parser_prompt = f""" You are an intelligent resume parser for the HR department. Read the raw CV text delimited by <<< and >>>, then return a single valid JSON objectโno markdown, no commentary.
<<< {text}
Schema to follow exactly:
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import torchvision | |
import torchvision.transforms as transforms | |
from torch.optim.lr_scheduler import ReduceLROnPlateau | |
from torch.utils.data import random_split, DataLoader | |
from multiprocessing import freeze_support | |
def main(): |
#!/bin/bash | |
RED='\033[0;31m' | |
GREEN='\033[0;32m' | |
YELLOW='\033[1;33m' | |
BLUE='\033[0;34m' | |
BOLD='\033[1m' | |
NC='\033[0m' | |
get_size() { |
/Users/ehza/github-repos/codex/codex-cli/src % codex โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ โ โ OpenAI Codex (research preview) v0.1.2505161800 โ โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ โ localhost session: 418d11041cca40b98b5a1af28f8ac734 โ โ โณ workdir: ~/github-repos/codex/codex-cli/src โ โ โณ model: codex-mini-latest โ โ โณ provider: openai โ
Understood. I will dig into GitHub repositories specifically, focusing on open-source tools, frameworks, and agentic workflows that assist or enable migrating, refactoring, or transpiling full PHP codebases into Node.js (JavaScript/TypeScript). I will prioritize actively maintained projects, note their adaptability, and include any AST parser, LLM-driven agent frameworks, or hybrid systems that are directly relevant. I'll synthesize the findings into a detailed, no-nonsense report with practical guidance on applicability and readiness levels.
Migrating a large PHP codebase to Node.js is a complex task. No turnkey solution exists, but several open-source projects and frameworks can help automate pieces of the process. We categorize these into AST parsers and analyzers, code transpilers and generators, LLM-assisted migration tools, and agentic framework kits. For each, we note capabilities, limitations, and adaptation effort, focu
#!/usr/bin/env python3 | |
import asyncio | |
import aiohttp | |
import json | |
import time | |
import argparse | |
import os | |
import sys | |
import logging | |
from typing import Dict, Any, Optional, List, Text |
#!/usr/bin/env python3 | |
""" | |
Bengali Emotion Dataset Creator | |
This script creates a Hugging Face dataset from Bengali WAV files and their transcriptions. | |
It processes audio files, maps them with transcripts from a CSV file, and uploads | |
the dataset to the Hugging Face Hub. | |
Requirements: | |
- pandas |
-- [email protected]; email me to say hi or if there are any questions | |
vim.g.mapleader = ' ' | |
vim.g.maplocalleader = ' ' | |
-- Install package manager | |
local lazypath = vim.fn.stdpath 'data' .. '/lazy/lazy.nvim' | |
if not vim.loop.fs_stat(lazypath) then | |
vim.fn.system { | |
'git', 'clone', | |
'--filter=blob:none', |
#!/usr/bin/env python3 | |
import socket | |
import requests | |
import concurrent.futures | |
import time | |
import sys | |
from urllib.parse import urlparse | |
from dataclasses import dataclass | |
from typing import List, Tuple | |
import subprocess |