conda create --name keras
source activate keras
conda install python=3.5 numpy scikit-learn=0.18.1 jupyter matplotlib pip
conda install pandas h5py pillow lxml
To correctly work with Anaconda on Powershell :
C:\Users\elias\Anaconda3> cmd C:\Users\elias\Anaconda3\envs\py35\Scripts\activate.bat C:\Users\elias\Anaconda3\envs\py35\Scripts\activate.bat
Microsoft Windows [Version 10.0.14393]
(c) 2016 Microsoft Corporation. All rights reserved.
import pandas as pd | |
import numpy as np | |
import scipy | |
import scipy.stats as sts | |
import random | |
import pyspark | |
import pyspark.sql.types as stypes | |
import pyspark.sql.functions as sfunctions |
-server | |
-Xms2048m | |
-Xmx2048m | |
-XX:NewSize=512m | |
-XX:MaxNewSize=512m | |
-XX:PermSize=512m | |
-XX:MaxPermSize=512m | |
-XX:+UseParNewGC | |
-XX:ParallelGCThreads=4 | |
-XX:MaxTenuringThreshold=1 |
#!/bin/bash | |
# usage dupes location | |
if [ "$#" -ne 2 ]; then | |
echo "Usage : dupes location type (pdf,gz)" | |
exit | |
fi | |
LOCATION=$(readlink -f $1) |
#!/bin/bash | |
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv E56151BF | |
DISTRO=$(lsb_release -is | tr '[:upper:]' '[:lower:]') | |
CODENAME=$(lsb_release -cs) | |
echo "deb http://repos.mesosphere.io/${DISTRO} ${CODENAME} main" | sudo tee /etc/apt/sources.list.d/mesosphere.list | |
sudo apt-get -y update | |
sudo apt-get -y install mesos marathon |
Hello, I am using linear SVM to train my model and generate a line through my data. However my model always predicts 1 for all the feature examples. Here is my code:
print data_rdd.take(5) [LabeledPoint(1.0, [1.9643,4.5957]), LabeledPoint(1.0, [2.2753,3.8589]), LabeledPoint(1.0, [2.9781,4.5651]), LabeledPoint(1.0, [2.932,3.5519]), LabeledPoint(1.0, [3.5772,2.856])]
from pyspark.mllib.classification import SVMWithSGD from pyspark.mllib.linalg import Vectors from sklearn.svm import SVC
#!/bin/bash | |
sudo yum -y install make | |
sudo yum -y update | |
sudo yum -y install gcc gcc-c++ git | |
git clone https://github.com/dmlc/xgboost --recursive | |
cd xgboost | |
make -j4 | |
cd python-package; sudo python setup.py install | |
export PYTHONPATH=~/xgboost/python-package |
import numpy as np | |
import tensorflow as tf | |
import os | |
from tensorflow.python.platform import gfile | |
import os.path | |
import re | |
import sys | |
import tarfile | |
from subprocess import Popen, PIPE, STDOUT | |
def run(cmd): |
import org.apache.http.client.methods.HttpGet | |
import org.apache.http.impl.client.{BasicResponseHandler, HttpClientBuilder} | |
import org.apache.spark.mllib.fpm.PrefixSpan | |
// sequence database | |
val sequenceDatabase = { | |
val url = "http://www.philippe-fournier-viger.com/spmf/datasets/SIGN.txt" | |
val client = HttpClientBuilder.create().build() | |
val request = new HttpGet(url) | |
val response = client.execute(request) |