One Paragraph of project description goes here
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.
import sys | |
from keras.models import Model | |
from keras.layers import GlobalAveragePooling2D as GAP2D | |
from keras.layers import concatenate as concat | |
import keras | |
import kapre | |
import librosa | |
import numpy as np |
from os.path import join, basename, splitext | |
import argparse | |
import numpy as np | |
from sklearn.decomposition import PCA | |
import matplotlib.pyplot as plt | |
# setup parser | |
parser = argparse.ArgumentParser() | |
parser.add_argument("X", help="filename of the feature file (`.npy`) to visualize") |
from os.path import join, basename, splitext | |
import argparse | |
import numpy as np | |
from sklearn.ensemble import RandomForestClassifier | |
import matplotlib.pyplot as plt | |
# setup parser | |
parser = argparse.ArgumentParser() | |
parser.add_argument("X", help="filename of the feature file (`.npy`) to visualize") |
from os.path import join, dirname, basename | |
import glob | |
import json | |
import argparse | |
from multiprocessing import Pool | |
import pandas as pd | |
from flatten_json import flatten_json | |
from tqdm import tqdm |
import os | |
import argparse | |
import bibtexparser | |
def read_bibtex(fn): | |
"""Load bib file | |
""" | |
with open(fn) as bibf: |
import os | |
from functools import partial | |
import numpy as np | |
import numba as nb | |
from scipy import sparse as sp | |
from implicit.als import AlternatingLeastSquares | |
from skopt import gp_minimize | |
from skopt.space import Real, Integer |
import math | |
from typing import Callable, Optional | |
from warnings import warn | |
import torch | |
from torch import Tensor | |
from torchaudio import functional as F | |
from torchaudio.compliance import kaldi | |