Skip to content

Instantly share code, notes, and snippets.

@eileen-code4fun
eileen-code4fun / cifar10_hpt_model.py
Last active May 28, 2021 13:04
CIFAR10 HPT Model
from tensorflow.keras import layers, models, losses
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', dest='epochs', type=int, default=5)
parser.add_argument('--dropout_rate', dest='dropout_rate', type=float, default=0.1)
args = parser.parse_args()
def create_model():
import tensorflow as tf
import hypertune
hpt = hypertune.HyperTune()
class CustomCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
hpt.report_hyperparameter_tuning_metric(
hyperparameter_metric_tag='val_accuracy',
metric_value=logs['val_accuracy'],
@eileen-code4fun
eileen-code4fun / cifar10_hpt.yaml
Last active February 18, 2023 00:15
CIFAR10 HPT Config
studySpec:
metrics:
# Correspond to the metrics we use the hypertune library to report.
- metricId: val_accuracy
goal: MAXIMIZE
parameters:
# Correspond to the command line argument our Python code expects.
- parameterId: dropout_rate
doubleValueSpec:
minValue: 0.01
import os
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=os.environ['AIP_TENSORBOARD_LOG_DIR'],
histogram_freq=1
)
model.fit(train_dataset, epochs=args.epochs, validation_data=val_dataset, callbacks=[tensorboard_callback])
{
"displayName": "e2e-tutorial-viz",
"jobSpec": {
"workerPoolSpecs": [
{
"replicaCount": 1,
"machineSpec": {
"machineType": "n1-standard-4",
"acceleratorType": "NVIDIA_TESLA_V100",
"acceleratorCount": 2
@eileen-code4fun
eileen-code4fun / cifar10_ol_pred.py
Last active May 28, 2021 17:54
CIFAR10 OL Pred
import tensorflow as tf
from tensorflow.keras import datasets
import matplotlib.pyplot as plt
_, (test_images, test_labels) = datasets.cifar10.load_data()
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
plt.xticks([])
plt.yticks([])
plt.title(class_names[test_labels[0][0]])
import json
data = {
"instances": [
(test_images[0]/255.0).tolist()
]
}
print(json.dumps(data), file=open('prediction_request.json', 'w'))
{
"inputs": {
"image": {
"inputTensorName": "conv2d_input",
"modality": "image"
}
},
"outputs": {
"explanation": {
"outputTensorName": "dense_1"
import base64
import io
attr_map = tf.io.decode_jpeg(base64.b64decode(BASE64_JPEG_DATA))
plt.subplot(1, 2, 1)
plt.xticks([])
plt.yticks([])
plt.title(class_names[test_labels[0][0]])
plt.imshow(test_images[0])
plt.xticks([])
@eileen-code4fun
eileen-code4fun / cifar10_automl.py
Last active May 31, 2021 14:13
CIFAR10 AutoML
import tensorflow as tf
import tensorflow_datasets as tfds
cifar10 = tfds.load('cifar10', as_supervised=True)
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
def save_images_write_metadata(dataset, purpose, mf):
i = 1
for image, label in dataset:
fn = '{}_{}.jpeg'.format(purpose, i)