Created
April 11, 2021 13:05
-
-
Save eldadcohen1/ffd668268beeca920d692304007f41ce to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.7-final" | |
}, | |
"orig_nbformat": 2, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3.7.7 64-bit ('streamz': pipenv)", | |
"metadata": { | |
"interpreter": { | |
"hash": "b85b4cc3b9c9728aed8495a435dff41b758379143e0bed7a56d08d2a2e37def0" | |
} | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2, | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from dask.distributed import Client\n", | |
"client = Client()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from streamz import Stream\n", | |
"stream = Stream()\n", | |
"dstream = stream.scatter()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from streamz.dataframe import Aggregation\n", | |
"\n", | |
"class Mean(Aggregation):\n", | |
" def initial(self, new):\n", | |
" state = new.iloc[:0].sum(), new.iloc[:0].count()\n", | |
" return state\n", | |
"\n", | |
" def on_new(self, state, new):\n", | |
" total, count = state\n", | |
" total = total + new.sum()\n", | |
" count = count + new.count()\n", | |
" new_state = (total, count)\n", | |
" new_value = total / count\n", | |
" return new_state, new_value\n", | |
"\n", | |
" def on_old(self, state, old):\n", | |
" total, count = state\n", | |
" total = total - old.sum() # switch + for - here\n", | |
" count = count - old.count() # switch + for - here\n", | |
" new_state = (total, count)\n", | |
" new_value = total / count\n", | |
" return new_state, new_value" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "Output()", | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "7442e347b7f64d238260edc061698814" | |
} | |
}, | |
"metadata": {} | |
} | |
], | |
"source": [ | |
"import pandas as pd\n", | |
"from streamz.dataframe import DataFrame\n", | |
"\n", | |
"example = pd.DataFrame({'name': [], 'amount': []})\n", | |
"sdf = DataFrame(dstream, example=example)\n", | |
"\n", | |
"sdf[sdf.name == 'Alice'].amount.sum()\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "Output()", | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "ae8dcb1290d04228a374a57c99380c4f" | |
} | |
}, | |
"metadata": {} | |
} | |
], | |
"source": [ | |
"sdf[sdf.name == 'Alice'].amount.aggregate(Mean())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"stream.emit(example.append({'name' : 'Alice' , 'amount':1},ignore_index=True))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment