parser_prompt = f""" You are an intelligent resume parser for the HR department. Read the raw CV text delimited by <<< and >>>, then return a single valid JSON objectโno markdown, no commentary.
<<< {text}
Schema to follow exactly:
| import re | |
| from typing import Any, Text, Dict, List | |
| bn_num_string = [ | |
| 'เฆถเงเฆจเงเฆฏ', 'เฆเฆ', 'เฆฆเงเฆ', 'เฆคเฆฟเฆจ', 'เฆเฆพเฆฐ', 'เฆชเฆพเฆเฆ', 'เฆเฆฏเฆผ', 'เฆธเฆพเฆค', 'เฆเฆ', 'เฆจเฆฏเฆผ', 'เฆฆเฆถ', 'เฆเฆเฆพเฆฐเง', 'เฆฌเฆพเฆฐเง', \ | |
| 'เฆคเงเฆฐเง', 'เฆเงเฆฆเงเฆฆ', 'เฆชเฆจเงเฆฐเง', 'เฆทเงเฆฒเง', 'เฆธเฆคเงเฆฐเง', 'เฆเฆ เฆพเฆฐเง', 'เฆเฆจเฆฟเฆถ','เฆฌเฆฟเฆถ','เฆเฆเงเฆถ', 'เฆฌเฆพเฆเฆถ', 'เฆคเงเฆเฆถ', 'เฆเฆฌเงเฆฌเฆฟเฆถ', 'เฆชเฆเฆเฆฟเฆถ', 'เฆเฆพเฆฌเงเฆฌเฆฟเฆถ', \ | |
| 'เฆธเฆพเฆคเฆพเฆถ', 'เฆเฆ เฆพเฆถ', 'เฆเฆจเงเฆคเฆฟเฆฐเฆฟเฆถ', 'เฆคเฆฟเฆฐเฆฟเฆถ', 'เฆเฆเฆคเฆฟเฆฐเฆฟเฆถ', 'เฆฌเฆคเฆฟเฆฐเฆฟเฆถ', 'เฆคเงเฆคเฆฟเฆฐเฆฟเฆถ', 'เฆเงเฆคเฆฟเฆฐเฆฟเฆถ', 'เฆชเฆเฆฏเฆผเฆคเฆฟเฆฐเฆฟเฆถ', 'เฆเฆคเฆฟเฆฐเฆฟเฆถ', 'เฆธเฆพเฆเฆเฆคเฆฟเฆฐเฆฟเฆถ', 'เฆเฆเฆคเฆฟเฆฐเฆฟเฆถ', 'เฆเฆจเงเฆเฆฒเงเฆฒเฆฟเฆถ',\ | |
| 'เฆเฆฒเงเฆฒเฆฟเฆถ','เฆเฆเฆเฆฒเงเฆฒเฆฟเฆถ', 'เฆฌเฆฟเฆฏเฆผเฆพเฆฒเงเฆฒเฆฟเฆถ', 'เฆคเงเฆคเฆพเฆฒเงเฆฒเฆฟเฆถ', 'เฆเงเฆฏเฆผเฆพเฆฒเงเฆฒเฆฟเฆถ', 'เฆชเฆเฆฏเฆผเฆคเฆพเฆฒเงเฆฒเฆฟเฆถ', 'เฆเงเฆเฆฒเงเฆฒเฆฟเฆถ', 'เฆธเฆพเฆคเฆเฆฒเงเฆฒเฆฟเฆถ', 'เฆเฆเฆเฆฒเงเฆฒเฆฟเฆถ', 'เฆเฆจเงเฆชเฆเงเฆเฆพเฆถ', 'เฆชเฆเงเฆเฆพเฆถ', 'เฆเฆเฆพเฆจเงเฆจ',\ | |
| 'เฆฌเฆพเฆนเฆพเฆจเงเฆจ', 'เฆคเฆฟเฆชเงเฆชเฆพเฆจเงเฆจ', 'เฆเงเฆฏเฆผเฆพเฆจเงเฆจ', 'เฆชเฆเงเฆเฆพเฆจเงเฆจ', 'เฆเฆพเฆชเงเฆชเฆพเฆจเงเฆจ', 'เฆธเฆพเฆคเฆพเฆจเงเฆจ', 'เฆเฆเฆพเฆจเงเฆจ', 'เฆเฆจเงเฆทเฆพเฆ','เฆทเฆพเฆ','เฆเฆเฆทเฆเงเฆเฆฟ', 'เฆฌเฆพเฆทเฆเงเฆเฆฟ', 'เฆคเงเฆทเฆเงเฆเฆฟ', 'เฆเงเฆทเฆเงเฆเฆฟ', 'เฆชเฆเฆฏเฆผเฆทเฆเงเฆเฆฟ', \ |
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| import torchvision | |
| import torchvision.transforms as transforms | |
| from torch.optim.lr_scheduler import ReduceLROnPlateau | |
| from torch.utils.data import random_split, DataLoader | |
| from multiprocessing import freeze_support | |
| def main(): |
| #!/bin/bash | |
| RED='\033[0;31m' | |
| GREEN='\033[0;32m' | |
| YELLOW='\033[1;33m' | |
| BLUE='\033[0;34m' | |
| BOLD='\033[1m' | |
| NC='\033[0m' | |
| get_size() { |
/Users/ehza/github-repos/codex/codex-cli/src % codex โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ โ โ OpenAI Codex (research preview) v0.1.2505161800 โ โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ โ localhost session: 418d11041cca40b98b5a1af28f8ac734 โ โ โณ workdir: ~/github-repos/codex/codex-cli/src โ โ โณ model: codex-mini-latest โ โ โณ provider: openai โ
Understood. I will dig into GitHub repositories specifically, focusing on open-source tools, frameworks, and agentic workflows that assist or enable migrating, refactoring, or transpiling full PHP codebases into Node.js (JavaScript/TypeScript). I will prioritize actively maintained projects, note their adaptability, and include any AST parser, LLM-driven agent frameworks, or hybrid systems that are directly relevant. I'll synthesize the findings into a detailed, no-nonsense report with practical guidance on applicability and readiness levels.
Migrating a large PHP codebase to Node.js is a complex task. No turnkey solution exists, but several open-source projects and frameworks can help automate pieces of the process. We categorize these into AST parsers and analyzers, code transpilers and generators, LLM-assisted migration tools, and agentic framework kits. For each, we note capabilities, limitations, and adaptation effort, focu
| #!/usr/bin/env python3 | |
| import asyncio | |
| import aiohttp | |
| import json | |
| import time | |
| import argparse | |
| import os | |
| import sys | |
| import logging | |
| from typing import Dict, Any, Optional, List, Text |
| #!/usr/bin/env python3 | |
| """ | |
| Bengali Emotion Dataset Creator | |
| This script creates a Hugging Face dataset from Bengali WAV files and their transcriptions. | |
| It processes audio files, maps them with transcripts from a CSV file, and uploads | |
| the dataset to the Hugging Face Hub. | |
| Requirements: | |
| - pandas |
| -- [email protected]; email me to say hi or if there are any questions | |
| vim.g.mapleader = ' ' | |
| vim.g.maplocalleader = ' ' | |
| -- Install package manager | |
| local lazypath = vim.fn.stdpath 'data' .. '/lazy/lazy.nvim' | |
| if not vim.loop.fs_stat(lazypath) then | |
| vim.fn.system { | |
| 'git', 'clone', | |
| '--filter=blob:none', |