I hereby claim:
- I am elijahc on github.
- I am elijahc (https://keybase.io/elijahc) on keybase.
- I have a public key ASDDqd-L1akkOUjZ3DOpJyeZ25SHlZRnhytTalZrdiTQRgo
To claim this, I am signing this object:
I hereby claim:
To claim this, I am signing this object:
import requests | |
import psutil | |
import socket | |
import click | |
import pprint | |
import numpy as np | |
INTERFACES = psutil.net_if_addrs() |
{ | |
"embeddings": [ | |
{ | |
"tensorName": "Objective (xent+recon)", | |
"tensorShape": [ | |
2500, | |
3136 | |
], | |
"tensorPath": "https://gist.githubusercontent.com/elijahc/76c686a8a6d33a0808df871b03813ce7/raw/1272dd1bd3817c5b24f64ff45365130c0d672867/l1_rfs.tsv", | |
"metadataPath": "https://gist.githubusercontent.com/elijahc/76c686a8a6d33a0808df871b03813ce7/raw/36075d4702e9ccbb08236db524ec161d55f73ff1/l1_rfs_meta.tsv", |
I have a workstation behind a VPN at work that I like to remotely access for queuing jobs or data analysis over hosted jupyter notebooks.
Usually I just connect to using the Cisco Anyconnect client but it's caused some headaches.
I want to be able to route to these workstations using the VPN but since they throttle bandwidth use my local gateway for everything else (i.e. looking up docs, streaming spotify etc)
# Configure so you don't need enter passwd for openconnect and kill | |
function vpnsetup() { | |
sudo sh -c 'echo "%admin ALL=(ALL) NOPASSWD: /usr/local/bin/openconnect, /bin/kill" > /etc/sudoers.d/openconnect' | |
} | |
function vpnstart() { | |
gpg --decrypt -a ~/.vpn_pass.gpg 2>/dev/null | sudo openconnect \ | |
--background \ | |
--pid-file="$HOME/.openconnect.pid" \ |
How to install NVIDIA Docker 2 package on Ubuntu and Debian:
If you came to this result (from Google or elsewhere) after realizing that Nvidia-docker's entry on this subject does not result in a working installation, here are the basic steps needed to install this package correctly:
For starters, ensure that you've installed the latest Docker Community edition by following the steps below:
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo apt-key fingerprint 0EBFCD88
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
# Inspired by | |
# http://forums.fast.ai/t/tip-clear-tensorflow-gpu-memory/1979 | |
# https://github.com/tensorflow/tensorflow/issues/1578#issuecomment-200544189 | |
import keras.backend as K | |
def limit_mem(): | |
K.get_session().close() | |
cfg = K.tf.ConfigProto() | |
cfg.gpu_options.allow_growth = True | |
K.set_session(K.tf.Session(config=cfg)) |
ffmpeg -r 24 -pattern_type glob -i '*.JPG' -i DSC_%04d.JPG -s hd1080 -vcodec libx264 timelapse.mp4
-r 24
- output frame rate-pattern_type glob -i '*.JPG'
- all JPG files in the current directory-i DSC_%04d.JPG
- e.g. DSC_0397.JPG-s hd1080
- 1920x1080 resolutionACTION=="add" | |
KERNEL=="sd?1", \ | |
ATTRS{busnum}=="3", \ | |
ATTRS{devpath}=="2", \ | |
ENV{mount_point}=df "$env{DEVNAME}" | tail -1 | awk '{ print $6}' | |
SYMLINK+="bak_src", \ | |
RUN+="/bin/rm /media/bak_src", RUN+="/bin/ln -s $env{mount_point} /media/bak_src" | |
ACTION=="remove" | |
KERNEL=="sd?1", \ |