Command: heroku pgbackups:capture --remote production
Response: >>> HEROKU_POSTGRESQL_COLOR_URL (DATABASE_URL) ----backup---> a712
Command: heroku pgbackups:url [db_key] --remote production
require 'formula' | |
# some credit to http://github.com/maddox/magick-installer | |
# NOTE please be aware that the GraphicsMagick formula derives this formula | |
def ghostscript_srsly? | |
ARGV.include? '--with-ghostscript' | |
end | |
def x11? |
from celery import chain | |
from django.core.management.base import BaseCommand | |
from . import tasks | |
class Command(BaseCommand): | |
def handle(self, *args, **kwargs): |
var MyModel = Backbone.Model.extend({ | |
someMethod: function(opts) { | |
var url = this.url() + '/someMethod', | |
// note that these are just $.ajax() options | |
options = { | |
url: url, | |
type: 'POST' | |
}; | |
// add any additional options, e.g. a "success" callback or data |
#!/usr/bin/env bash | |
# This script prints out all of your Redis keys and their size in a human readable format | |
# Copyright 2013 Brent O'Connor | |
# License: http://www.apache.org/licenses/LICENSE-2.0 | |
human_size() { | |
awk -v sum="$1" ' BEGIN {hum[1024^3]="Gb"; hum[1024^2]="Mb"; hum[1024]="Kb"; for (x=1024^3; x>=1024; x/=1024) { if (sum>=x) { printf "%.2f %s\n",sum/x,hum[x]; break; } } if (sum<1024) print "1kb"; } ' | |
} |
require 'fiddle' | |
module Python | |
def __class__= k | |
value = _wrap self | |
[k.object_id<<1].pack('Q').unpack('C8').each_with_index {|n,i|value[i+8]=n} | |
end | |
def _wrap klass; Fiddle::Pointer.new Fiddle.dlwrap klass; end | |
end |
# (C) Mathieu Blondel, November 2013 | |
# License: BSD 3 clause | |
import numpy as np | |
def ranking_precision_score(y_true, y_score, k=10): | |
"""Precision at rank k | |
Parameters |
from functools import reduce | |
from itertools import groupby | |
def reduceByKey(func, iterable): | |
"""Reduce by key. | |
Equivalent to the Spark counterpart | |
Inspired by http://stackoverflow.com/q/33648581/554319 |
# Run some recommendation experiments using MovieLens 100K | |
import pandas | |
import numpy | |
import scipy.sparse | |
import scipy.sparse.linalg | |
import matplotlib.pyplot as plt | |
from sklearn.metrics import mean_absolute_error | |
data_dir = "data/ml-100k/" | |
data_shape = (943, 1682) |
# Assumes the database container is named 'db' | |
DOCKER_DB_NAME="$(docker-compose ps -q db)" | |
DB_HOSTNAME=db | |
DB_USER=postgres | |
LOCAL_DUMP_PATH="path/to/local.dump" | |
docker-compose up -d db | |
docker exec -i "${DOCKER_DB_NAME}" pg_restore -C --clean --no-acl --no-owner -U "${DB_USER}" -d "${DB_HOSTNAME}" < "${LOCAL_DUMP_PATH}" | |
docker-compose stop db |