDpSsXCJI3YAvl7uRfPOfLDqAIdOX/gIgIg4htTUVABCQ0MvuE9sbCzdu3c/Z1vPnj2JjY0t0Wwi4roSzmQxfeV+AMbc1MBlSh24ULED6NkwgutrVyCv0M6EX3QjhYgjs9vtDBs2jOuuu45GjRpdcL/ExEQiIiLO2RYREUFi4oWvp83NzSUtLe2ch4jIX16au5O8AjvX1SpP70YVrY5TrFyq2NlsNibc0hBPdxvL40+xdNdJqyOJyAU88cQTbN++ndmzZxf7a0+aNIng4OCiR3S08y3kLSIlY/nukyzZlYSHm40XXeSGif/PpYodQI2wAB663ryRYsLcHeTk60YKEUczdOhQ5s6dy/Lly6lcufJF961YsSJJSUnnbEtKSqJixQv/K3v06NGkpqYWPY4cOVIsuUXEueUWFDLhlx0APHBdNWpHBFqcqPi5XLEDGNqlFpHBPhxJzi46hy4i1jMMg6FDh/Ljjz+ybNkyqlevfsnntGvXjqVLl56zbfHixbRr1+6Cz/H29iYoKOich4jIR6sPcuhMFmGB3jzZrbbVcUqESxY7f28PXrixPgDvrdjPkeQsixOJCJinX2fOnMmsWbMIDAwkMTGRxMREsrOzi/a5//77GT16dNH4qaeeYsGCBbzxxhvs3r2bF198kY0bNzJ06FArvgURcVJHkrOYumwvAM/3qUegj6fFiUqGSxY7gBsbR9K+ZnlyC+y8NHen1XFEBHjvvfdITU2lc+fOREZGFj2+/vrron0SEhI4ceJE0bh9+/bMmjWLDz74gKZNm/Ldd98xZ86ci95wISLyvyb8soOcfDsx1UO5rVklq+OUGJeZx+589ial0/vt1RTYDT4d1Jou9Zx/qRARuXKax06kbFu0I5FHvtiEh5uN+U9d75LX1v3FZY/YAdSOCOSB66oBMO7n7VqRQkREpIzJzC3gxZ/NGyYe7ljDpUsduHixAxjWvU7RjRR/nVsXERGRsuGdpXs5nppD5XK+PNnVNW+Y+P9cvtj5e3vw4i0NAXNFij1J6RYnEhERkdIQn5jOx78dBGDCLQ3x9XK3OFHJc/liB9CzYUW614+gwG4w5sft2O0ue1mhiIiIAHa7wZg52yiwG/RoEEG3+hGXfpILKBPFDuDFWxrg6+nOhkPJfLf5qNVxREREpAR9t/kovx86i6+nO+P/PHNXFpSZYle5nB9P32CeW580bxfJmXkWJxIREZGScDYzj0nzdgEwrHttKoX4Wpyo9JSZYgfwwHXVqVcxkLNZ+UX/wUVERMS1TF6wm7NZ+dSNCOTBDpde4caVlKli5+nuxsTbzUlNv910lPUHzlicSERERIrTpsPJzP7dXB/6ldsb4elepqpO2Sp2AC2rhtK/TRUAXpiznbwCu8WJREREpDgUFNp54cftANzVqjKtq4VanKj0lbliBzCyV13K+3ux72QGH64+YHUcERERKQYz1h5id2I6IX6ejOpd3+o4liiTxS7Ez4sxN5n/wd9ZupeEM1kWJxIREZFrcfRsFm8u3gPA6N71CPX3sjiRNcpksQO4rVkl2tUoT26BnbE/bceFl8wVERFxaYZhMO6nHWTlFdK6Wjn6toy2OpJlymyxs9lsvHJ7I7zc3Vi55xTztiVaHUlERESuwtytJ1i2+yRe7m5MuqMxbm42qyNZpswWO4CaYQE82rkmABN+2UF6Tr7FiURERORKpGTlMeGXHQA83qUmtcIDLU5krTJd7AAe71yTauX9OJmey2sL462OIyIiIldg0rzdnM7Io1Z4AI/9ebCmLCvzxc7H051XbmsMwBfrDrPpcLLFiURERORyxO4/w9cbzTnrJt3RGG8Pd4sTWa/MFzuADrUr8I+WlTEMGPn9NnILCq2OJCIiIheRk1/I8z9uA2BATJUyOWfd+ajY/emFPvWpEGDObffeiv1WxxEREZGL+M+yfRw8nUl4oDcje9ezOo7DULH7Uzl/L8bf3BCAacv3sTcp3eJEIiIicj67E9OYvtI8CPPSrQ0J8vG0OJHjULH7f25qEkm3euHkFxqM+mEbdrvmthMREXEkhXaDUd9vo8Bu0KNBBL0aRVodyaGo2P0/NpuNl29rhL+XO5sOn+XL9YetjiQiIiL/z8x1h4k7kkKAtwcv3drI6jgOR8Xuf0SF+Badq5+8IJ7jKdkWJxIRERGA4ynZTFmwGzDXfa8Y7GNxIsejYnce98ZUpUWVEDJyCxg7R8uNiYiIWM1cNmw7mXmFtKgSwoCYqlZHckgqdufh5mZj8p1N8HS3sXT3SX7ddsLqSCIiImXa/O2JLNl1Ek93G/+6s0mZXjbsYlTsLqB2RCBPdKkFwIs/7yAlK8/iRCIiImVTSlYe4382lw17rFNN6kSU7WXDLkbF7iIe61yT2uEBnM7IY+Kvu6yOIyIiUia9PHcXp9JzqRHmz+N/HnSR81OxuwhvD3f+dWcTbDb4dtNRftt72upIIiIiZcry+JN8v/koNhu89o+m+Hhq2bCLUbG7hJZVy3F/W/MCzZHfbyUjt8DiRCIiImVDWk4+o783lw178LrqtKxazuJEjk/F7jKM6FWPyuV8OZaSzeT5u62OIyIiUiZMmreLxLQcqpb349keda2O4xRU7C6Dv7cHU+5sAsAX6w6zdr9OyYqIiJSk3/ae5qsNRwCYfGcTfL10CvZyqNhdpva1KjAgpgpgnpLN1ClZERGREpGZW8DI77cCcH+7qrStUd7iRM5Dxe4KjO5Tn0ohvhxJ/u/M1yIiIlK8Ji/YzbGUbCqF+DKyVz2r4zgVFbsrEODtweQ/T8l+FnuYdQfOWJxIRETEtaw/cIbPY8212iff2QR/bw+LEzkXFbsr1KF2Bfq3+e8p2aw8nZIVEREpDtl5hYz48xRs/zbRdKhdweJEzkfF7io836ceUcE+HD6TxWsL462OIyIi4hJeXxTP4TNZRAb7MLpPfavjOCUVu6sQ6OPJpD9Pyc5Ye4gNB5MtTiQiIuLcNh0+yydrDgLw6h2NCfLxtDiRc1Kxu0qd6oTRr1U0hgEjvvuD7LxCqyOJiIg4pZz8QkZ89weGAXe2qEyXuuFWR3JaKnbX4IWb6hMZ7MOhM1m8vkinZEVERK7Gv5fsYf+pTMICvRl7k07BXgsVu2sQ5OPJq3c0BuCTNQfZeEinZEVERK7ExkPJfLDqAAATb2tEiJ+XxYmcm4rdNepSN5y+LStjGPDcd1vJydcpWRERkcuRmVvAM9/+9xRsj4YVrY7k9FTsisGYmxoQEeTNwdOZTFmgU7IiIiKXY9L8XRw+k0VUsA/jb2lgdRyXoGJXDIJ9PfnXHeZdsp+sOai1ZEVERC5h5Z5TzFyXAMBrfZvqLthiomJXTLrUCy+auPi5b7eSlpNvcSIRERHHlJqVz4jv/gBgYLuqXFdLExEXFxW7YjTmxvpUCfXjWEo2E37eaXUcERERhzT+5+0kpeVSo4I/o3rrLtjipGJXjPy9PXjzrqbYbPD95qMs2J5odSQRh7Nq1SpuvvlmoqKisNlszJkz56L7r1ixApvN9rdHYqL+/yXijOZvO8GcuOO42eD1u5ri6+VudSSXomJXzFpVC2VIx5oAPP/jNk6l51qcSMSxZGZm0rRpU6ZNm3ZFz4uPj+fEiRNFj/BwTWAq4mxOpefy/I/bAHisc01aVClncSLX42F1AFf09A21WRF/kt2J6Yz+YSsf3t8Km81mdSwRh9C7d2969+59xc8LDw8nJCSk+AOJSKkwDIPRP2zjbFY+9SODeKpbHasjXZuCXPDwtjrF3+iIXQnw9nDn3/2a4eXuxpJdJ/l241GrI4k4vWbNmhEZGckNN9zAmjVrLrpvbm4uaWlp5zxExFrfbTrKkl1JeLrbePOupnh5OGkFyc+Bla/BW00g46TVaf7GST9Vx1c/MojhPcx/jUz4ZQdHkrMsTiTinCIjI5k+fTrff/8933//PdHR0XTu3JnNmzdf8DmTJk0iODi46BEdHV2KiUXkfx09m8VLv5g3FT59Qx3qRwZZnOgqGAbsngfvxsDyVyAjEbbMtDrV39gMwzCsDuGqCu0Gd38Qy++HztKmWihfPdIWdzedkhX5i81m48cff+S22267oud16tSJKlWq8MUXX5z367m5ueTm/vf61rS0NKKjo0lNTSUoyAn/QhFxYna7wYCP1hN74AwtqoTw7aPtne/vwtP7YMFI2LfEHAdGQo9XoNGd4GCXWumIXQlyd7PxRt9m+Hu5s+FQMh//dsDqSCIuoU2bNuzbt++CX/f29iYoKOich4hY47PYQ8QeOIOvpztv3NXMuUpdbjosHgfvtjVLnZsndHgahm6Exv9wuFIHKnYlrkp5P8beZC6T8vrCPcQnplucSMT5xcXFERkZaXUMEbmE+MR0Js3fDcDoPvWoXsHf4kSXyTBg6zcwtRWseRvs+VC7BzyxHrq/CN4BVie8IN0VWwr6tY5m8c4klu4+ybCv4/jpieuc96JRkWuUkZFxztG2gwcPEhcXR2hoKFWqVGH06NEcO3aMzz//HIC33nqL6tWr07BhQ3Jycvjoo49YtmwZixYtsupbEJHLkJNfyFOzt5BXYKdL3TDua1vV6kiX58RWmD8CEmLNcbnq0OtfULeXtbkuk4pdKbDZbEy6szE9/72KXSfSeGNxPKM107aUURs3bqRLly5F4+HDhwMwcOBAZsyYwYkTJ0hISCj6el5eHs888wzHjh3Dz8+PJk2asGTJknNeQ0Qcz5QF8exOTKe8vxdT/tHU8af9ykqGZa/Apk/BsIOnH1z/DLQbCp4+Vqe7bLp5ohQt2J7IozM3YbPBl4NjaK+18URKRVpaGsHBwbp5QqSUrNpzivs/2QDAJ4Na0bVehMWJLsJeCJs/g6UvQ3ayua3hHdDjZQiubG22q6DzgaWoV6OK9G9TBcOAp7+J42xmntWRREREilVyZh7PfPsHAPe3q+rYpS5hPXzYBeY+bZa68AYwcC70/dQpSx2o2JW6sTfVp0aYP0lpuYz8fis6YCoiIq7CMAxGfr+VU+m51AoP4Pk+DnrZUXoi/DAEPukBJ/4A72DoPQWGrIbq11ud7pqo2JUyPy8P3rm7OZ7uNhbtTOKrDUesjiQiIlIsvtpwhMU7zdUl3r67GT6e7lZHOldBHqydat7tunU2YIPm98E/N0HMEHB3/lsPVOws0KhSMCN61gPgpbk72HdSU6CIiIhz238qg5fm7gBgRM96NIwKtjjR/9i/DKZfB4vGQF46VGoJDy+FW/8DAWFWpys2KnYWGdyhOtfXrkBOvp0nv4ojt6DQ6kgiIiJXJa/AzrDZceTk27muVnkGd6hudaT/OnsYZg+AL26H03vAPwxunQaDl5jlzsWo2FnEzc3GG32bEurvxc4Taby2IN7qSCIiIlfl30v2sO1YKiF+nrzRtxlujrC6RH42LJ8E09rA7rlgc4eYx8xVI5rfC26uWYFc87tyEuFBPrz2jyYAfPTbQVbtOWVxIhERkSsTu/8M01fuB+BfdzShYrDFc74ZBuz8Gf7TBlb+CwpyoNr18Ohv0Ptf4Btibb4SpmJnsW71I7i/nTkb9/Bv/uB0Ru4lniEiIuIYkjPzGPb1FgwD+rWKplejitYGOhUPX9wG39wHqQkQVBn6zoCBv0BEA2uzlRIVOwfwfJ/61IkI4HRGLiO/0xQoIiLi+AzD4Nlv/yApLZeaYf6Mv8XC4pSTBgtfgPfaw4EV4O4NHZ+DoRug4e3g6KteFCMVOwfg4+nO23c3x8vDjaW7T/J57GGrI4mIiFzUx78dZNnuk3h5uPGfe1rg52XBVCF2O8TNgqktIfY/YC+Aun3gifXQdQx4+Zd+Joup2DmI+pFBjO5tToEycd4udhxPtTiRiIjI+W09msLkBbsBGHtTA+pHWrBU3/Et8ElPmPMYZJ6E8rVgwPfQ/ysIdaC7ckuZip0DGdS+Gt3rh5NXYGforC1k5BZYHUlEROQc6Tn5/POrLeQXGvRuVJF7Y6qUboDMM/DLU/BBFzi6AbwCoPsEeCwWancv3SwOSMXOgdhsNl7v25SoYB8Ons7khR+36Xo7ERFxGIZh8MKP2zl8JotKIb78644m2Err+rXCAtjwIUxtAZtmAAY0vsucvqTDMPDwKp0cDk7FzsGE+Hkx9Z7muLvZ+CnuON9s1JJjIiLiGL7deJSf/ziOu5uNd/o3J9jPs3Te+PBa+KATzHsWclIgojE8MB/u/BCCIksng5NQsXNALauG8myPugCM/3kH8YlackxERKy172Q6437eDsAzPerQsmq5kn/TtOPw3WD4tDckbQefEOjzOgxZCVXbl/z7OyEVOwc1pGMNOtYJIyffzhOzNpOVp+vtRETEGjn5hQydtYWcfDvX167Aox1rluwbFuTC6jdhaivY/h1gg5YPwD83Q5uHwc29ZN/fianYOSg3Nxtv3tWU8EBv9p3MYNxPO6yOJCIiZdSEX3awOzGdCgHevHlXCS8ZtmcRvNsOlk6A/EyIjoFHVsDNb4F/+ZJ7XxehYufAKgR4807/5rjZ4LtNR/l+01GrI4mISBnz3aajfLXhCDYbvNWvGWGB3iXzRskHYFY/mNUXkvdDQATc/j48uBCimpXMe7ogFTsH17ZGeZ7qVgeAMXO2s+9khsWJRESkrNidmMaYOdsAeLp7HTrUrlD8b5KXCUtfgmkxsGcBuHlA+3+ad7s2vbtMrRpRHFTsnMDQrrVoX7M82fmFDJ21mZz8QqsjiYiIi0vPyeexmZvJybfTsU4YQ7vUKt43MAzY/j38pzWsfgMK86BmV3M+uh6vgI8Fkx67ABU7J+DuZuOtu5tRIcCL3YnpjJ2z3epIIiLiwgzDYNT32zh4OpOoYB/e6lfM19Ul7YTPbobvHoS0YxBSBfp9Cff+AGF1iu99yiAVOycRHujD23eb19t9u+koszckWB1JRERc1KdrDvHrthN4utv4z4AWhPoX0+S/2SkwfyRM7wCHVoOHD3R+Hp7YAPVv0mnXYqBi50Suq1WBZ/6c327czzvYdlTryYqISPHadPgsr87bBcALferTokoxzFdnt8Pmz2FqS1g/HYxCqH+zWeg6jwRP32t/DwFU7JzOY51qFq0n+9iXm0jJyrM6koiIuIgzGbkMnbWZArvBjU0iGdi+2rW/6NFN8FE3+PmfkHUaKtSF++ZAv5lQruq1v76cQ8XOybi52XjjrmZUCfXj6Nlshn0dh92u9WRFROTaFNoNhn0dx4nUHGqE+TP5zmtcBzbjFPz0BHzUFY5vBq9A6DERHlsDNbsUX3A5h4qdEwr29eS9e1vg7eHGivhTTF22z+pIIiLi5KYu28vqvafx8XTjvQEtCfD2uLoXKsyHde+Zp123zDS3Nb0H/rkJ2g8F91JaX7aMUrFzUg2jgpl4e2MA3lq6hxXxJy1OJCIizmrVnlO8vXQvAK/e3pi6FQOv7oUOroLp18OCUZCbCpHNYPBiuP09CIwovsByQSp2TuwfLStzT0wVDAOGfR3H0bNZVkcSEREnczwlm6dmb8EwoH+bKtzRovKVv0jKEfhmoDmFyald4BsKN70FDy+D6DbFnlkuTMXOyY27qQFNKgeTkpXP419q8mIREbl8eQV2hs7azNmsfBpGBTH+5gZX9gL5ObDyNXOS4Z1zwOYGrR82T7u2egDc3Eskt1yYip2T8/F0590BLQjx82Tr0VQm/LLT6kgiIuIkXp23i80JKQT6ePDegJb4eF5mETMM2P0rTGsDy1+Bgmyo0h6GrIIbXwe/0JINLhekYucCKpfz4+27m2OzwVcbEvh24xGrI4mIiIP7ZuMRZqw9BMCbdzWjSnm/y3vi6b0w806YfQ+kHIbASLjzY3hgHlRsXHKB5bKo2LmITnXCGNbNXIZlzJzt7DiuyYtFROT8NiecZcyP5vKUw7rX5oYGl3FjQ246LB4H77aD/UvBzRM6PA1DN0Ljf2jVCAehYudC/tm1Fl3qhpFbYOfRmZs4m6nJi0VE5FxJaTk8+sUm8grt9GgQwZNda1/8CYYBW7+Bqa1gzdtgz4daN8Dj66D7i+AdUCq55fKo2LkQNzcb/+5nTl58JDmbx7/cTH6h3epYIiLiIHLyCxnyxSZOpudSJyKAN/s1w83tIkfaTmyFT3vDDw9DRiKUqwb9Z8OAb6FCrVLLLZdPxc7FhPh58eH9rfD3cif2wBlemaubKUREBAzDYOyc7cQdSSHY15MP72914UmIs5Jh7nD4oBMkxIKnH3QdA4+vh7q9ddrVganYuaC6FQP5d79mAHwWe5jZGxKsDSQiIpb7bO0hvt10FDcb/Oee5lQt7//3neyF8PvHMLUFbPwYDDs0vB2G/g4dnwNPn9IPLldExc5F9WhYkWduMG+mGPvTdn4/lGxxIhERscrafad5+dddADzfpz7X1w77+04J6+CDzvDrcMg+C+ENYOAv0HcGBF/FpMViCRU7Fza0ay1ubBxJfqHBYzM3cSwl2+pIIiJSyo4kZ/HErM0U2g1ub16JwR2qn7tDeiL8MAQ+6QmJW8E7GHpNhiGroXpHa0LLVVOxc2E2m43X+jahQWQQpzPyeOTzjWTnaWUKEZGyIiuvgIc/38jZrHyaVA5m0h2Nsf11fVxBHqx5x7zbdetswAbN7zNXjWj7KLhf4Po7cWgqdi7Oz8uDDwe2ory/FzuOp/Hcd39gGIbVsUREpIQZhsFz325ld2I6FQK8ef++/7eyxL6l8F57WDwW8tKhUkt4eCnc+h8IOM9pWnEaKnZlQKUQX967tyWe7jbmbj3Buyv2Wx1JRERK2Lsr9vPrthN4utuYfm8LIoN94ewhmD0AZt4BZ/aCfxjcOg0GLzHLnTg9Fbsyok31UF66tREAry2MZ/HOJIsTiYhISVm6K4nXF8UD8NKtjWgV5QPLX4VpMbB7Ltjcoe3j5qoRze8FN9UBV6H/kmVI/zZVuL9dVQCGzd7CnqR0ixOJiEhx23cyg6dmx2EYcG9MNP0D4sxCt3IyFOSYN0Q8tgZ6TQLfEKvjSjFTsStjxt7UgHY1ypOZV8hDn23UsmNS6latWsXNN99MVFQUNpuNOXPmXPI5K1asoEWLFnh7e1OrVi1mzJhR4jlFnFFqdj6PfL6RjNwCbq+cwUtpY+Gb+yA1AYIqQ9/P4P6fIby+1VGlhKjYlTGe7m5MG9CCyuV8SUjOYuhXmynQsmNSijIzM2natCnTpk27rP0PHjzIjTfeSJcuXYiLi2PYsGE89NBDLFy4sISTijiXgkI7T361hZOnTzHJ/yveTH4ct4MrwN3bnFx46AZoeJtWjXBxNkO3SJZJuxPTuOPdtWTlFTKofTVevKWh1ZGkDLLZbPz444/cdtttF9xn5MiR/Prrr2zfvr1o2913301KSgoLFiy4rPdJS0sjODiY1NRUgoKCrjW2iMMxDINxc7aS9fssRnl+RZgt1fxCnd7Q61UIrWFtQCk1OmJXRtWrGMSbdzUDYMbaQ3yx7rC1gUQuIDY2lu7du5+zrWfPnsTGxlqUSMTxzJn3K7dtGcwbXtPNUhdaEwZ8B/fMVqkrYzT7YBnWq1FFnu1Rh9cX7WH8T9upHOJLl3rhVscSOUdiYiIRERHnbIuIiCAtLY3s7Gx8fX3/9pzc3Fxyc3OLxmlpaSWeU8QSmWc4+t0obj3wLW5uBvnuvnh2GWne8erhbXU6sYCO2JVxT3SpxV2tKmM34IlZm9l+LNXqSCLXbNKkSQQHBxc9oqOjrY4kUrwKC2DDhxS83YzKB7/BzWYQF3IDHk9ugg5Pq9SVYSp2ZZzNZmPi7Y3pUKsCWXmFPDjjd45rTVlxIBUrViQp6dx5F5OSkggKCjrv0TqA0aNHk5qaWvQ4cuRIaUQVKR2H1sAHnWDes3jkpbHTXpWJ4W/S6J/fYAuuZHU6sZiKneDp7sa797agTkQAJ9NzeXDG76Tn5FsdSwSAdu3asXTp0nO2LV68mHbt2l3wOd7e3gQFBZ3zEHF6acfhu8Ewow8kbSfdFsCY/Ad4ttzbPPng/Xi46690UbGTPwX5ePLpA20IC/Rmd2I6j3+5mXxNgyIlICMjg7i4OOLi4gBzOpO4uDgSEhIA82jb/fffX7T/o48+yoEDBxgxYgS7d+/m3Xff5ZtvvuHpp5+2Ir5I6SvIhdVvwtRWsP07DGwsC7iRjtmvs8jvJj56oC2BPp5WpxQHoWInRSqF+PLJwNb4erqzeu9pxs7ZjmbDkeK2ceNGmjdvTvPmzQEYPnw4zZs3Z9y4cQCcOHGiqOQBVK9enV9//ZXFixfTtGlT3njjDT766CN69uxpSX6RUrVnEbzbDpZOgPxMjOgYptX+iAdPDyDHsxwfD2xNVMj5L0mQsknz2MnfLNmZxCNfbMRuwIhedXm8cy2rI4lcE81jJ04n+QAsGA17/pyrMSACbniJD1NaM3H+bmw2eP/elvRoWNHanOJwdMRO/qZ7g4iiCYunLIjn5z+OW5xIRKSMyMuEpS+Za7vuWQBuHtD+nzB0IwvcO/Pqgt0AjLmxgUqdnJfmsZPzur9dNQ6fyeLj3w7y7Dd/EBnsQ+tqoVbHEhFxTYYBO36ARWMh7Zi5rWZX6DUZwuqwOeEsw77egmHA/e2q8uB11SyNK45LR+zkgp7vU5+eDSPIK7Tz8OcbOXg60+pIIiKuJ2knfHYzfPegWepCqkC/L+HeHyCsDvtOZvDgjN/JybfTpW4Y425qgE3rvcoFqNjJBbm72XirX3OaRoeQkpXPoE83cCo999JPFBGRS8tOgfkjYXoHOLQaPHyg8/PwxAaofxPYbCSm5jDwkw2kZOXTNDqEaQNaaFoTuSj9dMhF+Xq589H9rYgO9eXwmSwGfbqBNM1xJyJy9ex22Pw5TG0J66eDUQj1b4Ghv0PnkeBp3uWampXPwE82cCwlmxph/nw6qDV+XrqCSi5OxU4uKSzQm88fjKFCgBc7jqfxyOcbyckvtDqWiIjzOboJPuoGP/8Tsk5Dhbpw3xzo94V5CvZPOfmFPPz5RuKT0gkP9ObzB9sQ6u9lXW5xGip2clmqV/BnxgNtCPD2YN2BZJ6avYUCTWAsInJ5Mk7CnCfgo65wfDN4BUKPifDYGqjZ5ZxdC+0GT83ewoZDyQT6ePDZg22oXM7PouDibFTs5LI1qhTMh/e3wsvdjYU7knjhR01gLCJyUYX5EPuuedo1bqa5rek98M9N0H4ouJ+7YoRhGIyZs52FO5Lw8nDjw/tbUT9Scy/K5VOxkyvSrmZ53unfHDcbfL3xCK8tjLc6koiIYzq4CqZfDwtHQ24aRDaDwYvh9vcgMOK8T3lryV6+2pCAzQZv92tG2xrlSzezOD0VO7livRpV5NXbGwPw7or9fLT6gMWJREQcSMoR+GagOYXJqV3gGwo3vw0PL4PoNhd82sx1h3l76V4AXr61Eb0bR5ZWYnEhur1GrsrdbaqQnJXHlAXxvPLrLkL9vbijRWWrY4mIWCc/B9ZOhdVvQEE22Nyg9UPQeTT4XXyC9wXbTzDup+0APNmtNve2rVoaicUFqdjJVXusU02SM/L46LeDPPfdVkL8POla7/ynF0REXJZhQPx885Tr2UPmtqrXQe8pULHRJZ++dt9pnpwdh92A/m2q8HT32iWbV1yaTsXKVbPZbDzfpz53NK9Eod3g8S83s/FQstWxRERKz+l98OU/YHZ/s9QFRsKdH8OgXy+r1G06fJaHPt9IXoGdHg0iePnWhlpVQq6JzdBtjXKN8gvtDPliE8t2nyTIx4NvHm1HvYq6i0scR1paGsHBwaSmphIUpJ9NKQa56bDqNfOOV3s+uHmad7le/yx4B1zWS2w/lkr/D9eRnlPA9bUr8NHAVnh7uJdwcHF1KnZSLLLzCrn/k/X8fugs4YHefPtoO6qW97c6lgigYifFyDBg27ewaCxkJJrbaveAXv+C8jUv+2X2JqXT74N1JGfm0bpaOT5/MAZfL5U6uXYqdlJsUrPz6fd+LLsT04kK9uHrIe2IDtWkmmI9FTspFie2wvwRkBBrjstVg16ToW6vK3qZhDNZ9H1/LUlpuTSuFMyXD8cQ5ON56SeKXAZdYyfFJtjXky8Gx1AzzJ/jqTnc/cE6jp7NsjqWiMi1yUqGucPhg05mqfP0g65j4PH1V1zqTqRmc89H60hKy6VuRCCfP9hGpU6KlY7YSbE7mWaWugOnM4kO9eXrR9oRFeJrdSwpw3TETq6KvRA2zYBlL0P2WXNbw9uhxysQfOXTO53OyOWu92M5cCqTauX9+ObRdoQH+hRvZinzVOykRCSm5tDvg1gOn8miank/vn6kHRWD9QtMrKFiJ1csYT3MexYSt5rj8AbQezJU73hVL5ealc/dH65j14k0ooJ9+ObRdlr/VUqETsVKiagY7MNXD7clOtSXw2ey6P/hOk6m5VgdS0Tk4tIT4Ych8EkPs9R5B5vX0Q1ZfdWlLiO3gIGfbmDXiTQqBHjz5cNtVeqkxOiInZSoo2ez6Pf+Oo6lZFMzzJ+vHmmrUw9S6nTETi6pIA/WT4eVUyAvHbBB83uh23gICLvql83ILWDQJxvYePgsIX6efP1IO+pWDCy+3CL/Q8VOStyR5Cz6vR/L8dQcaocH8NUjbakQ4G11LClDVOzkovYthfkj4Yy5TiuVWkKf18w/r0F6Tj6DPv2dTYfPEuTjwcyHYmhSOeTa84pchIqdlIrDZzLp9/46EtNyqBsRyFePtCXU38vqWFJGqNjJeZ09BAtfgN1zzbF/GHR/EZreA27XdqVSek4+Az/ZwOaEFIJ9PZk5OIbGlYOvObLIpajYSak5eDqTfu/HcjI9l/qRQcx6KIZyKndSClTs5Bx5WbDmLVjzNhTkgM0dYoZAp5HgG3LNL5/2Z6nb8mep+/KhGBpVUqmT0qFiJ6Vq/6kM+r2/jtMZuTSMCmLWQ20J9tMcTlKyVOwEMFeN2PWzeZQu9Yi5rXpH6D0FwusXy1uk5eRz/8cbiDuSQoifeaROpU5Kk4qdlLq9Sen0/3AdpzPyaFI5mC8GxxDsq3InJUfFTji521w14uBKcxxUGXpOhAa3gs1WLG+Rmp3P/Z9s4I8/S92XD8XQMEqlTkqXip1YIj7RLHfJmXk0jQ7hi8GafV1KjopdGZaTCismw4b3wV4A7t5w3ZPQ4WnwKr71rFOz8rnvk/VsPZpKOT9PvnyoLQ2i9LMmpU/FTiyz83ga93y0jpSsfFpUCeHzwTEEeHtYHUtckIpdGWS3w9bZsHg8ZJ40t9XtAz1fhdDqxfpWqVn53PvxerYdSyXU34svH4qhfqR+zsQaKnZiqe3HUrnnw3Wk5RTQLDqEGQ+0JsRPN1RI8VKxK2OOb4F5z8HR381xaE1z1YjaNxT7W6Vk5XHvx+vZfiyNUH8vZj0cQ72K+hkT66jYieW2HU3lvk/Wk5KVT92IQL4Y3IbwIE1iLMVHxa6MyDwDSyfA5s8BAzz9odNz0PZx8Cj+uTOTM/O4/xOz1JX392LWw201+bBYTsVOHEJ8Yjr3fbyek+m5VC3vx8zBMUSHaskdKR4qdi6usAA2fgLLXzGvqQNo3BdueAmCokrkLU+kZnPvR+vZfypTpU4cioqdOIzDZzK59+P1HEnOpmKQDzMfakOtcP2ilGunYufCDq0x73ZN2m6OIxpDnylQtX2JveXB05nc+9F6jqVkExnswxeD9btKHIeKnTiUxNQc7vt4PXtPZhDq78XnD7bRHFByzVTsXFDacVg0FrZ/Z459QqDrGGj5ALiX3E1YO46nMvCTDZzOyKN6BX++GNyGyuV0dkEch4qdOJzkzDwGfbqBrUdTCfT24ONBrWlTPdTqWOLEVOxcSEEuxE6DVa9DfiZgg5aDoOtY8C9fom/9+6FkHpzxO+k5BTSIDOLzwW207rU4HBU7cUjpOfk89NlG1h9MxtvDjen3taRL3XCrY4mTUrFzEXsWwYJRkLzfHEfHmKtGRDUr8bdeHn+Sx2ZuIiffTutq5fh4UGvNvSkOScVOHFZOfiGPf7mZZbtP4uFm4627m3FTk5K5EFpcm4qdk0s+AAuehz3zzXFAhHljRJN+xbZqxMX88sdxnv46jgK7QZe6Ybw7oCW+Xu4l/r4iV0PFThxaXoGd4d/EMXfrCWw2mHR7Y+5uU8XqWOJkVOycVF4mrH4D1k6Fwjxw84C2j0HHEeBTOv8dv1x/mDFztmMYcEvTKN64qyme7m6l8t4iV0PT/ItD8/Jw4+27mxPo48lXGxIY9cM2MnILeOj6GlZHE5GSYhiw40dYNAbSjpnbanaFXpMhrE4pRTB4b+V+piyIB+DetlV46ZZGuLmV/BFCkWuhYicOz93Nxqu3NyLIx4P3Vx3glV93cSYzj+d61NUvWRFXk7TTnL7k0GpzHFIFek6CejeWymlXMEvdv+bv5v1VBwAY2qUWz/Sog62U3l/kWqjYiVOw2WyM6l2PIF9PXlsYz3sr9nP0bDav922Ct4eudRFxetkpsGISbPgQjELw8IEOT8N1T4Gnb6nFyCuwM/qHbXy/+SgAL/Spz8MddYZAnIeKnTgNm83GE11qER7ozegftvHLH8dJSs3h/ftaUs5f68uKOCW7HeK+hCUvQtZpc1v9m6HHRChXtVSjpGblM2TmRtYdSMbdzcak2xtzV+voUs0gcq1084Q4pTX7TvPoF5tIzy2gRgV/ZjzQhirlNUmonJ9unnBQRzfBvGfh+GZzXKGOOX1JzS6lHiXhTBYPzNjA/lOZBHh7MG1ACzrVCSv1HCLXSsVOnFZ8YjoPfLqB46k5lPf34sOBrWhRpZzVscQBqdg5mIyTsGQCxM00x16B0HkkxDwK7qU/N9zmhLM8/NlGzmTmERnswyeDWlM/Uj8n4pxU7MSpJaXlMPiz39l+LA3vP++g7dWootWxxMGo2DmIwnzzGroVkyA3zdzW9B7o/iIERlgSad62Ezz9dRy5BXYaRgXxyaDWRAT5WJJFpDhoMh5xahFBPnz9SDu61A0jt8DOY19u4qPVB9C/VxzbtGnTqFatGj4+PsTExLBhw4YL7jtjxgxsNts5Dx8f/cXrdA6shOnXw8LRZqmLbAaDF8Pt71lS6gzD4P2V+3n8y83kFtjpVi+cb4a0U6kTp6diJ07P39uDD+9vxYCYKhgGvPLrLib8spNCu8qdI/r6668ZPnw448ePZ/PmzTRt2pSePXty8uTJCz4nKCiIEydOFD0OHz5cionlmqQcgW/uh89vgVO7wDcUbn4bHl4G0W0siVRQaOeFOduZNH83AAPbVeWD+1vh7637CcX56VSsuAzDMPhg1YGiX9bd60fwTv9m+Hnpl7UjiYmJoXXr1vznP/8BwG63Ex0dzT//+U9GjRr1t/1nzJjBsGHDSElJuer31KlYC+TnmCtGrH4DCrLB5gatBkOX58Ev1LJY6Tn5PDFrC6v2nMJmg7E3NuDBDtUtyyNS3HTETlyGzWZjSKea/Oee5nh5uLFkVxJ3f7COxNQcq6PJn/Ly8ti0aRPdu3cv2ubm5kb37t2JjY294PMyMjKoWrUq0dHR3HrrrezYseOi75Obm0taWto5DyklhgG758G0NrD8FbPUVWkPQ1bBja9bWuqOp2TTd3osq/acwtfTnffvbalSJy5HxU5czk1Nopj1UAzl/DzZejSVm6b+xqbDyVbHEuD06dMUFhYSEXHuNVUREREkJiae9zl169blk08+4aeffmLmzJnY7Xbat2/P0aNHL/g+kyZNIjg4uOgRHa25yErF6X3w5T9gdn9IOQyBkXDnx/DAPKjY2NJoW4+mcNu0NexOTCcs0Juvh7SlR0PdaCWuR6dixWUlnMni4c83Ep+Ujqe7jZdubUT/NlWsjlWmHT9+nEqVKrF27VratWtXtH3EiBGsXLmS9evXX/I18vPzqV+/Pv379+fll18+7z65ubnk5uYWjdPS0oiOjtap2JKSmw6rXoPYd8GeD26e0H4oXP8seAdYnY7vNx1l9I/byCuwUycigE8GtaZyOc17Ka5JFx+Jy6pS3o8fHm/Ps9/+wfztiYz+YRvbj6Uy/uaGeHnoYLUVKlSogLu7O0lJSedsT0pKomLFyzt64unpSfPmzdm3b98F9/H29sbb2/uassplMAzY9i0sHgfpJ8xttXtAr39B+ZrWZgPyC+28Om8Xn645BEC3euH8++5mBPmU/lx5IqVFf7uJS/P39uDdAS14rmddbDb4cn0C93y4jpPpuu4uPz+fI0eOEB8fT3Jy6Zyq9vLyomXLlixdurRom91uZ+nSpeccwbuYwsJCtm3bRmRkZEnFlMuRuA0+7QM/PGyWunLVof/XMOBbhyh1yZl53P/xhqJS92TXWnx4fyuVOnF5OmInLu+vNWbrRwby1FdxbDx8llumruH9+1rSNDrE6nilKj09nZkzZzJ79mw2bNhAXl4ehmFgs9moXLkyPXr04JFHHqF169YllmH48OEMHDiQVq1a0aZNG9566y0yMzN54IEHALj//vupVKkSkyZNAuCll16ibdu21KpVi5SUFF577TUOHz7MQw89VGIZ5SKykmH5RNj4CRh28PSD64dDu3+Cp2PMAbfjeCqPfL6JYynZ+Hu588ZdTenVSP8QkLJBxU7KjK71Ipgz9Doe+Xwj+09l0vf9WF69vTH/aFnZ6mil4s0332TixInUrFmTm2++meeff56oqCh8fX1JTk5m+/btrF69mh49ehATE8PUqVOpXbt2sefo168fp06dYty4cSQmJtKsWTMWLFhQdENFQkICbm7/PZlw9uxZHn74YRITEylXrhwtW7Zk7dq1NGjQoNizyUXYC2HzZ7D0Zcj+8whvw9uhxysQ7Dj/H/r5j+OM+O4PcvLtVCvvxwf3t6JORKDVsURKjW6ekDInPSefp7/+gyW7zOu8HriuGs/3qY+nu2tfmdC/f3/GjBlDw4YNL7pfbm4un376KV5eXjz44IOllK5kaR67a5SwHuY/Byf+MMfhDaD3ZKje0dpc/09+oZ1/zd/Nx78dBKBTnTDeubs5wX469Spli4qdlEl2u8HbS/fy9tK9ALSpFsrb/ZsRGexrcTIpCSp2Vyk9ERaPh62zzbF3sDnBcOuHwN1xTvgcT8lm6KzNbE5IAeDRTjV5rmdd3N1s1gYTsYCKnZRpC7Yn8uy3f5CRW0A5P0/e7NeMLnXDrY5VapKTk7Hb7VSoUMHqKCVKxe4KFeTB+umwcgrkpQM2aH4vdBsPAWFWpzvHyj2nGDZ7C2ez8gn08eD1vk3pqfnppAxz7XNPIpfQq1FF5v6zAw2jgjiblc8Dn/7Ov+bvJr/QbnW0ErV9+3aaNGlCWFgYERERVKlShfHjx5OZmWl1NLHaviXwXntYPNYsdZVawsNL4db/OFSpK7QbvLl4D4M+3cDZrHwaRgXx6z+vV6mTMk9H7ESAnPxCXp23i89jzcXlW1Ytx9T+zYkKcc1Ts23atCEgIICJEydSrlw5YmNjeeedd8jJyWHt2rWUK1fO6ojFSkfsLsPZQ7DwBdg91xz7h0H3F6HpPeDmWMcATmfkMmx2HL/tOw3APTFVGHdTA3w83S1OJmI9FTuR/2fethOM/G4r6bkFhPh58kbfpnSrH3HpJzoZf39/Nm3aRL169Yq2GYZB37598fHxYebMmRamK34qdheRlwVr3oI1b0NBDtjcIWYIdBoJviFWp/ub1XtPMfybPziVnouvpzuT7mjMbc0rWR1LxGE4ztWvIg6gT+NIGkYFMXTWFrYdS2XwZxt5pGMNnutZ16Xumm3VqhUpKSnnbLPZbEycOLFE57ATB2IYsOsXWPg8pB4xt1XvCL2nQHh9a7OdR16BndcXxfPBqgMA1A4P4N0BLaitqUxEzqEjdiLnkVtQyKR5u5mx9hAAzauE8Ha/5lQp77zrS95yyy00bdqUJk2aUFBQwNtvv81PP/1UNH8cwMaNG7n99ts5cuSIhUmLn47Y/Y9T8TB/BBxYYY6DKkPPidDgVrA53p2kB05l8OTsLWw/lgbAvW2rMOZGnXoVOR8VO5GLWLD9BM99t5X0nAL8vdwZf3ND+raqjM0B//K7lNGjRxMXF0dcXFzRWq2+vr7cddddNGvWjMLCQj799FPGjx/PP/7xD4vTFi8Vuz/lpMHKyeYdr/YCcPeG656EDk+Dl7/V6f7GMAy+3XiU8T/vIDu/kBA/T6bc2YQeukFC5IJU7EQu4UhyFsO/ieP3Q2cB6NEggkl3NKZ8gPMuMp+UlFRU8v567N27F3d3d+rWrcvWrVutjlisynyxs9vNuegWj4fMk+a2un2g56sQWt3abBeQmpXP8z9u49dtJwBoV6M8/+7XjIrBjrFsmYijUrETuQyFdoMPVh3gzcXx5BcaVAjwYso/mtC1nuvcWJGdnc3WrVuJi4tjyJAhVscpVmW62B3fAvNGwNEN5rh8Leg1GWp3tzbXRayIP8nI77eSlJaLh5uN4T3qMKRjTU04LHIZVOxErsCO46k8/XUce5IyAHOahRf61MffW/chObIyWewyz8DSCbD5c8AAT3/oNALaPg4eXlanO6+M3AIm/rqTrzaY13hWK+/HW3c3p1l0iLXBRJyIip3IFcrJL+T1hfF89OealNXK+/HGXU1pWTXU4mQXl5CQQJUqVS57/2PHjlGpkmtMI1Gmil1hAWz8BJa/Ajmp5rbGfeGGlyAoytpsF7F2/2lGfLeVo2ezARjUvhoje9XD10s3SIhcCdeZv0GklPh4ujPmpgbMeiiGyGAfDp3J4h/TY3nx5x1k5hZYHe+CWrduzZAhQ/j9998vuE9qaioffvghjRo14vvvvy/FdFIsDq2BDzrB/OfMUhfRGB6YD3d+5LClLiuvgBd/3sE9H67n6NlsKpfz5auH2/LiLQ1V6kSugo7YiVyD1Ox8Xp67k+82HQWgcjlfJt3RmOtrO87SS3958MEHKVeuHB9//DE+Pj60bNmSqKgofHx8OHv2LDt37mTHjh20aNGCsWPH0qdPH6sjFxuXP2KXdhwWjYXt35ljnxDoOgZaPQhujluO1h84w8jvt3LoTBZgXtrwfJ/6BOjSBpGrpmInUgxW7TnF6B+2cSzFPI3Ut2VlxtzYgGA/T4uT/ZeXlxdHjhwhMDCQsLAw+vfvz5kzZ8jOzqZChQo0b96cnj170qhRI6ujFjuXLXYFuRA7DVa9DvmZgA1aDoKuY8G/vNXpLig1K59J83cx+3fzWrqKQT5M/kcTOtVxvH8QiTgbFTuRYpKZW8BrC+P5LPYQhgFhgd68fGsjejVyjDm3qlWrxvvvv0/Pnj1xc3MjMTGR8PBwq2OVCpcsdnsWwYJRkLzfHEfHmKtGRDWzNNbFGIbB3K0nmPDLTk5n5ALQv00VRvWuR7Cv4/wjSMSZqdiJFLONh5IZ8f1WDpzKBKBnwwjG3dyQSiG+luaaOnUqzzzzDDExMaxdu5bXX3+dDh060KhRI3x9rc1W0lyq2CUfgAWjYc8CcxwQYd4Y0aSfQ64a8ZejZ7MYO2c7y+NPAVAzzJ9JdzShTXXHvulIxNmo2ImUgJz8QqYu28v0lQcotBv4errzZLfaDO5QHS8P6+5Z2rp1K7/88gtjx46lRo0aHDp0CJvNRq1atWjatCnNmjWjadOm9O7d27KMJcElil1eJqx+A9ZOhcI8cPOAto9BxxHg47jfU0GhnRlrD/HGoj1k5xfi5e7G411q8ljnmnh7OO71fyLOSsVOpATtTkxj3JwdbDiUDECt8ABeurUh7WtWsDRX7dq1iY2Nxd/fv2hS4r8e27dvJz093dJ8xc2pi51hwI4fYdEYSDtmbqvZ1ZxkOKyOtdkuYe2+00z4ZSfxSebPU5tqobx6RyNqhQdanEzEdanYiZQwwzD4YfMxJs3fxemMPABuaRrFmBvrEx7keMsjGYbhlGvhXozTFrukHTB/JBxabY5DqkDPSVDvRoc+7XokOYtX5+1i/vZEAEL8PBnRsx53t47GTatHiJQoFTuRUpKanc8bi+KZue4wdgMCvD14slstBravplNSJczpil12CqyYBBs+BKMQPHygw3C47knwdNzrIbPzCnlv5X7eX7mf3AI7bja4t21Vht9QhxA/x1ztQsTVqNiJlLLtx1J5Yc52/jiSAkB0qC+jetWnT+OKLnekzFE4TbGz2yFuJiyZAFmnzW31b4GeE82jdQ7KMAzmbUtk4q87OZ6aA0DbGqGMv7kh9SMd+PMWcUEqdiIWsNsNvtt8lNcXxnMy3Zz2oWXVcoy5sT7Nq5SzOJ3rcYpid3QTzHsWjm82xxXqQu/JULOLtbkuYcfxVF76ZSfrD5rXkVYK8eWFG+vTu5H+oSJiBRU7EQtl5RXw/soDfLDqANn5hYB5/d2IXnWpXM7P4nSuw6GLXcYpWPoibJlpjr0CofMoiBkC7o47t1vCmSzeWBzPT3HHAfDxdOOxTrUY0qkGPp66tEDEKip2Ig4gMTWH1xfF8/3moxgGeHm4MbBdVR7tVJPyAd5Wx3N6DlnsCvPh949g+STITTW3Ne0P3SdAYIS12S7iVHou/1m2l1kbEsgvNP/6uKVpFCN717N8rkYRUbETcSjbj6Xyyq87WXfAPK3l5+XOg9dV5+HrazjU8mTOxuGK3cFVMG8EnNpljiObQZ/XILqNpbEuJj0nnw9XH+Sj1QfIyjOPLnesE8aInnVpVCnY4nQi8hcVOxEHYxgGK+JP8cbieLYfSwMg0MeDR66vwQMdqmuB9KvgMMUu5Yg5H93OOebYNxS6j4fm94GbY56+zMor4Mt1Cby3cj/JmeZ0PU2jQxjZq67l8zGKyN+p2Ik4KMMwWLQziTcX7Sma4LWcnyePda7JfW2r4evlmEXAEVle7PJzzBUjVr8BBdlgc4NWg6HL8+DnmEtqZeQW8EXsYT5cfaCo0NWo4M9zPevSSzdGiDgsFTsRB2e3G8zddoK3Fu/hwGlz/dkKAd4M7lCdAW2rEOSjU7SXYlmxMwyInw8LR8PZQ+a2Ku2hzxSo2Lj0clyBtJx8PltziI/XHCQlKx+AquX9eKJzLe5oUQkPd+uWxBORS1OxE3ESBYV2ftxyjLeX7uXo2WwAAr09uKdtFQZfV90hV7FwFJYUu9P7YMFI2LfEHAdGQo9XoNGdDrlqRHJmHp+tPcQnaw6SnlMAmEfohnatxS1No1ToRJyEip2Ik8kvtPPLH8eZvnI/e5IyAPByd+POlpV5pGMNqlfwtzih4ynVYpebDqteg9h3wZ4Pbp7Q7gno+Bx4B5Tse1+F/acy+OS3g3y/+Sg5+XYAaocHMLRrLW5qEoW7lgATcSoqdiJOym43WB5/kvdW7Gfj4bOAeSCod6OKPHR9DZpHh+g6qD+VSrEzDNj2LSweB+knzG21e0Cvf0H5miXznlfJMAxiD5zh49UHWbr7ZNH2RpWCeLxzLXo1rKg1XUWclIqdiAv4/VAy01fsP+cv6caVgrmvXVVuaRpV5ieMLfFid2IrzB8BCbHmuFx1s9DV7VX873UN8grszN16nI9WH2TnCfOOa5sNutWL4OHrq9Omeqj+MSDi5FTsRFxIfGI6H60+wE9/HCevwDytFuLnSb/W0dwbU5Xo0LK5mkWJFbusZFg+ETZ+AoYdPP3g+meg3VDwdJxrHg+cyuDr34/w/eajnM4w73D18XSjb8toHriuGjXCHO8UsYhcHRU7EReUnJnHNxuP8EXsYY6lmDdamEdmwunXugqd64bhWYYuhi/2YmcvhM2fwdKXIducTJqGt5s3RwRXvvbXLwY5+YUs2J7IVxsSitZxBQgP9GZg+2rc06YK5fy9LEwoIiVBxU7EhRXaDZbtPsnnsYdYvfd00fby/l7c0iyKO1tUpmFUkMuffivWYpewHuY/Byf+MMfhDaD3FKh+/bUHLQbxiel8tSGBH7ccIzXbnK7EzQad6oRxd5sqdK0XXqZKvUhZo2InUkbsO5nB7A0JzIk7zumM3KLt9SoGcmeLytzaPIrwQMc5fViciqXYpSfC4vGwdbY59g42Jxhu/RC4W7sayKn0XBbsSOTHzUfZnJBStD0q2Ie7WkdzV6toorSOq0iZoGInUsYUFNpZtfcU3286xuKdSeQVmtfiubvZ6Fi7Are3qEzXeuEutXTZNRW7gjxYPx1WToG8dMAGze+FbuMhIKxE8l6Ov8rcvK0nWH/wDPY/f5N7uNnoVj+cu9tUoWPtME1XIlLGqNiJlGGpWfn8svU4328+ypb/d6THy92N62qVp0fDinSvH0FYoLd1IYvBVRe7/ctg3gg4s9ccV2oJfV4z/7TA6YxcFmxP5Nf/KXMATSsHc2OTSG5rXsllj7yKyKWp2IkIYE5U+8Pmo8zblsjBP5cuA/OmixZVytGjQQQ9GlZ0ygmQr7jYnT0MC5+H3XPNsX8YdH8Rmt4DbqV7fdrJtBwW7Uxi3rYTrDvw9zLXp3EkfRpHltk7nkXkXCp2InIOwzDYdzKDRTuTWLQjkT+Opp7z9drhAfRoGEHXeuE0qRziFBfiX3axy8+G396CNW9BQQ7Y3CFmCHQaCb4hpZI1O6+QDYeSWb3nFKv3niY+Kf2crzepHMyNKnMicgEqdiJyUSdSs1myM4lFO5OI3X+Ggv93yMjPy51W1UJpWyOUdjXK07hSsEOuKXrJYmcYsOsXWPgCpCaY26p3NO92Da9fotnsdoNdiWms3nua1XtP8fvBs0XXPYJ5xLRJpWB6N46kT6NIqpRXmRORC1OxE5HLlpqdz4r4kyzakcTa/ac5m5V/ztf9vdxpXT2UtjXK065GeRpGBTlE0btosTsVb64acWCFOQ6qDD0nQoNbzVZVzHLyC9lxPJUtCSlsSUhh/cEzRZMG/yUq2Ifra4fRoXYFrqtVgVDNNycil0nFTkSuit1uEJ+UzroDZ4jdf4b1B5OL5k37i6+nOw2igmgUFUTDSsE0igqmdkQAH0x/j9dee43ExESaNm3K1KlTadOmzQXf69tvv2Xs2LEcOnSI2rVrM3nyZPr06XPZWc9b7HLSYOVk845XewG4e8N1T0KHp8GreK4jNAyDI8nZbDly9s8id5adJ9LILzz3166flzvtapTn+toV6FA7jJph/i4/t6CIlAwVOxEpFn+dUozdf4Z1B5JZf/AM6TkFf9vP3WaQfWI/betWon39yqxfNIelP33Nrs3riIiI+Nv+a9eupWPHjkyaNImbbrqJWbNmMXnyZDZv3kyjRo0uK9s5xS4gwJyLbvF4yPxzbd26faDnqxBa/aq+d8MwOJWey56kDOKT0tmblM6epHT2JmWQnvv3z6BCgBfNq5SjeZUQWlYpR/Mq5fDysP7Ipog4PxU7ESkRhXaDg6cz2XE8le3HUtl+LI3tx1PPW/YAPCmkdmQ5qlfwp1oFP6qV96dqeX8mjnmO/LTTzPvlp6J927ZtS7NmzZg+ffplZSkqdrtXEbT6JTi6wfxCaE3oPRlq33DJ18jJL+To2WyOpWRz9GwWx85mF433n8og5X9OSxd9X+42GkYF07xKiFnmokOoXM5XR+REpESo2IlIqcnNzSUoqiajp0zDt1JddhxP4+DpDI6cyQTbxY9YlfPzJCLIhwoB3hw9EM/xg3t47MH7CfHzxN/bgwBvD/y83PH39sDDzYanuxue7m54uNvIOnmYJo0akTIqiGBvKPTw41iToRytO4g8PMnKKyQjp4C0nHzScwpIzc4nOTOPM5m5nMnI43RG7t+ug/tfbjaoVt6f2hEB1I0IpHZEIHUrBlKtvL+OxolIqbmsYmcYBunp6ZfaTUTkok6cOEG9evVYvHjxOdfUPT92HL9t3sGEN94jITmThOQsEs5kczQli4STKdg8rm6CZHcK6eu+goGFP9DorVMceTqAVR5teTO/Lycpd8Wv5+/tTlSwL1EhPkSF/PlnsB/Rob7UCAvAx9P9qnKKiFyOwMDASx7tv6xi99dpDBERERGxxuVMsu6QR+zS0tKIjo7myJEjV79gt1w2fd6lr6x+5nl5eURERPDFF19w0003FW0fMmQIqampzJ49+2/PadCgAUOHDuXxxx8v2vbqq68yd+5c1q5d+/c3STtB4ZKXcI//BQDDK4gjdQbS+N5X2blzJ5UqVSr+b0zOUVZ/vq2kz7x0WfV5X84Ru8ta5dtms1nygxIUFKQf0FKkz7v0lcXPvFWrVsTGxnLPPfcAYLfbWb16NUOHDj3vZ3HdddexZs0aRo0aVbRt1apVdOjQ4dz9C3Ihdhqseh3yM8HbDVoOgq5jST+bDbxKYGBgmfu8rVQWf76tps+8dDni531ZxU5EpLgMHz6cgQMH0qpVK9q0acNbb71FZmYmDzzwAAD3338/lSpVYtKkSQA89dRTdOrUiTfeeIMbb7yR2bNns3HjRj744IP/vuieRbBgFCTvN8fRMeaqEVHNzPHZo6X4HYqIWEfFTkRKVb9+/Th16hTjxo0jMTGRZs2asWDBgqI57BISEnBz++9dpO3bt2fWrFmMGTOG559/ntq1azNnzhxzDrvkA7BgNOxZYO4cEAE3vARN+pXIqhEiIo7OIYudt7c348ePx9v76u6Ekyujz7v0lfXPfOjQoQwdOvS8X1uxYsXftvXt25e+ffv+d0NeJix9CdZOhcI8cPOAto9BxxHg8/fTIn99zmX18y5tZf3n2wr6zEuXI3/emsdORJyHYcCOH2DRWEg7Zm6r0cWcZDis7gWfdtG1YkVEXIhDHrETEfmbpB0wfyQcWm2OQ6qYy4DVu0mnXUVE/qRiJyKOLTsFVkyCDR+CUQgePtDhabjuKfD0tTqdiIhDUbETEcdkt0PcTFgyAbJOm9vq3ww9JkK5qtZmExFxUCp2IuJ4jm6Cec/C8c3muEId8zq6ml2tzSUi4uAcYmXqiRMn0r59e/z8/AgJCbms5wwaNAibzXbOo1evXiUb1IVczWduGAbjxo0jMjISX19funfvzt69e0s2qItITk5mwIABBAUFERISwuDBg8nIyLjoczp37vy3n/FHH320lBJbJOMU/PQEfNTVLHVegeYRusfWXrLUTZs2jWrVquHj40NMTAwbNmy46P7ffvst9erVw8fHh8aNGzNv3rzi/E5c3pV83jNmzPjbz7KPj08ppnVuq1at4uabbyYqKgqbzcacOXMu+ZwVK1bQokULvL29qVWrFjNmzCjxnK7kSj/zFStW/O1n3GazkZiYWDqB/x+HKHZ5eXn07duXxx577Iqe16tXL06cOFH0+Oqrr0oooeu5ms98ypQpvPPOO0yfPp3169fj7+9Pz549ycnJKcGkrmHAgAHs2LGDxYsXM3fuXFatWsUjjzxyyec9/PDD5/yMT5kypRTSWqAwH9a9B1NbwpaZ5ram98A/N0H7oeDuedGnf/311wwfPpzx48ezefNmmjZtSs+ePTl58uR591+7di39+/dn8ODBbNmyhdtuu43bbruN7du3F/d35pKu9PMGc4b+//+zfPjw4VJM7NwyMzNp2rQp06ZNu6z9Dx48yI033kiXLl2Ii4tj2LBhPPTQQyxcuLCEk7qOK/3M/xIfH3/Oz3l4eHgJJbwIw4F8+umnRnBw8GXtO3DgQOPWW28t0TxlweV+5na73ahYsaLx2muvFW1LSUkxvL29ja+++qoEEzq/nTt3GoDx+++/F22bP3++YbPZjGPHjl3weZ06dTKeeuqpUkhosQMrDeM/MYYxPsh8TO9oGAnrr+gl2rRpYzzxxBNF48LCQiMqKsqYNGmSYRiGkZqaagBGamqqYRiGcddddxk33njjOa8RExNjDBky5Bq/mbLhUp/3/7qS3+1ycYDx448/XnSfESNGGA0bNjxnW79+/YyePXuWYDLXdTmf+fLlyw3AOHv2bKlkuhiHOGJ3tVasWEF4eDh169blscce48yZM1ZHclkHDx4kMTGR7t27F20LDg4mJiaG2NhYC5M5vtjYWEJCQmjVqlXRtu7du+Pm5sb69esv+twvv/ySChUq0KhRI0aPHk1WVlZJxy09KUfgm4Hw2c1wahf4hsLNb8PDyyC6zWW/TF5eHps2bTrnZ9PNzY3u3btf8GczNjb2nP0BevbsqZ/ly3A1nzdARkYGVatWJTo6mltvvZUdO3aURtwyST/f1mnWrBmRkZHccMMNrFmzxpIMTnvzRK9evbjjjjuoXr06+/fv5/nnn6d3797Exsbi7u5udTyX89d1An8t+/SXiIgIS64hcCaJiYl/Oxzv4eFBaGjoRT+7e+65h6pVqxIVFcXWrVsZOXIk8fHx/PDDDyUduWTl55grRqx+AwqyweYGrQZDl+fBL/SKX+706dMUFhae92dz9+7d531OYmKifpav0tV83nXr1uWTTz6hSZMmpKam8vrrr9O+fXt27NhB5cqVSyN2mXKhn++0tDSys7Px9dU0QcUtMjKS6dOn06pVK3Jzc/noo4/o3Lkz69evp0WLFqWapcSK3ahRo5g8efJF99m1axf16tW7qte/++67i/5348aNadKkCTVr1mTFihV069btql7T2ZX0Zy7nutzP+2r9/2vwGjduTGRkJN26dWP//v3UrFnzql/XMoYB8fNh4Wg4e8jcVqU99JkCFRtbGk1KVrt27WjXrl3RuH379tSvX5/333+fl19+2cJkIsWjbt261K3739Vv2rdvz/79+/n3v//NF198UapZSqzYPfPMMwwaNOii+9SoUaPY3q9GjRpUqFCBffv2ldliV5KfecWKFQFISkoiMjKyaHtSUhLNmjW7qtd0dpf7eVesWPFvF5UXFBSQnJxc9LlejpiYGAD27dvnfMXu9D5YMBL2LTHHgZHQ4xVodOc1rxpRoUIF3N3dSUpKOmd7UlLSBT/fihUrXtH+8l9X83n/L09PT5o3b86+fftKImKZd6Gf76CgIB2tK0Vt2rTht99+K/X3LbFiFxYWRlhYWEm9/N8cPXqUM2fOnFM6ypqS/MyrV69OxYoVWbp0aVGRS0tLY/369Vd8N7OruNzPu127dqSkpLBp0yZatmwJwLJly7Db7UVl7XLExcUBONfPeG4GrHoNYqeBPR/cPM27XK9/FrwDiuUtvLy8aNmyJUuXLuW2224DwG63s3TpUoYOHXre57Rr146lS5cybNiwom2LFy8+56iSnN/VfN7/q7CwkG3bttGnT58STFp2tWvX7m/T9+jnu/TFxcVZ8/va6rs3DMMwDh8+bGzZssWYMGGCERAQYGzZssXYsmWLkZ6eXrRP3bp1jR9++MEwDMNIT083nn32WSM2NtY4ePCgsWTJEqNFixZG7dq1jZycHKu+DadypZ+5YRjGv/71LyMkJMT46aefjK1btxq33nqrUb16dSM7O9uKb8Gp9OrVy2jevLmxfv1647fffjNq165t9O/fv+jrR48eNerWrWusX2/eDbpv3z7jpZdeMjZu3GgcPHjQ+Omnn4waNWoYHTt2tOpbuDJ2u2H88Y1hvF73v3e7zvyHYZzeVyJvN3v2bMPb29uYMWOGsXPnTuORRx4xQkJCjMTERMMwzDsC+X93xa5Zs8bw8PAwXn/9dWPXrl3G+PHjDU9PT2Pbtm0lks/VXOrzvu+++4xRo0YV7T9hwgRj4cKFxv79+41NmzYZd999t+Hj42Ps2LHDqm/BqaSnpxf9jgaMN99809iyZYtx+PBhwzAMY9SoUcZ9991XtP+BAwcMPz8/47nnnjN27dplTJs2zXB3dzcWLFhg1bfgdK70M//3v/9tzJkzx9i7d6+xbds246mnnjLc3NyMJUuWlHp2hyh2AwcONIC/PZYvX160D2B8+umnhmEYRlZWltGjRw8jLCzM8PT0NKpWrWo8/PDDRb9U5NKu9DM3DHPKk7FjxxoRERGGt7e30a1bNyM+Pr70wzuhM2fOGP379zcCAgKMoKAg44EHHjinRB88ePCczz8hIcHo2LGjERoaanh7exu1atUynnvuuaJi4tBObDWMj3v9t9C91cQwds8v8bedOnWqUaVKFcPLy8to06aNsW7duqKvXXfddecUO8MwjG+++caoU6eO4eXlZTRs2ND49ddfSzyjK7nY592pUydj4MCBReNhw4YV7RsREWH06dPH2Lx5swWpndNfU2n87+Ovz3jgwIFGp06d/vacZs2aGV5eXkaNGjXO+V0ul3aln/nkyZONmjVrGj4+PkZoaKjRuXNnY9myZZZktxmGYZTSwUERcWVZybB8Imz8BAw7ePrB9c9Au6Hgae0qA2lpaQQHB5OamkpQUJClWURESpLTTnciIg7CXgibP4OlL0N2srmt4e3mzRHBmspCRKQ0qdiJyNVLWA/zn4MTf5jj8AbQezJU72htLhGRMkrFTkSuXHoSLBkPf/y5PrN3sDnBcOuHwF2/VkRErKLfwCJy+QryYMP7sGIy5KUDNmh+L3QbDwGlN72RiIicn4qdiFye/ctg/kg4vcccV2oJfV4z/xQREYegYiciF3f2MCx8HnbPNcf+YdD9RWh6D7i5WRpNRETOpWInIueXnw2/vQVr3oKCHLC5Q8wQ6DQSfEMsDiciIuejYici5zIM2PULLHwBUhPMbdU7Qu8pEF7f2mwiInJRKnYi8l+n4mH+CDiwwhwHVYaeE6HBrWCzWRrtao0aNYotW7ZYHUNEpFSo2IkI5KTBysmwfjrYC8DdG657EjoMBy8/q9Ndk7i4OBo3bsyiRYusjiIiUuJU7ETKMrsdts6GxeMh86S5rW4f6PkqhFa3NlsxiYuLo1+/flbHEBEpFbqlTaSsOr4FPukJcx4zS135WjDge+j/lcuUusTERJKSkigsLAQgIiKC1q1bs23bNouTiYiUDBU7kbIm8wz88hR80AWObgCvAOg+AR6LhdrdrU5XrOLi4gB47733AFi5ciUBAQH079/fwlQiIiVHxU6krCgsgA0fwtQWsGkGYEDju2DoRugwDDy8LA5Y/OLi4vDx8WHWrFkA1KtXj4kTJ7Jjxw5Onz5tcToRkeKna+xEyoJDa8y7XZO2m+OIxtBnClRtb22uEhYXF8ddd91FZGRk0bZy5coBYLfbrYolIlJiVOxEXFnacVg0FrZ/Z459QqDrGGj1ILi5WxqtNMTFxTFkyJBztq1bt45KlSoRHh5uUSoRkZKjYifiigpyIXYarHod8jMBG7QcBF3Hgn95q9OViqysLPbu3Vt04wSYR+nefvttBg0aZF0wEZESpGIn4mr2LIIFoyB5vzmOjjFXjYhqZmms0rZ161bc3d359NNPadmyJQADBw4kOzubkSNHWpxORKRkqNiJuIrkA7BgNOxZYI4DIuCGl6BJP6ddNeJaxMXFUadOHcaNG8eAAQMA8PT0ZO3atQQGBlqcTkSkZNgMwzCsDiEi1yAvE1a/CWvfgcI8cPOAto9BxxHgE2R1OoeQlpZGcHAwqampBAXpMxER16UjdiLOyjBgxw/mzRFpx8xtNbpA78kQVtfabCIiYgkVOxFnlLQD5o+EQ6vNcUgVcxmwejeVydOuIiJiUrETcSbZKbD8Vfj9IzAKwcMHOjwN1z0Fnr5WpxMREYup2Ik4A7sd4mbCkgmQ9eeKCfVvhh4ToVxVa7OJiIjDULETcXRHN8G8Z+H4ZnNcoY55HV3NrtbmEhERh6NiJ+KoMk6aR+jiZppjr0DoPApihoC7p7XZRETEIanYiTiawnzY8CGsmAS5aea2pv2h+4sQWNHSaCIi4thU7EQcyYGV5t2up3aZ48im0Od1iG5jbS4REXEKblYHEBEg5Qh8cz98fotZ6nxD4aa34OHlLlXqkpOTGTBgAEFBQYSEhDB48GAyMjIu+pzOnTtjs9nOeTz66KOllFhExLnoiJ2IlfJzzBUjVr8JBdlgc4NWg6HL8+AXanW6YjdgwABOnDjB4sWLyc/P54EHHuCRRx5h1qxZF33eww8/zEsvvVQ09vPzK+moIiJOScVOxAqGAfHzYcEoSDlsbqvSHvpMgYqNrc1WQnbt2sWCBQv4/fffadWqFQBTp06lT58+vP7660RFRV3wuX5+flSsqOsLRUQuRadiRUrb6X3w5T9gdn+z1AVGwp0fwwPzXLbUAcTGxhISElJU6gC6d++Om5sb69evv+hzv/zySypUqECjRo0YPXo0WVlZF90/NzeXtLS0cx4iImWBjtiJlJbcDFj1GsROA3s+uHlC+6Fw/bPgHWB1uhKXmJhIeHj4Ods8PDwIDQ0lMTHxgs+75557qFq1KlFRUWzdupWRI0cSHx/PDz/8cMHnTJo0iQkTJhRbdhERZ6FiJ1LSDAO2fQeLx0L6CXNbrRvMSYbL17Q2WzEYNWoUkydPvug+u3btuurXf+SRR4r+d+PGjYmMjKRbt27s37+fmjXP//mNHj2a4cOHF43T0tKIjo6+6gwiIs5CxU6kJCVug3kjIGGtOS5XDXr9C+r0ApvN0mjF5ZlnnmHQoEEX3adGjRpUrFiRkydPnrO9oKCA5OTkK7p+LiYmBoB9+/ZdsNh5e3vj7e192a8pIuIqVOxESkJWMiyfCBs/AcMOnn5w/XBo90/w9LE6XbEKCwsjLCzskvu1a9eOlJQUNm3aRMuWLQFYtmwZdru9qKxdjri4OAAiIyOvKq+IiCuzGYZhWB1CxGXYC2HzZ7D0ZchONrc1vB16vALBla3N5gB69+5NUlIS06dPL5rupFWrVkXTnRw7doxu3brx+eef06ZNG/bv38+sWbPo06cP5cuXZ+vWrTz99NNUrlyZlStXXvb7pqWlERwcTGpqKkFBQSX17YmIWE5H7ESKS8J6mP8cnPjDHIc3MK+jq97R2lwO5Msvv2To0KF069YNNzc37rzzTt55552ir+fn5xMfH19016uXlxdLlizhrbfeIjMzk+joaO68807GjBlj1bcgIuLQdMRO5FqlJ8Li8bB1tjn2DjYnGG79ELjr306OQEfsRKSs0N86IlerIA/WT4eVUyAvHbBB83uh23gIuPQ1ZyIiIsVNxU7kauxbCvNHwpm95rhSS+jzmvmniIiIRVTsRK7E2cOw8HnYPdcc+4dB9xeh6T3gpoVcRETEWip2IpcjPxt+ewvWvAUFOWBzh5gh0HkU+ARbnU5ERARQsRO5OMOAXb/AwhcgNcHcVr0j9J4C4fWtzSYiIvI/VOxELuRUPMwfAQdWmOOgytBzIjS41WVWjRAREdeiYifyv3LSYOVk845XewG4e8N1T0GHp8HLz+p0IiIiF6RiJ/IXu92ci27xeMj8c03Tun2g56sQWt3abCIiIpdBxU4E4PgWmDcCjm4wx+VrQa/JULu7tblERESugIqdlG2ZZ2DpBNj8OWCAVwB0fA7aPg4eXlanExERuSIqdlI2FRbApk9h2cuQk2pua3wX3PASBEVam01EROQqqdhJ2XN4Lcx7DpK2m+OIxuaqEVXbWZtLRETkGqnYSdmRdhwWjYXt35ljnxDoOgZaPQhu7pZGExERKQ4qduL6CnIhdhqseh3yMwEbtBwEXceCf3mr04mIiBQbFTtxbXsWwYJRkLzfHEfHmKtGRDWzNJaIiEhJULET13RmPyx8HvYsMMcBEeaNEU36adUIERFxWSp24lryMmH1G7B2KhTmgZsHtH0MOo4AnyCr04mIiJQoFTtxDYYBO34wb45IO2Zuq9HFPO0aVsfabCIiIqVExU6cX9IOmD8SDq02xyFVzGXA6t2k064iIlKmqNiJ88pOgRWTYMOHYBSChw90eBquewo8fa1OJyIiUupU7MT52O0QNxOWTICs0+a2+jdDj4lQrqq12URERCykYifO5egmmPcsHN9sjivUhd6ToWYXa3OJiIg4ABU7cQ4Zp2Dpi7Blpjn2CoTOoyBmCLh7WhpNRETEUajYiWMrzIffP4LlkyA31dzW9B7o/iIERlgaTURExNGo2InjOrgK5o2AU7vMcWQz6PMaRLexNJaIiIijUrETx5NyBBaNgZ1zzLFvKHQfD83vAzd3S6OJiIg4MhU7cRz5OeaKEavfgIJssLlBq8HQ5XnwC7U6nYiIiMNTsRPrGQbEz4eFo+HsIXNblfbQZwpUbGxpNBEREWeiYifWOr0PFoyEfUvMcWAk9HgFGt2pVSNERESukIqdWCM3HVa9BrHvgj0f3L2g3RNw/bPgHWB1OhEREaekYielyzBg27ewaCxkJJrbaveEXpOgfE1rs4mIiDg5FTspPSe2wvwRkBBrjstVh17/grq9rM0lIiLiIlTspORlJcPyibDxEzDs4OkHHZ+FdkPBw9vqdCIiIi5DxU5Kjr0QNn8GS1+G7GRzW8M7oMfLEFzZ2mwiIiIuSMVOSkbCepj/HJz4wxyHN4DeU6D69dbmEhERcWEqdlK80hNh8XjYOtscewebEwy3fgjc9eMmIiJSkvQ3rRSPgjzY8D6smAx56YANmt8L3cZDQJjV6URERMoEFTu5dvuXwfyRcHqPOa7UEvq8Zv4pIiIipUbFTq7e2cOw8HnYPdcc+4dB9xeh6T3g5mZpNBERkbJIxU6uXH42/PYWrHkLCnLA5g4xQ6DTSPANsTiciIhI2aViJ5fPMGDXL7DwBUhNMLdV72je7Rpe39psIiIiomInl+lUvLlqxIEV5jioMvScCA1uBZvN0mgiIiJiUrGTi8tJg5WTYf10sBeAuzdc9xR0eBq8/KxOJyIiIv+PrnCX87PbIW4WTG0Jsf8xS13dPvDEeuj6gkqdXJWJEyfSvn17/Pz8CAkJuaznGIbBuHHjiIyMxNfXl+7du7N3796SDSoi4qRU7OTvjm+BT3rCnMcg8ySUrwUDvof+X0FodavTiRPLy8ujb9++PPbYY5f9nClTpvDOO+8wffp01q9fj7+/Pz179iQnJ6cEk4qIOCebYRiG1SHEQWSegaUTYPPngAFeAdDxOWj7OHh4WZ1OXMiMGTMYNmwYKSkpF93PMAyioqJ45plnePbZZwFITU0lIiKCGTNmcPfdd1/W+6WlpREcHExqaipBQUHXGl9ExGHpiJ1AYQFs+BCmNofNnwEGNL4Lhm6EDsNU6sQyBw8eJDExke7duxdtCw4OJiYmhtjYWAuTiYg4Jt08UdYdWmPe7Zq03RxHNDZXjajaztpcIkBiYiIAERER52yPiIgo+tr55ObmkpubWzROS0srmYAiIg5GR+zKqrTj8N1gmNHHLHU+IdDndRiyUqVOrsioUaOw2WwXfezevbtUM02aNIng4OCiR3R0dKm+v4iIVXTErqwpyIXYabDqdcjPBGzQchB0HQv+5a1OJ07omWeeYdCgQRfdp0aNGlf12hUrVgQgKSmJyMjIou1JSUk0a9bsgs8bPXo0w4cPLxqnpaWp3IlImaBiV5bsXQzzR0LyfnMcHWOuGhHVzNJY4tzCwsIICwsrkdeuXr06FStWZOnSpUVFLi0tjfXr11/0zlpvb2+8vb1LJJOIiCNTsSsLkg/AgtGwZ4E5DoiAG16CJv20aoSUqoSEBJKTk0lISKCwsJC4uDgAatWqRUBAAAD16tVj0qRJ3H777dhsNoYNG8Yrr7xC7dq1qV69OmPHjiUqKorbbrvNum9ERMRBqdi5srxMWP0GrJ0KhXng5gFtH4OOI8BHUz5I6Rs3bhyfffZZ0bh58+YALF++nM6dOwMQHx9Pampq0T4jRowgMzOTRx55hJSUFDp06MCCBQvw8fEp1ewiIs5A89i5IsOAHT/AorGQdszcVrMr9JoMYXWszSZiAc1jJyJlhY7YuZqkneb0JYdWm+OQKtBzEtS7UaddRUREXJyKnavIToHlr8LvH4FRCB4+0GE4XPckePpanU5ERERKgYqds7PbYcsX5lJgWWfMbfVvhh4ToVxVa7OJiIhIqVKxc2ZHN8K85+D4ZnNcoS70ngw1u1ibS0RERCyhYueMMk7CkgkQN9McewVC51EQMwTcPa3NJiIiIpZRsXMmhfmw4UNYMQly/1z7suk90P1FCIy46FNFRETE9anYOYsDK81VI07tMseRTc21XaPbWJtLREREHIaKnaNLOQKLxsDOOebYNxS6j4fm94Gbu6XRRERExLGo2Dmq/BxzxYjVb0BBNtjcoNVg6PI8+IVanU5EREQckIqdozEMiJ8PC0fD2UPmtirtoc8UqNjY0mgiIiLi2FTsHMnpfbBgJOxbYo4DI6HHK9DoTq0aISIiIpekYucIcjNg1WsQOw3s+eDmCe2HwvXPgneA1elERETESajYWckwYNt3sHgspJ8wt9XuAb3+BeVrWptNREREnI6KnVUSt8G8EZCw1hyXq24Wurq9rM0lIiIiTkvFrrRlJcPyibDxEzDs4OkH1w+Hdv8ETx+r04mIiIgTU7ErLfZC2PwZLH0ZspPNbQ1vN2+OCK5sbTYRERFxCSp2pSFhPcx/Dk78YY7DG0DvyVC9o7W5RERExKWo2JWk9ERYPB62zjbH3sHmBMOtHwJ3ffQiIiJSvNQuSkJBHqyfDiunQF46YIPm90K38RAQZnU6ERERcVEqdsVt31KYPxLO7DXHlVpCn9fMP0VERERKkIpdcTl7GBY+D7vnmmP/MOj+IjS9B9zcLI0mIiIiZYOK3bXKz4bf3oI1b0FBDtjcIWYIdBoJviEWhxMREZGyRMXuahkG7PoFFr4AqQnmtuodofcUCK9vbTYREREpk1TsrsapeJg/Ag6sMMdBlaHnRGhwK9hslkYTERGRskvF7krkpMHKyeYdr/YCcPeG656EDsPBy8/qdCIiIlLGqdhdDrvdnItu8XjIPGluq9sHer4KodWtzSYiIiLyJxW7SzkeB/Oeg6MbzHH5WtBrMtTubmksERERkf+lYnchmWdg2Uuw6TPAAE9/6DQC2j4OHl5WpxMRERH5GxW7/1VYAJs+hWWvQE6Kua1xX7jhJQiKsjSaiIiIyMWo2P1/h9aYd7smbTfHEY2hzxSo2t7aXCIiIiKXQcUOIO04LBoL278zxz4h0HUMtHoQ3NwtjSYiIiJyucp2sSvIhdhpsOp1yM8EbNByEHQdC/7lrU4nIiIickXKbrHbswgWjILk/eY4OsZcNSKqmaWxRERERK5W2St2Z/bDwudhzwJzHBBh3hjRpJ9WjRARERGnVnaKXV4mrH4D1k6Fwjxw84C2j0HHEeATZHU6ERERkWvm+sXOMGDHD+bNEWnHzG01u5qTDIfVsTabiIiISDFy7WKXtAPmj4RDq81xSBXoOQnq3ajTriIiIuJyXLPYZafA8lfh94/AKAQPH+gwHK57Ejx9rU4nIiIiUiJcq9jZ7RA3E5ZMgKzT5rb6t0DPiebROhEREREX5jrF7ugmmPcsHN9sjivUhd6ToWYXa3OJiIiIlBLnL3YZJ80jdHEzzbFXIHQeBTFDwN3T2mwiIiIipch5i11hvnkN3fJXITfN3Nb0Huj+IgRGWBpNRERExArOWewOroJ5I+DULnMc2Qz6vAbRbSyNJSIiImIl5yp2KUdg0RjYOccc+4ZC9/HQ/D5wc7c0moiIiIjV3KwOcFnyc2Dla/Cf1maps7lB64fhn5ug5SCVOhEnMXHiRNq3b4+fnx8hISGX9ZxBgwZhs9nOefTq1atkg4qIOCnHPmJnGBA/HxaOhrOHzG1V2kOfKVCxsaXRROTK5eXl0bdvX9q1a8fHH3982c/r1asXn376adHY29u7JOKJiDg9xy12p/fBgpGwb4k5DoyEHq9Aozu1aoSIk5owYQIAM2bMuKLneXt7U7FixRJIJCLiWhyv2OWmw6rXIPZdsOeDmye0HwrXPwveAVanExELrFixgvDwcMqVK0fXrl155ZVXKF++vNWxREQcjuMVu/Xvw5q3zf9duwf0+heUr2ltJhGxTK9evbjjjjuoXr06+/fv5/nnn6d3797Exsbi7n7+62tzc3PJzc0tGqelpZVWXBERSznezRNtH4Nq10P/r2HAtyp1Ig5u1KhRf7u54X8fu3fvvurXv/vuu7nlllto3Lgxt912G3PnzuX3339nxYoVF3zOpEmTCA4OLnpER0df9fuLiDgTm2EYhtUhRMR5nTp1ijNnzlx0nxo1auDl5VU0njFjBsOGDSMlJeWq3jMsLIxXXnmFIUOGnPfr5ztiFx0dTWpqKkFBQVf1niIizsDxTsWKiFMJCwsjLCys1N7v6NGjnDlzhsjIyAvu4+3trTtnRaRMcrxTsSLishISEoiLiyMhIYHCwkLi4uKIi4sjIyOjaJ969erx448/ApCRkcFzzz3HunXrOHToEEuXLuXWW2+lVq1a9OzZ06pvQ0TEYemInYiUmnHjxvHZZ58VjZs3bw7A8uXL6dy5MwDx8fGkpqYC4O7uztatW/nss89ISUkhKiqKHj168PLLL+uInIjIeegaOxFxeWlpaQQHB+saOxFxeToVKyIiIuIiVOxEREREXISKnYiIiIiLULETERERcREqdiIiIiIuQsVORERExEWo2ImIiIi4CBU7ERERERehYiciIiLiIlTsRERERFyEip2IiIiIi1CxExEREXERKnYiIiIiLkLFTkRERMRFqNiJiIiIuAibYRiG1SFEREqSYRikp6cTGBiIzWazOo6ISIlRsRMRERFxEToVKyIiIuIiVOxEREREXISKnYiIiIiLULETERERcREqdiIiIiIuQsVORERExEWo2ImIiIi4iP8DlocobLPHOIYAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"É possível observar que a linha de `b` (laranja) está a cima da linha de `a` (azul) apenas no intervalo `(0, 1)`, comprovando o resultado obtido anteriormente." | |
], | |
"metadata": { | |
"id": "Qazed26fkJ0y" | |
} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment