Skip to content

Instantly share code, notes, and snippets.

@emiliom
Created December 15, 2013 18:20
Show Gist options
  • Save emiliom/7976282 to your computer and use it in GitHub Desktop.
Save emiliom/7976282 to your computer and use it in GitHub Desktop.
#GlobalNEWS #Rivers #python Accessing NEWS scenarios raw csv input and output files. Amazon basin example. Plot trajectories (1970-2050) for chosen variables and scenario. Emilio Mayorga, 12/15/2013
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "NEWS_trajectories"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Accessing NEWS scenarios raw csv input and output files. Amazon basin example.\n",
"Plot trajectories (1970-2050) for chosen variables and scenario. Emilio Mayorga, 12/15/2013"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import os\n",
"import pandas as pd"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# file path location of input nd output csv files\n",
"pth = \"/usr/mayorgadat/gnews_n_drv/newsmodel/MAscenarios/NEWSruns\"\n",
"subdirs = {'NEWSOutput': 'run5/output', \n",
" 'disch_fqrem_reservret_ng': 'run4/inputs/preproctbls'}"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Scenario information and utilities to access the input-output csv files and read the data into Pandas data frames.\n",
"Scenario codes used in file and variable names."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"scenyr = {'c7':1970, 'c0':2000, 'g3':2030, 'g5':2050}\n",
"scen = scenyr.keys()\n",
"\n",
"def scen_varname_dict(varlst, sc):\n",
" out_dct = {}\n",
" for var in varlst:\n",
" out_dct.update({sc+var: var})\n",
" return out_dct"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For one data file, specifiy the desired variables as a list. Read all years (for 2030 & 2050, currently it's hardwired to read only the GO scenario). Get back a Pandas data frame with data for all basins, all years, for the selected variables (plus basinid), and with a couple of additional, useful variables created (year and scenario code). The second function extracts a data frame with data only from the requested basin id."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def create_df(csvbasename, varlst):\n",
" tmpls = []\n",
" for sc in scen:\n",
" col_scen_var_name = scen_varname_dict(varlst, sc)\n",
" colnames_sel = ['basinid'] + col_scen_var_name.keys()\n",
" fname = \"%s0_%s.csv\" % (sc, csvbasename)\n",
" basout = pd.read_csv(os.path.join(pth, subdirs[csvbasename], fname))\n",
" basout = basout[colnames_sel]\n",
" basout.rename(columns=col_scen_var_name, inplace=True)\n",
" basout['year'] = scenyr[sc]\n",
" basout['scenario'] = sc[0]\n",
" tmpls.append(basout)\n",
" return pd.concat(tmpls)\n",
"\n",
"def basinsubset(basall, basinid):\n",
" basdata = basall[basall.basinid == basinid]\n",
" basdata.sort_index(by='year', ascending=True, inplace=True)\n",
" return basdata"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### For the Amazon basin (basinid 1), examine trajectories in N & P nutrient form yields and reservoir retention factors.\n",
"First pull the data for all basins, then for the Amazon only, then plot and list as data tables these trajectories for the Amazon."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"basoutputall_npyld = create_df('NEWSOutput', ['DINyld','DONyld','PNyld', 'DIPyld','DOPyld','PPyld'])\n",
"basoutputall_npyld['TNyld'] = basoutputall_npyld.DINyld + basoutputall_npyld.DONyld + basoutputall_npyld.PNyld\n",
"basoutputall_npyld['TPyld'] = basoutputall_npyld.DIPyld + basoutputall_npyld.DOPyld + basoutputall_npyld.PPyld\n",
"\n",
"basinputall_dam = create_df('disch_fqrem_reservret_ng', ['Ddin0to1', 'Ddip0to1', 'Dsed0to1'])"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"basoutput_1_npyld = basinsubset(basoutputall_npyld, 1)\n",
"basinput_1_dam = basinsubset(basinputall_dam, 1)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"fig = figure(figsize=(18,5), dpi=100)\n",
"\n",
"ax1 = fig.add_subplot(131)\n",
"bastmp = basoutput_1_npyld\n",
"ax1.plot(bastmp.year, bastmp.DINyld)\n",
"ax1.plot(bastmp.year, bastmp.DONyld)\n",
"ax1.plot(bastmp.year, bastmp.PNyld)\n",
"ax1.legend(['DIN', 'DON', 'PN'])\n",
"ax1.set_ylabel('N form yield (kg N/km2/yr)')\n",
"\n",
"ax2 = fig.add_subplot(132)\n",
"bastmp = basoutput_1_npyld\n",
"ax2.plot(bastmp.year, bastmp.DIPyld)\n",
"ax2.plot(bastmp.year, bastmp.DOPyld)\n",
"ax2.plot(bastmp.year, bastmp.PPyld)\n",
"ax2.legend(['DIP', 'DOP', 'PP'])\n",
"ax2.set_ylabel('P form yield (kg P/km2/yr)')\n",
"\n",
"ax3 = fig.add_subplot(133)\n",
"bastmp = basinput_1_dam\n",
"ax3.plot(bastmp.year, bastmp.Ddin0to1)\n",
"ax3.plot(bastmp.year, bastmp.Ddip0to1)\n",
"ax3.plot(bastmp.year, bastmp.Dsed0to1)\n",
"ax3.legend(['Ddin', 'Ddip', 'Dsed'])\n",
"ax3.set_ylabel('Reservoir Retention Factor (0-1)')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 7,
"text": [
"<matplotlib.text.Text at 0x495fd90>"
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAABCsAAAE1CAYAAADOL2odAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVPX6wPHPDCCIsYqCsoiGK+K+b5fcUEuuae6VuaVm\naldN614rtUWt7F6L/GXlml6XbNEMrWuJmgm4lSiaKwgouAAKgrLN748TAyMgpDNzBuZ5v17nJXPO\nmTnPlxfn8fDwXTQ6nU6HEEIIIYQQQgghhIXQqh2AEEIIIYQQQgghRHFSrBBCCCGEEEIIIYRFkWKF\nEEIIIYQQQgghLIoUK4QQQgghhBBCCGFRpFghhBBCCCGEEEIIiyLFCiGEEEIIIYQQQlgUkxUr7ty5\nQ8eOHWnVqhXNmjXj1VdfBSA1NZU+ffrQqFEj+vbtS3p6uv49ixYtomHDhjRp0oQff/zRVKEJIYTV\nGDduHJ6engQFBZU4tnTpUrRaLampqfp9koeFEOLh7dq1iyZNmtCwYUOWLFlS6jnTp0+nYcOGtGzZ\nkmPHjun3L1q0iMDAQIKCghg1ahR37941V9hCCGFRTFascHBwYM+ePfz2228cP36cPXv28Msvv7B4\n8WL69OnDmTNn6NWrF4sXLwYgNjaWzZs3Exsby65du3jhhRcoKCgwVXhCCGEVxo4dy65du0rsT0hI\n4H//+x/16tXT75M8LIQQDy8/P58XX3yRXbt2ERsby8aNGzl16pTBOeHh4Zw7d46zZ8/y6aefMmXK\nFADi4uL47LPPOHr0KDExMeTn57Np0yY1miGEEKoz6TAQR0dHAHJycsjPz8fNzY3t27czZswYAMaM\nGcO3334LwLZt2xg5ciR2dnb4+/sTEBBAdHS0KcMTQogqr3v37ri5uZXYP3PmTN59912DfZKHhRDi\n4UVHRxMQEIC/vz92dnaMGDGCbdu2GZxT/Hm4Y8eOpKenk5KSgrOzM3Z2dmRlZZGXl0dWVhbe3t5q\nNEMIIVRna8oPLygooE2bNpw/f54pU6YQGBhISkoKnp6eAHh6epKSkgLA5cuX6dSpk/69Pj4+JCUl\nGXyeRqMxZbhCCPHAdDqd2iFU2LZt2/Dx8aFFixYG+yUPCyEqO0vIxUlJSfj6+upf+/j4EBUVVe45\nSUlJtGnThlmzZuHn50f16tUJCQmhd+/eJa4huVgIYamMmYdN2rNCq9Xy22+/kZiYyL59+9izZ4/B\ncY1Gc99kW9oxXWoqOp3OYrY33nhD9RgkpqoRk6XFIzFVfKtMsrKyeOedd1iwYIF+3/3aUGoetoDv\nuaX/TEhMEpPEZP7NUlS0kFBazOfPn+c///kPcXFxXL58mczMTDZs2FDm+y1ps8SfCYmpcsZkafFI\nTBXfjM0sq4G4uLjw+OOPc+TIETw9PUlOTgbgypUr1K5dGwBvb28SEhL070lMTCy925ufHzRpAs89\nB//3f3DsGOTlmaMZQghR6Z0/f564uDhatmxJ/fr1SUxMpG3btqSkpFQ8DwshhCjTvbk0ISEBHx+f\n+55TmG8PHz5Mly5dqFmzJra2tgwePJhff/3VbLELIYQlMVmx4vr16/qVPrKzs/nf//5H69atCQ0N\nZe3atQCsXbuWQYMGARAaGsqmTZvIycnh4sWLnD17lg4dOpT84LQ02LIFunSBw4fh6afBzQ169IA5\nc+Drr+GebstCCCEUQUFBpKSkcPHiRS5evIiPjw9Hjx7F09Oz4nlYCCFEmdq1a8fZs2eJi4sjJyeH\nzZs3ExoaanBOaGgo69atAyAyMhJXV1c8PT1p3LgxkZGRZGdno9Pp2L17N82aNVOjGUIIoTqTzVlx\n5coVxowZQ0FBAQUFBTzzzDP06tWL1q1bM2zYMFauXIm/vz9btmwBoFmzZgwbNoxmzZpha2vL8uXL\nS+9GZ2sLLVoo2/PPK/tu3oRDhyAyElatgkmTwMEBOnWCjh2Vf9u0gT8n/DSm4OBgo3/mw5KYKsbS\nYrK0eEBiqgpGjhzJ3r17uXHjBr6+vixcuJCxY8fqjxfPsxXOwxbGEn8mJKaKkZgqRmKqXGxtbQkL\nCyMkJIT8/HzGjx9P06ZNWbFiBQCTJk1iwIABhIeHExAQQI0aNVi9ejUArVq14tlnn6Vdu3ZotVra\ntGnD84XPuxbOEn8mJKaKsbSYLC0ekJjUotGZYnCJiWg0moqNhdHp4MIFpXgRFaX8e/KkMnykeAGj\nYUOoBA/iQgjLVuHcVAVYU1uFEJWLNeUna2qrEKLyMHZuqprFitLcuaPMb1G8gJGRAR06FBUwOnQA\nd3fjBi1EJebu7k5aWpraYVgMNzc3UlNTS+y3podGa2qrEJZCcrEhycXW1VYh1CK5t2zmysPWU6wo\nTXJyUeEiMhKOHIG6dYt6XnTqBEFBytATIayQPAwZKuv7YU3fJ2tqqxCWQu47Q5KLrautQqhF7rOy\nmSsPW3ex4l75+cpwkeK9L+LjlfkuihcwZHZ8YSUkSRuSB2TraqsQlkLuO0OSi62rrUKoRe6zskmx\nohSq/MAUn7yzsIBhb28490XbtiaZvFMItUmSNiQPyNbVViEshdx3hiQXW1dbhVCL3Gdlk2JFKSzi\nB6Zw8s7iw0dOnoTGjYt6XnTsqEzeqTXZyrBCmIVF3HMWRB6QrautQlgKue8MSS62rrYKoRa5z8om\nxYpSWOwPTOHkncULGLduKUWLwt4XMnmnqIQs9p5TiTwgW1dbhbAUct8ZklxsXW0VQi1V6T5bs2YN\nK1euZP/+/QA4OTkRExODv7//A32eufKw/OnfGBwcoHNneOkl2LQJ4uIgNhYmT4a7d+Hdd8HfX+l9\nMWYMLF8OR49Cbq7akQtRafn7++Po6IizszNubm507dqVFStW6BPkc889x2uvvQZAXFwcWq2Wxx9/\n3OAznn76aRYsWGD22IUQoqp4kFzs5OSEk5MT9evXZ8mSJWqGL4QQlVJ5ubc8GRkZD1yoMCdZ5sJU\nvLzg739XNiiavLOw98XHHyuTd7ZubTh8xMdH3biFqCQ0Gg07duygZ8+eZGRkEBERwYwZM4iKimLV\nqlVoNBo0Go3Be6Kjozl48CCdO3fWf8a95wghhKi4B8nFN2/eRKvVEhkZSa9evWjVqhUhISEqtUAI\nISqf8nKvKkzQC0V6VpiLjQ20aAETJ8LKlUrhIikJ3ngDXFxgzRqlcOHjA0OGwHvvwf79kJWlduRC\nWDwnJycGDhzI5s2bWbt2LSdPngQoUV2eM2cO//rXvwz2VZXufUIIobaK5uJCnTp1IjAwUH+eEEKI\nv+7e3BsbG8uNGzcIDQ3FxcWFjh07cv78eYP3aLVaLly4ACg94KZOncoTTzyBs7MznTp10h/7Sz75\nxBjNMSDFCjW5uEDv3jBvHnz3HVy9Cvv2KcWKhASYPRs8PJSlU194AdauhT/+gIICtSMXwiK1b98e\nHx8f/Xi8e02ZMoUzZ87w008/mTkyIYSwHuXlYp1Oh06n48CBA5w8eZLWrVubOUIhhKh6CnPvvn37\nmDp1Ko6OjiQnJ7Nq1SpWr159397EmzdvZv78+aSlpREQEFDij3vl+vVXmD//4RpQChkGYkk0GmjQ\nQNlGjVL2FZ+8c+dOpSfGzZtFE3cWTuIpk3cKFRhrBIUxOzfUrVuX1NTUUo85Ojryr3/9i3nz5tGr\nVy/jXVQIIVRmjHxsrlzs4eGBRqPBy8uLJUuW8NhjjxnvwkIIYSaW/Bz89ddfc+LECapXr05gYCBj\nxoxh3759pb5Ho9EwePBg2rVrB8Do0aOZOXNmxS965QoMGwarV8M988M9LClWWLrCyTv/HGMPQHKy\nUryIilKGixw+DHXqFBUwOnWCoCCws1MvbmEVLHEERVJSEu73Kd6NHz+e9957jx07dpgxKiGEMC1L\ny8f3y8U3btxAK8u7CyEqOUvLu6DkXq1WS15eHr6+vvr9fn5+932fp6en/uvq1auTmZlZsQvm5MDQ\nofD88zBgwAPFfD/yP0VlVDh55zvvwM8/Q1oabN0K3bvDkSPw7LPg5qa8nj1bOZaYqHbUQpjcoUOH\nSEpKonv37mWeU61aNd544w1ee+01ma9CCCFMoCK5WAghhHEV5t4BAwZga2vLpUuX9MeKf21Us2cr\nv3fOm2eSj5diRVVgY6P0pCicvPPECWXyzvnzlR+etWuVeS+8vYsm79y3D27fVjtyIR5KYbHh1q1b\n7Nixg5EjR/LMM88QGBh430LEM888w507d9i1a5esBiKEEA/pQXOxEEKIB1dW7m3RogWDBw9m/vz5\nZGdnExsby9q1a8v9nL/siy+UaQq++AJM1FtOhoFUVS4u0KuXsoHST+niRWXZ1KgopbdFTAw0aWI4\n/0WjRib7YRPC2AYOHIitrS1arZbAwEBmzZrF5MmTgZLLkhb/WqvVsnDhQkaMGGH2mIUQoqp50Fws\nhBDiwd0v94aFhTF27Fi8vLxo2rQp48aNIyIiQv/ee/Pyvbm5Qrl65kzYswdcXY3SntJodJWo5K3R\naKRCb0x37sBvvykFjMIiRnp60aSdnTpBhw5Qs6bakQqVyD1nqKzvhzV9n6yprUJYCrnvDEkutq62\nCqEWuc/KptFo0G3aBMOH6/fdybtDdbvqRv2eSbFCGCo+eWdkpDJ5p5dXUc+LTp2gRQuZvNNKyD1n\nSB6QrautQlgKue8MSS62rrYKoRa5z8p27/fmTt4dntz8JLue3iXFCmFG+fkQG1vU8yIyEuLioFWr\nopVHOnYEHx/jrd8jLIbcc4bkAdm62iqEpZD7zpDkYutqqxBqkfusbMW/N3fz7jJkyxCq21Vn67Ct\nUqwQKrt1Cw4dMhw+Ymdn2PuibVuoUUPtSMVDknvOkDwg/9nWGzeUyXulQCmEWVhTjqkIycXW1VYh\n1CL3WdkKvzc5+TkM/XIoNhobNj+1mWq21aRYISxM4eSdhT0vIiOVyTsbNzYsYMjknZWO3HOG5AH5\nz7Y6OyuFigYNlK1+/aKvGzSAevWgWjW1QxWiyrCmHFMRkoutq61CqEXus7JpNBpy8nIYvnU4+bp8\nvhz6JdVsqhn9eybFCmEaxSfvLCxipKYqS6i2a1e0NWggf521YHLPGZIH5D/bWlAAaWlw4ULpW1KS\nMtdN8QJG8c3DQ+57If4Ca8oxFSG52LraKoRa5D4rm0aj4aktT5Gdm81Xw77C3tZev1+KFaJyun4d\njhxRJu0s3G7fVoaMtG9fVMDw9ZVfZCyE3HOG5AG5gm3NzYWEBKVwcfFiyWJGTk7pPTIaNAB/f3Bw\nMEtbhKgsrCnHVITkYutqqxBqkfusbBqNhn7r+/HN8G9wsHUw2C/FClF1JCcbFjAOHYKCAsPeF+3a\nQd26akdqleSeMyQPyEZqa3p66UWMCxfg0iWoVavsXhmenlLMFFbHmnJMRUgutq62CqEWuc/KptFo\nyMrJorpd9RL7pVghqi6dTulCXrz3xeHDyvj3ewsYtWurHW2VJ/ecIXlANkNb8/MhMbGoeHFvUeP2\n7aIeGff2zKhfHxwdTRebECqxphxTEZKLrautQqhF7rOymSsPS7FCWD6dDuLjSxYwXFwMixdt24K7\nu9rRVilyzxmSB2QLaGtGRtm9MuLilFVKyuqVUaeOTPIrKiXV7zsLI7nYutoqhFqq0n22Zs0aVq5c\nyf79+wFwcnIiJiYGf3//B/o8c+VheWoTlk+jUcaxP/UULF4Mu3crk3X+9BMMHQo3bsDbbyvnPPoo\nDB8O770He/bAzZtqRy9MxN/fH0dHR5ydnXFzc6Nr166sWLHCIEH++uuv9OzZE2dnZ1xdXQkNDeXU\nqVP64xEREWi1WqZOnWrw2d26dWPt2rVma4v4C5ycoEULGDQIZs6EsDAID4fTpyErSxlKtmgR9Oql\nnL97N7zyilLQrFEDmjaFxx+HadPg3/+Gb7+F48eVIogQ4i8zZi52cnLC2dmZJk2asGbNGhVaI4QQ\nlUNFcu/9ZGRkPHChwpykWCEqJ60WAgJgxAh4/32IiFBWJ9ixA554QulGPm8eeHsrS6iOHq38YrJ/\nP2Rmqh29MAKNRsOOHTu4desWly5d4pVXXmHJkiWMHz8egIMHDxISEsKTTz7JlStXuHjxIi1btqRr\n165cvHhR/zk1atRg/fr1xMfHG3y2RuZFqHy0WvDxgR494LnnYMEC+OILOHAArlxRJvnduhUmT1by\nR1wcrFwJI0cqc2HUrq0sszxqlJI/Vq1ScsulS8rwFCFECcbKxd7e3mRkZHDr1i2WLFnCxIkTDQoa\nlc2uXbto0qQJDRs2ZMmSJaWeM336dBo2bEjLli05duwYAH/88QetW7fWby4uLnz44YfmDF0IUQmU\nl3urChkGIqq2vDw4dcpw+MiJE8rY9uJDSFq2hOrVy/88K2PJ91z9+vVZuXIlPXv21O87dOgQnTp1\n4vjx40yePJmWLVsSFhZm8L4BAwZQq1Yt1q5dS0REBM888wyDBw8mIyODVatWAdC9e3cmTpzIs88+\na/Be6Xpchduq0ykT/pa1gsn16+DnZzg/RvEhJi4uardAVGGWfN8ZMxcnJCToj9euXZtPPvmEwYMH\nl7impefi/Px8GjduzO7du/H29qZ9+/Zs3LiRpk2b6s8JDw8nLCyM8PBwoqKimDFjBpGRkQafU1BQ\ngLe3N9HR0fj6+hocs5S2ClGVWfJ9dr/cGxMTg6enJ2PHjmXv3r00adKEvn37EhERoR8GotVqOXfu\nHA0aNOC5557DwcGBCxcuEBkZSZs2bVi3bh1+fn5lXt9cedjWaJ8khCWytYWgIGUbO1bZl5MDJ08q\n3cUPH1b+enr6NDRqZFjACAoCe3t14xd/Sfv27fHx8WHv3r0cPHiQt956q8Q5w4YN45///KfBvn/+\n8580atSIV155hUaNGpkrXGFJNBplTos6daBr15LH79xRemIUL2AcOFD0tb192XNl+PoquUgIK/Gg\nuRiUX9C3bdtGeno6QUFB5gjX6KKjowkICNB3sR4xYgTbtm0zKFZs376dMWPGANCxY0fS09NJSUnB\n09NTf87u3bt59NFHSxQqhBCiNIW5d9++fURERODo6EhycjIXLlwgJCSEBg0alPne//73v4SHh9Oh\nQwfmzJnD6NGj9YUNNcnTk7A+1apB69bK9vzzyr47d5Rx64cPQ3Q0LF8O585Bs2ZFxYv27ZXXdnbq\nxm9BNAuMM1RC94bxKrB169bl+vXrFBQUUKdOnRLHvby8uH79usE+T09PJk+ezOuvv86mTZuMFouo\nQhwcoEkTZbuXTgfXrhmuYBIZCf/9r/I6OVkZnnLvyiWFX7u5yXKs4qEZIx+rmYsvX76Mm5sbWq2W\nevXqsX79eho2bGi0eMwpKSnJoMDg4+NDVFRUueckJiYaFCs2bdrEqFGjyrzO/Pnz9V8HBwcTHBz8\n8MELISrMUp+DU1NT+frrrzlx4gTVq1cnMDCQMWPGsG/fvjLf98QTT9CtWzcA3n77bVxcXEhKSsLb\n2/u+14uIiCAiIsJo8d9LihVCgPKLSIcOylYoKwt++00pYOzbBx98oKxK0qKFYQ+MJk3Axka92FVk\nzORqLElJSXh4eKDVarl8+XKJnhJXrlzBw8OjxPvmzJlDQEAAx48fN1eooqrQaJT5LgrnvLjX3bvK\nvBfFe2VERxd9rdGU3SvDz08psApRDkvLx381F9etW9dgGEhlVtE5j+7tKl38fTk5OXz33XdlzncB\nhsUKIYT5WVreBSX3arVa8vLyDAqi5Q3p8PHx0b+uUaMG7u7uXL58udxixb2F0gULFjx48KWQYoUQ\nZXF0hC5dlK3QrVtw7JhSwNi1C956S/mraatWhgWMhg1liUQVHDp0iKSkJHr06EHnzp358ssvS/yl\nacuWLfTu3bvEe2vWrMlLL73EvHnzgJIPkZXVuHHj+P7776lduzYxMTEAvPzyy+zYsYNq1arx6KOP\nsnr1alz+nHNh0aJFrFq1ChsbGz788EP69u2rZvhVg729khNK+yuxTqesblR8royjR5WJQC9cgKQk\nZWhKWb0yPDykV4awOA+Ti6sCb29vg8JLQkKCwS8CpZ2TmJho8EvBzp07adu2LbVq1TJ9wEKIKqEw\n9w4YMIDXX3+dS5cu0bhxYwAuXbpU5vt0Op1BPsrMzCQ1NZW6deuaPObySLFCiL/C2Rn+9jdlK5SW\npvxycfiwsgzivHnKLx9t2hgOIalfX36pMLLCgsKtW7fYt28fL730Es888wzNmzdn8eLFhISE0KRJ\nE5577jny8vJYunQpUVFRHDp0qNTPmzlzJg0aNECn01WZ1UDGjh3LtGnTDCYL7du3L0uWLEGr1fLK\nK6+waNEiFi9eTGxsLJs3byY2NpakpCR69+7NmTNn0ErhzXQ0GqhZU9naty95PDcXEhIMe2V8803R\n17m5ZffKqFdP6TUmhIkZOxdXdu3atePs2bPExcVRt25dNm/ezMaNGw3OCQ0NJSwsjBEjRhAZGYmr\nq6vBEJCNGzcycuRIc4cuhKhEysq9LVq0YPDgwcyfP59Vq1Zx8eJF1q5dS/369cv8rPDwcA4cOED7\n9u157bXX6Ny5c7m9KsxBihVCPCw3N+jVS9kKXb8OR44oBYxNm2D2bLh927D3Rbt2ysR7VeSXYjUM\nHDgQW1tbtFotgYGBzJo1i8mTJwPQtWtXfvjhB+bNm8c///lPtFotPXr04JdffuHRRx/Vf0bxooST\nkxNz5szhlVdeMXtbTKV79+7ExcUZ7OvTp4/+644dO/LVV18BsG3bNkaOHImdnR3+/v4EBAQQHR1N\np9KGNgjzsLMrKj6UJi2tqEfGxYvKakfbtyuvL11ShqYUL2D4+ytFjHr1lKWdZeJPYQTGzsWVna2t\nLWFhYYSEhJCfn8/48eNp2rQpK1asAGDSpEkMGDCA8PBwAgICqFGjBqtXr9a///bt2+zevZvPPvtM\nrSYIISqB++XesLAwxo4di5eXF02bNmXcuHEGc0sUz7kajYZRo0axYMECDh48SNu2bVm/fr25m1Mq\nWbpUCHO5cqWogHH4sLIaiU5XsoBhAV2uCsk9Z8jSl8srS1xcHAMHDtQPAylu4MCBjBw5klGjRjFt\n2jQ6derE6NGjAZgwYQL9+/dnyJAh+vM1Gg1vvPGG/rVM6mbB8vKUYSTFe2VcvKjMvXPpEly9Cl5e\nyrwYhQWM4pufnzIcTqjO0nOMuRV+P+6d2G3BggVW832SnwkhTM9a7rOxY8fi4+PDm2++WeH3yNKl\nQlQ1derAE08oGyiFiqSkouLF8uXKv9WqFQ0dadcO2rZV/joqhJG9/fbbVKtW7b6zzZf2106Z1K2S\nsLUtKjw89ljJ47m5kJioFC8Kt6go+PLLooKGk1PpRYzCr93dpXeYUI2pJ3YTQghrYMkFGSlWCKEW\njUZZztDHBwYNUvbpdMovCYUFjKVLlX9dXAx7X7Rtq/ySIMQDWrNmDeHh4fz000/6feVN+CaqGDs7\nZS6dssawFhQovS8KCxmXLilLOv/0U9G+vLzSixiFW506VrtakhBCCFEZaDQaix2KJ8NAhLB0BQVw\n/nxRAePwYWVCz9q1DQsYbdooRQ0jknvOUFUZBrJr1y5mzZrF3r17DZYOjI2NZdSoUURHR+sn2Dx3\n7lyJcY2W3FZhZjdvKkWM4r0zihc3btxQhraVNczEz08mAa0Aue8MVdZcbEzW1FYh1CL3WdnMlYel\nWCFEZZSfD2fOGBYwfv9d6aVRvIDRqhU88sgDX0buOUOV8QF55MiR7N27l+vXr+Pp6cmCBQtYtGgR\nOTk5uP/ZO6dz584sX74cgHfeeYdVq1Zha2vLsmXLCAkJMfg8S26rsEB37yqrmdxbxCj8OjFRmaS4\nrGEm9eqBq6varVCd3HeGKmMuNjZraqsQapH7rGxSrCiF/MAIcR95eXDqlGEBIyZGWQGgeAGjZUuo\nXr1CHyn3nCF5QLautgozyM+H5OSSRYzim1Z7/6Emnp7KOVWY3HeGJBdbV1uFUIvcZ2WTYkUp5AdG\niL8oJ0dZyrB4AeP0aWjUyLCAERQE9vYl3i73nCF5QLautgoLoNNBenrZw0zi45WhKD4+ZQ818fVV\nJi6uxOS+MyS52LraKoRa5D4rmxQrSiE/MEIYwZ07cPy4YQHj3DkIDDQsYDRrhqZaNbnnipEHZOtq\nq6gksrMNe2Xc20PjyhXw8Lj/UBMnJ7VbcV9y3xmSXGxdbRVCLXKflU2KFaWQHxghTOT2bWXOi8OH\n4dAh5d9Ll9BkZck9V4w8IFtXW0UVkZcHly+XPsykcJ+9fdnDTOrVg1q1VF2iVe47Q5KLrautQqhF\n7rOySbGiFPIDI4QZ3bqFxsVF7rli5AHZutoqrIROp6xaUlYhIz4esrKU4SRlDTXx8QFb060GL/ed\nIcnF1tVWIdQi9xk899xz+Pr68uabbxrsN1ceNt3/rEKIys3ZWe0I7svf35+rV69iY2NDjRo16N+/\nP2FhYTz++ONERUVx9uxZfHx8ANi9ezcTJ07k4sWLKkcthLA4Go0yTMTDA9q2Lf2czMyi4kXhv7t2\nFRUzUlLAy+v+Q00cHc3bLjMpLxfb2tri4OBAjx49+Pjjj/Hy8lI7ZCGEqPQKc6+trS02NjY0a9aM\nZ599lueff95gyfmHpdFojPp5f5UUK4QQlZJGo2HHjh307NmTy5cvExISwltvvYVGo6FGjRq8+eab\nrFixQu0whRBVwSOPQLNmylaa3FxISjLsmXHoEGzdqhQ3Ll1SPuN+Q03c3VUdavKg7peLP/74Y8aN\nG0daWhpPPfUU//jHP9i4caPaIQshRKVXPPdmZGQQERHBjBkziIqKYtWqVUa9lpq9S6RYIYSo9OrW\nrUv//v05ceIEANOnT+f9999n7ty5NGjQQOXohBBVnp0d+PsrW2l0Orh61bCYceEC7NlT9Do3t/RC\nhp+fOVvyUO7NxYXc3NwYPHgwn3zyiUqRCSFE1eXk5MTAgQPx8vKiU6dOzJo1i/j4eF5++WUSEhJw\ndnbmH//4B7NmzQJgx44dzJs3j/j4eJo1a8Ynn3xCUFAQAMeOHWP8+PGcO3eOAQMGqNqrAqBqL0wu\nhKjSCiufhDu4AAAgAElEQVS9CQkJhIeH06ZNGwC8vb2ZOHEib7zxhprhCSGEQqMBT0/o0AGGDoXZ\ns+HDD2HbNvjtN0hLUyYB3bIFXnwRWrRQlmzdvh1eflnt6MtVVi4u3H/9+nW++uor/X4hhBDG1759\ne3x8fNi/fz8TJkzg008/5datW5w8eZKePXsCRcWIzz77jNTUVCZNmkRoaCi5ubnk5OQwaNAgxowZ\nQ1paGkOHDuWrr76SYSBCiErKWMnrAbqX6XQ6Bg0ahK2tLS4uLjzxxBO8+uqr7Nu3D41Gw6uvvkpA\nQACxsbHGiVEIIUzJ2RmaN1e2e1Uk1xojHxsxF+/du5fp06cze/ZsatSowWOPPcYHH3zw8DEKIYSl\nUPE5uCx169YlNTUVOzs7Tp48SVBQEC4uLrRu3RqATz/9lEmTJtG+fXsAnn32Wd555x0OHjwIQF5e\nHjNmzABgyJAh+vPUIj0rhBAPTqczzvYANBoN27ZtIy0tjbi4OMLCwnBwcNAf9/Dw4MUXX+T1119X\nvQubEEKYnIXlYo1Gw0cffURaWhqJiYl88cUX1KxZ08iNFkIIFan4HFyWpKQkatasyVdffUV4eDj+\n/v4EBwcTGRkJQHx8PEuXLsXNzU2/JSYmcuXKFS5fvoy3t7fB59WrV0/VOSukWCGEqLJefvll9uzZ\nw5EjR9QORQghhBBCCJM5dOgQSUlJdOvWjXbt2vHtt99y7do1Bg0axLBhwwDw8/PjX//6F2lpafot\nMzOT4cOHU6dOHZKSkgw+Mz4+XtU/+kmxQghR5RRWgF1cXJg1axZLlixROSIhhLA+av41TgghqrrC\nHHvr1i127NjByJEjeeaZZ2jUqBEbNmzg5s2b2NjY4OTkhI2NDQATJ07kk08+ITo6Gp1Ox+3bt/n+\n++/JzMykS5cu2Nra8uGHH5Kbm8vXX3/NoUOH1GyiFCuEEFVP8QrwjBkzsLW1laEgQghhZpJ3hRDC\ndAYOHIizszN+fn4sWrSIWbNmsXr1agDWr19P/fr1cXFx4dNPP2XDhg0AtG3bls8++4wXX3wRd3d3\nGjZsyLp16wCws7Pj66+/Zs2aNdSsWZMtW7YwZMgQ1doHoNFVorK3RqORKr0QZiT3nKGyvh/W9H2y\nprYKYSnkvjOk0WjQ3bwJTk4GE9xZ0/fJmtoqhFrkPiubuZ6JK91qIEO2DCGodpCyeQbxqNuj2Ght\n1A5LCGEtxo6FoCBla9FCWY5QCCGEedWtW/Rv4SaEEKJKqXTFiqHNhhJzNYa1v6/lxNUTpNxOoalH\nU5rXbq4vYATVDsLrES/pfiiEML5OnSAmBrZtU/61rXRpVAghKr/MTMjIgMuXlS0pCTZuNMml7ty5\ng0ajwd7e3iSfL4QQonSVfhhIxt0MTl47SUxKDDFX/9xSYgD0hYvCIkZgrUCc7J3UCF2ISkm6vxkq\n8f3Q6eDyZTQ+PlbzfZKfCSHMT+47Q6buflxQUMC3337Lxo0b+fXXXykoKECn02FjY0Pnzp0ZPXo0\ngwYNUvWPYvIzIYTpyX1WNnMNA6n0xYrS6HQ6kjOT9YWLE9dOEJMSw6nrp/Cs4an0wihWyGhUsxF2\nNnZmaIEQlYu7uztpaWlqh2Ex3NzcSE1NLbHfmv4zs6a2CmEpJBcbMnUu7tGjB927dyc0NJRWrVrp\ne1TcvXuXY8eOsX37dn755Rf27dv30Nd6UJKLhTA9yb1lM9czcZUsVpQlvyCf82nnS/TCSLiVQKOa\njQx6YQTVDsLH2UeGkgghymVND43W1FYhROVirPx09+7dcod8VOQcU5JcLIT1iEmJoe/6vnzc410G\nP7cYZsyA559XO6xSSbHCBOFm5WYRey2WE1dP6AsYMVdjyM7NLtELI8gzCFcHV6PHIISovKzpodGa\n2iqEqFzMkZ8yMzN55JFHTHqNipBcLIR1iL0WS+91vfmg71JGvPkNODvDZ58ZrIRkSSpNsSIhIYFn\nn32Wq1evotFoeP7555k+fTrz58/n888/p1atWgC888479O/fH4BFixaxatUqbGxs+PDDD+nbt69h\nsGZOzNezrpfohXHy2klcHVwNemAE1Q6iiUcT7G1l4iUhrJE1PTRaU1uFEJWLOfKTn58fly5dKve8\nXbt28dJLL5Gfn8+ECROYO3duiXOmT5/Ozp07cXR0ZM2aNbRu3RqA9PR0JkyYwMmTJ9FoNKxatYpO\nnToZvFdysRBV3+nrp+m1rhfv9n6X0T9egc2bYf9+cHBQO7QyVZpiRXJyMsnJybRq1YrMzEzatm3L\nt99+y5YtW3BycmLmzJkG58fGxjJq1CgOHTpEUlISvXv35syZM2i12qJgLSAxF+gKiEuPU3phFCtk\nXEi7QH3X+iV6Yfi7+qPVaMv/YCFEpWUJuclcrKmtQojKxVj5aenSpWUee+utt8odw56fn0/jxo3Z\nvXs33t7etG/fno0bN9K0aVP9OeHh4YSFhREeHk5UVBQzZswgMjISgDFjxvC3v/2NcePGkZeXx+3b\nt3FxcTG4huRiIaq2MzfO0HNtT97u+TZjUn1h9GiIigI/P7VDuy9j5yaTrbnn5eWFl5cXAI888ghN\nmzYlKSkJoNQGbNu2jZEjR2JnZ4e/vz8BAQFER0eXqCSrTavR0sCtAQ3cGhDaOFS//27eXU5fP60v\nXqw4soKYqzGk30knsFZgiSKGh6OHiq0QQgghhBCl+de//sXs2bOxszOcfF2n01FQUFDu+6OjowkI\nCMDf3x+AESNGsG3bNoNixfbt2xkzZgwAHTt2JD09nZSUFBwcHNi/fz9r164FwNbWtkShQghRtZ1L\nPUevdb1Y+NhCxrg/Bv07woYNFl+oMAWTFSuKi4uL49ixY3Tq1IkDBw7w0UcfsW7dOtq1a8fSpUtx\ndXXl8uXLBoUJHx8ffXGjMrC3taelV0taerU02J+WnWawtOqXsV8SkxKDg61DiQJGs1rNcLRzVKkF\nQgghhBCidevWDBo0iHbt2pU4tnLlynLfn5SUhK+vr/61j48PUVFR5Z6TmJiIjY0NtWrVYuzYsfz+\n+++0bduWZcuW4egoz4dCWIMLaRfota4Xr/V4jXFNR0H37jBrFvTsqXZoqjB5sSIzM5OnnnqKZcuW\n8cgjjzBlyhRef/11AF577TVmzZpVZuIvbSWO+fPn678ODg4mODjYFGEbjVt1N7r5daObXzf9Pp1O\nR+KtRP08GD9d/In/RP2HMzfO4Ovsa1DEaF67OQHuAdhobVRshRCiuIiICCIiItQOQwghhAmsXr2a\nmjVrlnrs0KFD5b6/oivJ3dvTWKPRkJeXx9GjRwkLC6N9+/a89NJLLF68mIULF5Z4f2V7JhZC3F9c\nehw91/bkla6v8HybiTBhAjRooBQrLJSpn4lNWqzIzc1lyJAhPP300wwaNAiA2rVr649PmDCBgQMH\nAuDt7U1CQoL+WGJiIt7e3iU+s3hirqw0Gg2+Lr74uvgyoOEA/f7c/FzOpp7V98JYd3wdMSkxpNxO\noYlHkxJLq3o94iVLqwqhgnsfChcsWKBeMEIIIYyqSZMmJfZduXKFOnXq6Ic438+9z7QJCQn4+Pjc\n95zC516dToePjw/t27cH4KmnnmLx4sWlXqcqPBMLIRSXbl6i59qezOo8iyntp8CnnypzVERGWuzK\nH2D6Z2KTFSt0Oh3jx4+nWbNmvPTSS/r9hcke4JtvviEoKAiA0NBQRo0axcyZM0lKSuLs2bN06NDB\nVOFZJDsbO5rVakazWs0YznD9/oy7GQZDSXac3UFMSgxAiV4YzWs3x8neSa0mCCGEEEJUOY8//jhH\njx6t0Lnt2rXj7NmzxMXFUbduXTZv3szGjRsNzgkNDSUsLIwRI0YQGRmJq6srnp6eAPj6+nLmzBka\nNWrE7t27CQwMNHp7hBCWI/FWIj3X9mRah2lM6zhNKVDMmwcHDoAFLJWsJpMVKw4cOMD69etp0aKF\nfimmd955h40bN/Lbb7+h0WioX78+K1asAKBZs2YMGzaMZs2aYWtry/Lly6XXwJ+c7J3o5NOJTj5F\nc3rodDpSbqfoCxi/Jv7KiiMrOHX9FLVr1C6xtGqjmo2ws7G7z1WEEEIIIURp/srs9ra2toSFhRES\nEkJ+fj7jx4+nadOm+mfeSZMmMWDAAMLDwwkICKBGjRqsXr1a//6PPvqI0aNHk5OTw6OPPmpwTAhR\ntVzOuEzPtT2Z3G4y/+j8D0hJgaFDYeVKaNhQ7fBUV+7Spenp6Rw8eJC4uDg0Gg3+/v507txZlZmJ\nZZmm8uUX5HM+7bzBsqoxKTEk3EqgUc1GBkNJmtdujq+zrxSFhHhI1pSbrKmtQojKxZT56eOPP2bq\n1Kkm+ewHIblYiMovOTOZ4DXBPNfqOV7p9grk5kLv3hAcDJV0iLGxc1OZxYr9+/fz3nvvERcXR+vW\nralbty46nY4rV65w7Ngx/P39mTNnDt26dSvt7SYhifnBZeVmceraKYMCRszVGLJzs2leu3mJlUlc\nHVzVDlmISsOacpM1tVUIUbkYOz+lpKSQmJiIRqPB29tbP0zDEkguFqJyu3r7KsFrghkVNIp5PeYp\nO//xDzhzBr77DrRadQN8QGYrVsycOZMpU6bQsIzuJ2fOnOGTTz7hgw8+MFow5ZHEbHzXs64b9MI4\ncfUEJ66ewNXBtagHRi2lmNHUoyn2tvZqhyyExTFHbnrQXm7jxo3j+++/p3bt2sTEKHPdpKamMnz4\ncOLj4/H392fLli24uioFykWLFrFq1SpsbGz48MMP6du3r8HnSR4WQlgqY+WnY8eOMWXKFNLT0/UT\nYyYmJuLq6sry5ctp06bNQ1/jYUkuFqLyunb7Gj3X9WRI0yHMD56v7Pzvf+H11+HQIXBzUzW+h2G2\nYgVAQUEBW7duZdiwYUa74MOQxGweBboC4tPjDXpgxFyN4ULaBeq71i/RC8Pf1R+tpnJW/4QwBlPm\npoft5bZ//34eeeQRnn32WX2xYs6cOXh4eDBnzhyWLFlCWloaixcvJjY2llGjRnHo0CGSkpLo3bs3\nZ86cQVusui95WAhhqYyVn1q2bMmnn35Kx44dDfZHRkYyadIkfv/994e+xsOSXCxE5XQj6wY91/Vk\nYKOBvPnYm8pw/OPHoVcv+OknaNFC7RAfilmLFQBt27blyJEjRrvgw5DErK67eXc5ff20QS+MmJQY\n0u6kEVgr0KAXRlDtIGrVqKV2yEKYhSlzkzF6ucXFxTFw4EB9saJJkybs3bsXT09PkpOTCQ4O5vTp\n0yxatAitVsvcuXMB6NevH/Pnz6dTp6LJfSUPCyEslbHyU8OGDTl79mypxwICAjh37txDX+NhSS4W\novJJzU6l17pehDwawqJei5RCRVoatG8PCxfCqFFqh/jQjJ2byl0NpE+fPrz//vsMHz6cGjVq6Pe7\nu7sbLQhROdjb2tPSqyUtvVoa7E+/k64vXMRcjWHrqa3EpMTgYOugL1w0r92cuk518XD0wMPRg1qO\ntXC0c5TJPYUoxwcffEBBQQFbtmwptZdbo0aN/vJwvJSUFP3Ya09PT1JSUgC4fPmyQWHCx8eHpKSk\nh4heCCEqn/79+zNgwADGjBmDr68vOp2OhIQE1q1bR79+/dQOTwhRCaXfSafvF33pVb9XUaGioABG\nj4aBA6tEocIUyi1WbNq0CY1Gw8cff6zfp9FouHDhgkkDE5WHq4Mr3fy60c2vqBu6Tqcj8VaivgfG\n3vi9JGcmcz3rOtduX+Na1jUAg+JF4delvq5Ri5rVa8ryq8IqabValixZYpIheRqN5r5Fw9KOzZ8/\nX/91cHAwwcHBRo9LCCHKExERQUREhNE/d9myZezcuZPt27frC7be3t68+OKLDBgwwOjXE0JUbTfv\n3CRkfQjd/LrxXp/3ip6tFiyA27fh3XfVDdCClTsMxJJIl7eqJSs3S1+8uJ51Xb9dyyr9dWp2KjXs\nauiLF/crbhTuc3Fwkfk0hMmZIze98soreHh4PFAvt9KGgURERODl5cWVK1d47LHHOH36NIsXL9Zf\nC5RhIAsWLDAYty15WAhhqawpP1lTW4WozG7dvUXI+hDa1mnLR/0/KipUfPcdvPACHD4MFrTS0MNS\nZc6KcePGMWrUKNxUnplUErN1K9AVcPPOzZLFjNvXuJ59veS+rOvczr2Ne3X3Cvfe8HD0wNHOUe2m\nikrGHLnJ39+/RC+HivZyu7dYMWfOHGrWrMncuXNZvHgx6enpBhNsRkdH6yfYPHfunMF1JQ8LISyV\nsfLTuHHjmDJlCu3bty/1eFRUFJ988gmrV69+6Gs9KMnFQli+jLsZ9NvQjxaeLVg+YHnR89TZs9C1\nK2zfDsWG31YFZi9WnD17ltWrV7NlyxZ94aJv376qzDUgiVn8VTn5OaRmp1a498a129fQarSl9t7w\nqF56jw736u4yPMXKWXJuGjlyJHv37uX69et4enqycOFC/v73vzNs2DAuXbpUYunSd955h1WrVmFr\na8uyZcsICQkx+DxLbqsQwroZKz/FxMTw3nvvERkZSePGjalTpw46nY7k5GT++OMPunTpwuzZs2ne\nvLkRon4wkouFsGy3c27Tf0N/Gns0ZsUTK4p6emdmKgWKadNg0iR1gzQBsxcrChUUFLBjxw6mTJmC\nVqtl3LhxzJgxw6wTbUpiFqam0+nIys0qt/dG8eJHanYqTvZOf6n3hou9i0wuWoWYIzdZSi83ycNC\nCEtl7Px09+5djh07Rnx8PBqNhnr16tGyZUscHByMdo0HJblYCMuVlZvF4/99HH9Xf1aGriwqVOh0\nMGIEPPIIfP45VMHfBVQpVvz++++sXr2anTt3EhISwqhRo/jll19Yv349v/32m9GCKY8kZmGJCnQF\npGWnGRQ37td743rWdbJys6hZvWa5c28Uf13drrraTRVlMEduspRebpKHhRCWyprykzW1VYjKJDs3\nm4EbB1LXqS6r/74aG61N0cGlS2HTJti/Hyyg6GkKqsxZ4eLiwoQJExgyZAj29vb6Y08++STffPON\n0YIpjyRmUVXk5OeULG4U9tbILtl741rWNWy1tn+p94Z7dXdsteUu+COMwJy5Se1ebpKHhRCWypry\nkzW1VYjK4k7eHf6+6e94OHqwbtA6w0LFzz8ry5NGR4Ofn3pBmpjZihW//vornTt35uLFizRo0MBo\nF3wYkpiFtdLpdGTmZP6l3htp2Wk42zv/pd4bzvbOMjzlAZgrN1lCLzfJw0IIS2VN+cma2ipEZXA3\n7y5Pbn4SJ3snNgzeYPgHw4QE6NAB1q+HXr3UC9IMzFasmDx5MlFRUTRq1Ij+/fvTr18/vLy8jHbh\nByGJWYiKyy/IJ+1OWoV7b1zPus6dvDvUdKxpUMCoXaM2fi5+1HOpRz3XetRzqYfnI56yJGwx5pqz\nwhJ6uUkeFkJYKmPmp/z8fObOncv7779vlM8zNsnFQliOnPwchmwZgr2NPRuHbDSceP/OHejRA4YO\nhZdfVi9IMzH7MJBTp06xc+dOfvzxR9LT0+nZsyf9+vWja9eu2NjY3O+tRieJWQjTupN3hxtZNwwK\nGMmZyVy6dYn49Hjib8YTnx7Prbu38HXxNShg+Lv66197O3lb1QoppsxNltbLTfKwEMJSGTs/derU\niYMHD1pkj0PJxUJYhtz8XIZ+ORSNRsOWp7aUfP6dOBFu3oTNm6vkhJr3Um01EICsrCz27NnDzp07\nOXjwIEeOHDFaIBUhiVkIy5CVm8Wlm8UKGDfjiUuP079OyUzB6xEvfSFD/2+xr6vShKGmzE2W1stN\n8rAQwlIZOz9NnjyZy5cvM3ToUBwdHfXXGDx4sNGu8aAkFwuhvtz8XEZ+NZKc/By2DttKNZtqhid8\n9hn85z8QFaWsAGIFVC1WqE0SsxCVQ25+Lom3EvU9MQoLGoVfJ9xMwNneWemNUUoho55rPVwdXNVu\nRoWZIzdZSi83ycNCCEtl7Pz03HPP6T+3uNWrVxvtGg9KcrEQ6soryGP016PJzMnk62FfY29rb3hC\nVBQMHAi//AKNGqkTpArMVqw4fvw4zz//PImJiQwYMIAlS5bg5uYGQIcOHYiOjjZaEBUliVmIqqFA\nV0BKZorSG6OMgoZWoy3RK6N4caN2jdoW0zXX3LlJzV5ukoeFEJbKmvKTNbVVCEuTX5DPM988w43s\nG2wbsQ0H23uWIU1JgfbtISwMQkPVCVIlZitWdO3alddee42OHTuycuVKVq1axfbt2wkICKB169Yc\nO3bMaEFUlCRmIayDTqcj7U6awTwZ+qEmf76+nXu7xMSfxb/2dvY229Kt1pSbrKmtQojKxdj5KSEh\ngenTp/PLL78A0KNHD5YtW4aPj4/RrvGgJBcLoY78gnzGbhvLlcwrbB+xveSw5txc6NNHmVRz4UJ1\nglSR2YoVLVq04Pjx4/rXe/bsYeLEiaxfv54pU6ZIsUIIoarMnMwS82YUL25cvX2VOk51DCb+LF7Q\n8HPxK1kJf0CmzE2W1stN8rAQwlIZOz/17t2b0aNH8/TTTwOwYcMGNmzYwP/+9z+jXeNBSS4WwvwK\ndAWM3z6e+PR4dozagaOdY8mTZs6E06fhu+/AzItRWAKzFStatmzJvn37cHFx0e87fvw4gwcPJi0t\njRs3bhgtiIqSxCyEqKic/BwSbyUaTPxZvKCReCsRNwe3EpOAFi9uONs7V+hapsxNltbLTfKwEMJS\nGTs/tWzZkt9//73cfWqQXCyEeel0Op7f8TxnbpwhfFQ4NarVKHnSxo0wbx4cOgTu7uYP0gIYOzeV\n2Ud6zpw5xMbG0rlzZ/2+Fi1a8PPPP7PQCru0CCEql2o21Wjg1oAGbqUv95lfkE9yZrJBAePktZN8\nf/Z7/etqNtXKHGZSz7UetRxrmXzejIyMDPr16wfA7Nmzadu2Lf369WP9+vUmva4QQli7mjVr8sUX\nXzBq1Ch0Oh2bNm3Cw8ND7bCEECpY9/s6Dl8+zP6x+0svVBw/DtOnw+7dVluoMAVZDUQIIUqh0+m4\nkX2jxLwZxb/Ozs2mnms9Tr942mS5ydJ6uUkeFkJYKmPnp7i4OKZNm0ZkZCQAXbp04aOPPsLPz89o\n13hQkouFMJ+07DSaLW/GdyO/o13ddqWckKZMqLlgAYwebf4ALYjZly49dOgQ77zzDnFxceTl5emD\nKD6fhblIYhZCWJKMuxlcunmJ5p7NTZabNmzYQIMGDQx6uQFcunSJhQsX8vnnn5vkumWRPCyEsFTG\nzk8HDhyga9eu5e5Tg+RiIcznhe9fAGD548tLHiwoUJYobdgQ/vMfM0dmecxerGjUqBHvv/8+zZs3\nR6vV6vf7+/sbLYiKksQshLBE1pSbrKmtQojKxdj5qbR5gdRaEe9ekouFMI/Dlw8zcONAYl+Ixa26\nW8kT5s+Hn3+Gn34COzuzx2dpzDZnRaFatWoRamXrwwohhKWxpF5uQghRlR08eJBff/2Va9eu8cEH\nH+gfvDMyMigoKFA5OiGEueQX5PPC9y+wqNei0gsVO3bAypXKhJpSqDCJcosVb7zxBuPHj6d3795U\nq1YNUB6QBw8ebPLghBBCKEaPHl1qLzchhBDGlZOTQ0ZGBvn5+WRkZOj3Ozs7s3Xr1gp9xq5du3jp\npZfIz89nwoQJzJ07t8Q506dPZ+fOnTg6OrJmzRpat24NKL2XnZ2dsbGxwc7OzuxLVAshFJ8d/Yxq\nNtV4tuWzJQ+ePQvjxsG2beDlZf7grES5w0BGjx7NH3/8QWBgoMED8urVq00e3L2ky5sQwhKZIzd1\n7dqVAwcOmPQaFSF5WAhhqYydn+Lj46lXr95ffl9+fj6NGzdm9+7deHt70759ezZu3EjTpk3154SH\nhxMWFkZ4eDhRUVHMmDFDP5Fn/fr1OXLkCO73WVFAcrEQpnXt9jUClwey+9ndtPBsYXgwMxM6d4ap\nU2HyZHUCtFBmHwZy+PBhTp8+bfLl+YQQQpRNerkJIYR5TZgwgS+//BJXV1cAUlNTGTlyJD/88MN9\n3xcdHU1AQIB+frcRI0awbds2g2LF9u3bGTNmDAAdO3YkPT2dlJQUPD09AaQQIYTK5u6ey9Mtni5Z\nqNDpYMIEZfWPSZPUCc6KlFus6NKlC7GxsQQGBpojHiGEEKVYu3Ytf/zxB3l5eQa93KRYIYQQpnHt\n2jV9oQLA3d2dlJSUct+XlJSEr6+v/rWPjw9RUVHlnpOUlISnpycajYbevXtjY2PDpEmTmDhxYqnX\nmT9/vv7r4OBggoODK9gyIcT9HLh0gB/P/0js1NiSB//9bzh3DvbvB/ljPhEREURERJjs88stVhw8\neJBWrVpRv3597O3tAZnUTQghzE16uQkhhHnZ2NgYDAWJi4ur0JxBFc3TZfWe+OWXX6hbty7Xrl2j\nT58+NGnShO7du5c4r3ixQghhHHkFebwQ/gJL+y7F2d7Z8OCePfDuuxAVBdWrqxOghbm3ULpgwQKj\nfn65xYoffvihRDKVh2UhhDAv6eUmhBDm9fbbb9O9e3d69OgBwL59+/j000/LfZ+3tzcJCQn61wkJ\nCfj4+Nz3nMTERLy9vQGoW7cuoKzI9+STTxIdHV1qsUIIYXxh0WHUrlGbYYHDDA8kJ8OoUbB+PTzA\nXDbiwZRbHt69ezf+/v4G2//93/+ZIzYhhBB/Kuzl1qhRI4KCgggKCqJFixblv1EIIcQD6devH0eO\nHGH48OGMGDGCo0eP0q9fv3Lf165dO86ePUtcXBw5OTls3ryZ0NBQg3NCQ0NZt24dAJGRkbi6uuLp\n6UlWVpZ+BZLbt2/z448/EhQUZPzGCSFKuJxxmbf2vUVY/7CSf5yfNg3GjoXevdUJzkqV27Ni69at\n2Nvb8/TTTwMwdepUsrOzTR6YEEKIItLLTQghzM/W1pbatWtz584dYmOV8euFPS3u956wsDBCQkLI\nz89n/PjxNG3alBUrVgAwadIkBgwYQHh4OAEBAdSoUUO/yl5ycrJ+LqK8vDxGjx5N3759TdhCIUSh\nWawfZh4AACAASURBVD/OYlK7STT2aGx44Ntv4fhx+OILdQKzYuUuXZqdnU1oaCjjxo1j586duLm5\nsWzZMnPFZ0CWaRJCWCJz5KaVK1cyfvx4g32vvPIKixcvNul17yV5WAhhqYydnz777DM+/PBDEhMT\nadWqFZGRkXTu3Jmff/7ZaNd4UJKLhTCuny78xPjt44mdGoujnWPRgfR0aN4c/vtfKKdQKYyfm8oc\nBpKamkpqairZ2dl8/vnnLFmyBGdnZ9544w1SU1ONFoAQQojybd26lfXr1+tfT506latXr6oYkRBC\nVG3Lli0jOjqaevXqsWfPHo4dO4aLi4vaYQkhjCwnP4ep4VNZ1m+ZYaECYM4cGDhQChUqKXMYSJs2\nbQy6GOt0Or7//nu+//57NBoNFy5cMEuAQggh4OuvvyY0NBQbGxt9L7dVq1apHZYQQlRZDg4OVP9z\nxv87d+7QpEkT/vjjD5WjEkIY29JflxLgHkBoY8O5ZYiIgJ074eRJVeIS9ylWHDhwQD8rsRBCCHUU\n78n2+eef8/e//51u3brpe7m5u7urGJ0QQlRdvr6+pKWlMWjQIPr06YObmxv+/v5qhyWEMKL49HiW\nHlxK9MRow7nAsrNh4kRYvhycncv+AGFSZc5ZMWDAAG7cuMFjjz1Gv3796NatG7a25c7HaVIyPk8I\nYYlMmZv8/f1L9HIrfK1GLzfJw0IIS2Ws/BQZGUmnTp0M9kVERHDr1i369etHtWrVHvoaD0tysRDG\n8eTmJ2nj1YbX/vaa4YG5cyE+HjZtUiewSsrYuem+E2xmZ2cTERHBzp07+fXXX/H19aV///7069cP\nPz8/owVRUZKYhRCWyJS5KSkpyaJ6uUkeFkJYKmPlp9atW3Ps2DEAOnfuzMGDBx/6M41NcrEQD+/7\nM9/z0g8vETMlBgdbh6IDR49C//4QEwO1a6sXYCVk7Nx0364S1atXp3///vTv3x+ACxcusHPnTqZO\nnUpKSgrR0dFGC0QIIURJEydOtLhebkIIYS3u3LmjdghCCBPIzs1m2s5pfPLEJ4aFitxcGD8e3ntP\nChUWoNylS8ty9+5d7O3tjR3PfUkVWQhhiUydm0zRy23RokWsX78erVZLUFAQq1ev5vbt2wwfPpz4\n+Hj8/f3ZsmULrq6uBu+TPCyEsFTGyk8tWrQgIiICnU7HY489RkREhMFxS5grSHKxEA/njYg3iL0W\ny5dDvzQ8sHgx7NkDu3ZB8TksRIWYbRhI/fr1ywwAUGU1EEnMQghLZO7cVNjL7YcffiA5Ofkv93KL\ni4ujZ8+enDp1Cnt7e4YPH86AAQM4efIkHh4ezJkzhyVLlpCWlsbixYsN3it5WAhhqYyVn4rPFVR8\nnqDCa1jCiniSi4V4cGdvnKXzys78Nvk3fJx9ig6cOQNdusDhwyCT6T4QsxUrrl+/bnDRgoICNm/e\nzPvvv0/btm356quvjBZERUliFkJYIlPmJp1Ox7fffsu5c+do0aIFISEhBscfpJdbamoqnTt3JjIy\nEicnJ5588kmmT5/OtGnT2Lt3L56eniQnJxMcHMzp06cN3it5WAhhqawpP1lTW4UwJp1OR/8N/end\noDezu8wuOlBQAI89BoMHw4wZ6gVYyZltzgoPDw8ACgoKWLduHe+99x6tWrUiPDycZs2aGS0AIYQQ\nZXvhhReIjY2lS5cuvPbaa0RFRfH666/rjz/IcDx3d3dmzZqFn58f1atXJyQkhD59+pCSkoKnpycA\nnp6epKSklPr++fPn678ODg4mODj4L8cghBAPKyIiosQQDSGEuJ+vT31N4q1EZnS8pyDx2Wdw9y68\n+KI6gYlSldmzIicnh1WrVvHvf/+bbt268eqrrxIQEGDu+AxIFVkIYYlMmZsCAwM5fvw4NjY2ZGVl\n0a1bN44ePfpQn3n+/HkGDhzI/v37cXFxYejQoQwZMoRp06aRlpamP8/d3Z3U1FSD90oeFkJYKmvK\nT9bUViGMJTMnk2YfN+OLJ7/gb/5/KzqQlAStWkFEBAQGqhZfVWC2nhUNGjTA1taWGTNm4Ofnx/Hj\nxzl+/Lh+7N7gwYONFoQQQojSVatWDRsbGwAcHR2N8h/A4cOH6dKlCzVr1gRg8ODBHDx4EC8vL5KT\nk/Hy8uLKlSvUllmwhRBCCFFFLNy7kGD/YMNChU4HL7wAU6dKocIClVms6N27N4C+SHEvKVYIIYTp\nnT59mqCgIP3r8+fP619rNJpS83N5mjRpwptvvkl2djYODg7s3r2bDh06UKNGDdauXcvcuXNZu3Yt\ngwYNMlo7hBCiMsrPzyclJYW8vDz9vgddhUkIoZ6TV0+y+rfVnJhywvDAl1/CuXOwZYs6gYn7euCl\nS9UgXd6EEJbIlLkpLi7uvsf9H3C26nfffZe1a9ei1Wpp06YNn3/+ORkZGQwbNoxL/8/enYc3VaZ9\nHP+mC/sqS4FWKQNlbwHZBAcpIsugMoiyOUJVkEUYRFHUERQcHeAFFxZRGBkWUZBFoWrpIEhRUChL\n2SyLIMWyFbGUUrbSNO8fZ5pSaGkpSU7S/D7XlavNSU7O/SDeJHee535++01bl4qIx3F0fpoxYwYT\nJkygatWq9hluAHv27HHYNQpLuVik4Gw2Gx0WdOCxho8xotU1PSn++AMaN4YvvoA2bcwLsAhx2W4g\n7kiJWUTckTflJm8aq4h4Fkfnp9q1axMbG2tfMudOlItFCm7R7kW8+9O7bH1mK74+2YVHnnwSypeH\nadNMi62ocVnPChERERERb3XXXXdRrlw5s8MQkduQcjmFMd+O4cs+X+YsVKxZYzTU3Ls3z3PFfCpW\niIiIiIhcp1atWnTo0IEHH3yQYsWKAca3hi+88ILJkYlIQb2+/nUeqvsQrYNaZx9MS4MhQ2D2bChT\nxrzgJF/5FitWrFiBxWLJcax8+fKEhoaqU7yIiIiIFEl33XUXd911F+np6aSnp9t3xBMRz7Dj5A4+\n//lz4p+Nz/nAuHHQrh106WJOYFJg+fasePDBB/npp5/o0KEDADExMdx9990cOXKE119/nQEDBrgk\nUND6PBFxT67ITaGhoTdcp3z58rRs2ZKxY8e6bE218rCIuCtn5afz588DULZsWYe/dmEpF4vcXKYt\nk7Zz2/LM3c8w8O6B2Q9s2QI9ehjLP9ywH42nc3nPiqtXr7Jv3z4CAgIASEpKon///mzZsoX77rvP\npcUKERFv1bVrV/z8/Hj88cex2WwsWbKEixcvEhAQwJNPPslXX31ldogiIkXKnj17GDBgAH/88QcA\nVapUYcGCBTRu3NjkyEQkP/+J+w8+Fh+eavZU9sH0dBg0CN57T4UKD5FvsSIxMdFeqACoWrUqiYmJ\nVKpUyb5+T0REnGvt2rXExcXZ74eFhdGsWTPi4uIIDQ01MTIRkaJp8ODBvPvuuzlmFw8ePJgff/zR\n5MhE5GbOXDzDa9+9xn+f+C8+Fp/sByZNguBg6NPHtNjk1uRbrMhqLNS7d29sNhsrVqwgPDycCxcu\nUKFCBVfEKCLi9axWK1u2bKF1a6NBVGxsLJmZmQD4+alXsoiIo128eNFeqADs739FxL29uu5V+jbu\nS9NqTbMPxsfDjBkQFwfqPeMx8u1ZkVWg2LRpEwD33nsvjz76qCkNhrQ+T0TckSty09atW3nqqadI\nS0sDjLXTc+fOpVGjRnzzzTf07t3bqdfPojwsIu7K0fmpR48eNG/enP79+2Oz2fj000/Zvn07X375\npcOuUVjKxSK523xsMz0/78m+4fsoX6K8cdBqNRpq9u8Pw4aZG2AR5+jclG+xYvXq1fzlL3/Jceyj\njz5i6NChDguioJSYRcQduSI3Xb58mRIlSpCSkgJAhQoVSE5O5o477nDqda+nPCwi7srR+Sk5OZk3\n3njD/oVdu3btGD9+PBUrVnTYNQpLuVjkRhmZGbT6dytGtxnN38L+lv3AjBmwbBnExICPT57ny+1z\nebGibdu2/POf/6Rjx44A/N///R/fffcd0dHRDguioJSYRcQduSI3devWjVWrVuHv7w/AyZMnefDB\nB9mxY4dTr3s95WERcVfelJ+8aawiBTVjywy+2P8F3w34LnsVwNGj0Lw5bNoE9eqZG6AXcPluIJGR\nkTz00EMUK1aM6Oho9u/fT2RkpMMCEBGR/D3yyCP07t2b5cuXk5iYSPfu3Zk6darZYYmIFDnPPfcc\n06ZN4+GHH77hMYvFovfBIm7oVNop3vz+TTY8uSG7UGGzwdCh8MILKlR4qHxnVgCcPn2ajh070qJF\nC/7zn/8UqF9FYmIiAwYM4PTp01gsFgYPHszIkSNJTk6mT58+HD16lODgYJYuXWpv1Dlx4kT+85//\n4Ovry/Tp0+ncuXPOYFVFFhE35KrcNHPmTKKjozl69CgfffQR9957r9OveT3lYRFxV47KT9u3b6d5\n8+bExMTkeo327dvn+xrR0dGMGjUKq9XKoEGDePnll294zsiRI1m9ejWlSpVi/vz5NGvWzP6Y1Wql\nRYsWBAUF5bo1tXKxSE79v+xPjbI1mPzA5OyDixbB1KmwdSv8b2aqOJfLloGUKVMmR1EiPT0df39/\nLBYLFouF1NTUm77wqVOnOHXqFE2bNiUtLY3mzZuzcuVK5s2bR+XKlRkzZgyTJ0/m7NmzTJo0ifj4\neB5//HG2bt3K8ePHeeCBBzh48CA+16wrUmIWEXfkzNz0zjvv5LjGwoULCQ0NpVmzZlgsFl544QWn\nXDcvysMi4q4cnZ/ef/99Ro0ale+x61mtVurVq8fatWsJDAykZcuWLF68mAYNGtifExUVxcyZM4mK\nimLLli0899xzbN682f74u+++y/bt2zl//nyuMzmUi0WyxSTEMODLAcQPj6dMsTLGwd9/h9BQ+Ppr\naNHC3AC9iKNzU54dRtLS0jh//rz9duXKFfux/AoVANWqVaNpU2O7mDJlytCgQQOOHz9OZGQkERER\nAERERLBy5UoAVq1aRb9+/fD39yc4OJg6deoQGxvriDGKiHis8+fP23NvWloajzzyCCEhIfZjIiLi\nHAsWLLjh2Pz58/M9LzY2ljp16hAcHIy/vz99+/Zl1apVOZ5z7fvh1q1bk5KSQlJSEgDHjh0jKiqK\nQYMGqSAhko+r1qsMjxrO+13fzy5UADz3nLH7hwoVHi3PnhW//vorf/rTn2568uHDh6ldu3a+F0lI\nSCAuLo7WrVuTlJREQEAAAAEBAfbEfOLECe655x77OUFBQRw/fvyG1xo/frz99/DwcMLDw/O9voiI\nI8XExOQ6PdgZrs15IiLifIsXL+azzz7jyJEjOfpWnD9/nkqVKuV7/vHjx7nzzjvt94OCgtiyZUu+\nzzl+/DgBAQE8//zzTJkyJd8vB/WeWATe3/w+d5W/i0fqP5J98JtvIDYWdu82LzAv4ez3xHkWK159\n9VUuXLhA9+7dadGiBdWrV8dms3Hy5Em2bdtGZGQkZcuWZcmSJTe9QFpaGo8++ijTpk2jbNmyOR7L\nWlKSl9we0xt3ETHb9W8KJ0yY4LRrPf300wwbNoyWLVvm+viWLVv46KOPmDdvntNiEBHxJm3btqV6\n9er8/vvvvPjii/bZDWXLlqVJkyb5nl+Q3m7ADbMmbDYbX3/9NVWrVqVZs2b5fgDQe2LxdonnEpm8\naTKbB23O/v8uNRWGDYP586FUKVPj8wbOfk+cZ7Hi888/59ChQyxZsoTXXnuNo0ePAlCzZk3+/Oc/\nM2PGjHxnXly9epVHH32U/v3706NHD8CYTXHq1CmqVavGyZMnqVq1KgCBgYEkJibazz127BiBgYG3\nPUAREU+W9Q3b5s2bqVevnr1wfOrUKQ4cOEDbtm158cUXzQ5TRKTIqFmzJjVr1szRQ+JWXP+eNjEx\nkaCgoJs+J+t974oVK4iMjCQqKorLly+TmprKgAEDWLhwYeEGI1KEPf/f5xnRagR17qiTffDVV6Fz\nZ7j/fvMCE4cp0G4ghWGz2YiIiKBSpUq899579uNjxoyhUqVKvPzyy0yaNImUlJQcDTZjY2PtDTYP\nHTqUozqtZkIi4o5ckZuuXLlCXFwcR48exWKxULNmTZo0aUKJEiWcet3rKQ+LiLtydH5asWIFr7zy\nCklJSfbXLUiT+YyMDOrVq8e6deuoUaMGrVq1ummDzc2bNzNq1KgbiiMbNmxg6tSp2g1EJBf/PfRf\nno16lr3D9lLSv6RxcONG6NMH9u6FihXNDdBLOTo35Tmz4nZt2rSJRYsWERYWZt+KaeLEibzyyiv0\n7t2buXPn2rcuBWjYsCG9e/emYcOG+Pn5MWvWrAJPoxMRKeqKFy/OPffck6O3j4iIOM+YMWP4+uuv\ncxQZCsLPz4+ZM2fSpUsXrFYrAwcOpEGDBsyePRuAIUOG0K1bN6KioqhTpw6lS5fOcymf3guL3Ohy\nxmVGrB7BjL/MyC5UXL4MgwbBjBkqVBQhTptZ4QyqIouIO/Km3ORNYxURz+Lo/HTvvfeyadMmh72e\nIykXizd7c8Ob7Dy1ky/6fJF9cOxY2LcPVqwwLzDxnJkVIiIiIiKeqkWLFvTp04cePXpQrFgxwHgj\n3rNnT5MjE/Fev579lelbprNjyI7sg7t3w5w5sGuXeYGJU+RZrNi+fbu9MpLbFLS7777bqYGJiIiI\niJjl3LlzlCxZkjVr1uQ4rmKFiDlsNht/X/13Xmz7IneVv8s4mJEBAwfCxIlQvbq5AYrD5bkMJDw8\nHIvFwqVLl9i+fTthYWEA7N69mxYtWvDTTz+5NFDQlDcRcU/OzE0PP/xwntexWCxERkY65bp5UR4W\nEXflTfnJm8YqkmXl/pW8uu5Vdg3dRTFfY7YT77wDUVGwdi2ox4vpHJ2bfPJ6ICYmhvXr11OjRg12\n7NjB9u3b2b59O3FxcdSoUcNhAYiISN5Gjx7N6NGj+dOf/kTJkiUZPHgwzzzzDGXKlMl3+2gRESm8\nAwcO0LFjRxo1agQYX9i99dZbJkcl4p0upF9gVPQoPuj2QXah4vBhY0bFnDkqVBRR+TbYbNiwIfHx\n8fkecwVVkUXEHbkiNzVv3pzt27fne8zZlIdFxF05Oj/dd999TJkyhaFDhxIXF4fNZqNx48b8/PPP\nDrtGYSkXi7f5x7p/kJCSwGePfmYcsNnggQfgL3+BF180Nzixc3mDzbCwMAYNGsQTTzyBzWbjs88+\no0mTJg4LQERE8nfx4kUOHz5M7dq1Afj111+5ePGiyVGJiBRdFy9epHXr1vb7FosFf39/EyMS8U77\nz+xnzvY57Bm2J/vgvHlw7hyMGmVeYOJ0+RYr5s2bx4cffsi0adMAo8o8bNgwpwcmIiLZ3nvvPTp0\n6ECtWrUASEhIYM6cOSZHJSJSdFWpUoVDhw7Z7y9fvpzqauAn4lI2m43hUcMZd984qpf93/9/J0/C\nK6/AmjXgp80ti7J8l4G4E015ExF35KrcdPnyZfbv34/FYqF+/foUL17c6de8nvKwiLgrR+enw4cP\nM3jwYH766ScqVKhArVq1+PTTTwkODnbYNQpLuVi8xZK9S5i0cRLbBm/Dz+d/hYnHHoO6deFf/zI3\nOLmBy5aBhIaG3jSI3bt3OywIERHJ3YoVK3JsI531D8Dhw4cBbaEnIuIsPj4+rFu3jrS0NDIzMylX\nrhxHjhwxOywRr5F6JZXRa0azrNey7ELFl1/Cnj2waJG5wYlL5DmzIiEh4aYnmlFVVhVZRNyRM3PT\nk08+ieUmHa7nzZvnlOvmRXlYRNyVo/NTs2bNiIuLy3HMjMbGuVEuFm/w/H+fJ/VKKnO7zzUOpKRA\no0aweDHcd5+5wUmuXDaz4tpiREJCAocOHeKBBx7g4sWLWK1WhwUgIiJ5mz9/vtkhiIh4lX379hEf\nH8+5c+f44osv7DPbUlNTuXz5stnhiXiF3Um7+XT3p/z87DW774wZA927q1DhRXzye8KcOXPo1asX\nQ4YMAeDYsWP06NHD6YGJiEi2U6dOMXDgQLp27QpAfHw8c+fOva3XTElJ4bHHHqNBgwY0bNiQLVu2\nkJycTKdOnahbty6dO3cmJSXFEeGLiHiMgwcP8tVXX3Hu3Dm++uorvv76a7766it27NjBv//9b7PD\nEynyMm2ZDPtmGP/s8E+qlK5iHIyJgdWrYfJkU2MT18q3wWaTJk2IjY3lnnvusU+FCw0NZc+ePTc7\nzSk05U1E3JErclPXrl156qmnePvtt9m9ezdXr16lWbNm7N27t9CvGRERQfv27Xn66afJyMjgwoUL\nvP3221SuXJkxY8YwefJkzp49y6RJk+znKA+LiLtydH768ccfadu2rcNez5GUi6Uomxc3j4+2f8SP\nT/+Ir48vXLoEYWHw7rvw8MNmhyc34ejclO/MiuLFi+foOJ+RkXHT9dMiIuJ4Z86coU+fPvj6+gLg\n7++P321s13Xu3Dl++OEHnn76aQD8/PwoX748kZGRREREAEYxY+XKlbcfvIiIB6pUqRIdO3akUaNG\nAOzevZu33nrL5KhEirbkS8m8uu5VZnWbZRQqAMaPh+bNVajwQvm+023fvj1vv/02Fy9e5Ntvv2XW\nrFk8rL8oIiIuVaZMGf744w/7/c2bN1O+fPlCv96RI0eoUqUKTz31FLt27aJ58+a8//77JCUlERAQ\nAEBAQABJSUk3nDt+/Hj77+Hh4YSHhxc6DhGRwoqJiSEmJsZpr//MM88wZcoUhg4dChgzi/v168fY\nsWOddk0Rb/fad6/xaMNHaV6juXFgxw6YP9/YAUS8Tr7LQKxWK3PnzmXNmjUAdOnShUGDBpkyu0JT\n3kTEHbkiN23fvp2///3v/PzzzzRq1Ijff/+d5cuX06RJk0K93rZt22jTpg0//vgjLVu2ZNSoUZQt\nW5aZM2dy9uxZ+/PuuOMOkpOT7feVh0XEXTk6P7Vo0YJt27bl2BWkadOm7Ny502HXKCzlYimKth7f\nSvcl3Yl/Np6KJSvC1avQqhU8/zwMGGB2eFIALtsNJIuvry+DBw9m8ODBDruoiIjcmubNm7NhwwYO\nHDgAQL169fD39y/06wUFBREUFETLli0BeOyxx5g4cSLVqlXj1KlTVKtWjZMnT1K1alWHxC8i4mmq\nVKnCoUOH7PeXL19O9erVTYxIpOiyZloZ9s0wJj8w2ShUALzzDlStCv37mxucmCbPYkWvXr1YtmwZ\njRs3vmEWhcViYffu3U4PTkTE261bt46OHTuyYsWKHNXqgwcPAtCzZ89CvW61atW48847OXjwIHXr\n1mXt2rU0atSIRo0asWDBAl5++WUWLFig3Z9ExGvNnDmTwYMHc+DAAWrUqEGtWrX49NNPzQ5LpEia\ns30OpfxL0T/sf4WJgwdh6lTYtg3UL9Fr5bkM5MSJE9SoUYOEhIRcTwwODnZiWLnTlDcRcUfOzE1v\nvPEGEyZM4Mknn8x1+d28efMK/dq7du1i0KBBpKenU7t2bebNm4fVaqV379789ttvBAcHs3TpUipU\nqGA/R3lYRNyVs/JTWloaNpuNMmXKsHTpUvr06ePwa9wq5WIpSk5fOE3jWY1ZN2AdoQGhkJkJHTpA\nz57w3HNmhye3wNG5Kd+eFdOnT6d///5UrFjRYRctLCVmEXFHrshNGRkZt7X7h6MoD4uIu3JUfkpL\nS2P27NkcPnyYxo0bM3ToUFatWsVrr71GnTp1iIyMdEC0t0e5WIqSJ1c+SeVSlZnaeapxYPZsmDcP\nNm2C/+2CJp7B5T0rkpKSaNmyJXfffTdPP/00Xbp00dalIiIuVrduXR599FGeeuopGjZsaHY4IiJF\n1oABAyhXrhxt2rRhzZo1zJ8/nxIlSvDZZ5/RtGlTs8MTKVI2/raRdUfWEf9svHHg+HEYOxZiYlSo\nkPxnVgBkZmbak/W2bdvo3bs3AwcOpHbt2q6I0U5VZBFxR67ITampqSxZsoT58+djtVp5+umn6dev\nH+XKlXPqda+nPCwi7spR+SksLMzem81qtVK9enWOHj1KyZIlb/u1HUW5WIqCq9ar3D3nbsbdN47e\njXqDzQY9ekCzZnDNNuniORydm3wK9CQfH6pVq0ZAQAC+vr6cPXuWxx57jJdeeslhgYiISN7KlSvH\n4MGD+fHHH5k8eTJvvvkm1apVIyIiIke3ehERuT2+13yb6+vrS2BgoFsVKkSKihmxM6hepjq9GvYy\nDixbBocOwauvmhuYuI18Z1ZMmzaNhQsXUqlSJQYNGsQjjzyCv78/mZmZhISEcPjwYVfFqiqyiLgl\nV/Ws+Oabb5g3bx4JCQkMGDCAxx9/nI0bN/KPf/zDvjuIsykPi4i7clR+8vX1pVSpUvb7ly5dshcr\nLBYLqampt32N26VcLJ7ueOpxmnzUhB8H/kjdSnXhjz+gcWP44gto08bs8KSQXN6zIjk5mS+++IKa\nNWvmOO7j48NXX33lsEBERCRvdevWJTw8nDFjxtC2bVv78ccee4wNGzaYGJmISNFitVrNDkGkyBu9\nZjRDWww1ChUAo0dD794qVEgOBepZ4S5URRYRd+SK3HT+/HnKli3r1GsUhPKwiLgrb8pP3jRWKXrW\n/rqWZ756hp+f/ZlS/qVgzRoYPBj27oUyZcwOT26DKT0rRETEXO5QqBARkYKJjo6mfv36hISEMHny\n5FyfM3LkSEJCQmjSpAlxcXEAXL58mdatW9O0aVMaNmzIq1q7L0XMlYwrDI8azvSu041CRVoaDBli\nbFeqQoVcR8UKEREREREHsVqtjBgxgujoaOLj41m8eDH79u3L8ZyoqCgOHTrEL7/8wpw5cxg2bBgA\nJUqUYP369ezcuZPdu3ezfv16Nm7caMYwRJzinZ/eoV6lejxc72HjwLhx0K4ddOlibmDilgpcrEhN\nTSU5Odl+ExEREREpijIyMujQoUOhzo2NjaVOnToEBwfj7+9P3759WbVqVY7nREZGEhERAUDr1q1J\nSUkhKSkJwN7cMz09HavVyh133HEbIxFxHwkpCbz707tM6zrNOLBlCyxZAu+9Z25g4rbybbA5C1yL\nQQAAIABJREFUe/Zs3njjDYoXL46Pj1HbsFgs/Prrr04PTkREDGfPnmXhwoUkJCSQkZEBGLl4+vTp\nJkcmIlL0+Pn54ePjQ0pKChUqVLilc48fP86dd95pvx8UFMSWLVvyfc6xY8cICAjAarXSvHlzDh8+\nzLBhw2jYsGGu1xk/frz99/DwcMLDw28pThFXey76OZ6/53lqVawF6ekwaJBRqKhUyezQpJBiYmKI\niYlx2uvnW6yYMmUKe/fupXLlyk4LQkREbq5bt260adOGsLAwfHx8sNlsWCwWs8MSESmySpcuTWho\nKJ07d7bPdihIkbigufn6JnRZ5/n6+rJz507OnTtHly5diImJybUQcW2xQsTdfX3wa/af2c/Sx5Ya\nByZNguBg6NPH1Ljk9lxfKJ0wYYJDXz/fYsWf/vQn+97SIiJijitXrvDuu++aHYaIiNfo2bMnPXv2\nzHGsIIWIwMBAEhMT7fcTExMJCgq66XOOHTtGYGBgjueUL1+eBx98kG3btmnWhHi0i1cvMnL1SGY/\nNJvifsUhPh5mzIC4ONAXL3IT+RYrJk2aRJs2bWjTpg3FihUDNPVYRMTVHn/8cebMmcPDDz9M8eLF\n7ce1lllExDmefPLJQp3XokULfvnlFxISEqhRowaff/45ixcvzvGc7t27M3PmTPr27cvmzZupUKEC\nAQEBnDlzBj8/PypUqMClS5f49ttveeONNxwwGhHzTNw4kZaBLelUuxNYrcbyjzffhOuKeCLXy7dY\nMXjwYB544AFCQ0M19VhExCQlSpTgpZde4u2331b/IBERJ+rVqxfLli0jNDT0hscsFgu7d+++6fl+\nfn7MnDmTLl26YLVaGThwIA0aNGD27NkADBkyhG7duhEVFUWdOnUoXbo08+bNA+DkyZNERESQmZlJ\nZmYm/fv3p2PHjo4fpIiL/PLHL3y49UN2Dd1lHJg1C/z8jO1KRfJhsV2/YO46zZo1s+/9bDaLxXLD\n+j4REbO5IjfVqlWLrVu3mt4/SHlYRNyVo/LTiRMnqFGjBgkJCbk+HhwcfNvXuF3KxeIJbDYbXT/t\nSuc/dWZ029Fw9Cg0bw6bNkG9emaHJ07g6NyU79alf/nLX5g9ezYnT57U1qUiIiYJCQlR/yAREReo\nUaMGYBQlSpYsyZ49e9i7dy+lSpVyi0KFiKdYHr+cE+dPMLL1SLDZYOhQeOEFFSqkwPKdWREcHHzD\nsg+zph6riiwi7sgVualHjx78/PPPdOjQwd6zwoz+QcrDIuKuHJ2fli5dyksvvUT79u0B+P7775ky\nZQq9evVy2DUKS7lY3N35K+dpOKshn/X8jHY128GiRTB1KmzdCv7+ZocnTuLo3HTTYkVmZibLli2j\nj5tsKaPELCLuyBW5acGCBTl6BmX9HhER4dTrXk95WETclaPzU1hYGGvXrqVq1aoA/P7773Ts2DHf\nnhWuoFws7u6lb1/i9IXTLOixAH7/HUJD4euvoUULs0MTJ3J0brppg00fHx/+7//+z22KFSIi3igj\nI4N58+YRExNjdigiIl7DZrNRpUoV+/1KlSqpQCBSAHtP72X+zvnsHbbXOPDcc9C/vwoVcsvy3Q2k\nU6dOTJ06lT59+lC6dGn7cW2XJyLiGn5+fvj6+pKSkkKFChXMDkdExCt07dqVLl268Pjjj2Oz2fj8\n88/5y1/+YnZYIm7NZrMxPGo4E8InEFAmAL75BmJjwQ1mJInnUc8KEZHb5Irc1L17d+Li4ujUqZO9\ncKyeFSIi2ZyRn1asWMHGjRuxWCy0a9eORx55xKGvX1jKxeKuPtn1CdO2TGPLoC34pl2Axo1h/ny4\n/36zQxMXcGnPCnejxCwi7sgVuWn+/Pn2a4F6VoiIXM/R+emdd96hb9++BAYGOuw1HUW5WNxRyuUU\nGnzQgFV9V9EqsBUMHw5XrsDHH5sdmriIS3tWAKSnp/Phhx/y/fffY7FYaN++PUOHDsVfXVxFRFzm\nySef5MqVKxw8eBCA+vXrKw+LiDjR+fPn6dy5MxUrVqRv37706tWLgIAAs8MScVtjvxvLX+v91ShU\nbNwIK1fC3r1mhyUeLN+ZFQMHDiQjI4OIiAhsNhuffPIJfn5+fGxChUxVZBFxR67ITTExMURERFCz\nZk0AfvvtNxYsWGDfUs9VlIdFxF05Kz/t2rWLpUuXsnz5coKCgli3bp3Dr3GrlIvF3ew4uYNun3Yj\nfng8d1hKQdOm8K9/Qc+eZocmLuTymRVbt27NsUVTx44dCQsLc1gAIiKSvxdeeIE1a9ZQr149AA4e\nPEjfvn3ZsWOHyZGJiBRtVatWpVq1alSqVInff//d7HBE3E6mLZNh3wzjXx3/xR0l74CxY6FRIxUq\n5Lb55PcEPz8/Dh06ZL9/+PBh/PzyrXGIiIgDZWRk2AsVAHXr1iUjI8PEiEREirZZs2YRHh5Ox44d\nOXPmDB9//HGOL/BExPDxjo/x8/HjyaZPGrt+zJkDM2eaHZYUAflWHaZMmcL9999PrVq1AEhISGDe\nvHlOD0xERLI1b96cQYMG8cQTT2Cz2fj0009pof3KRUScJjExkffff5+mTZuaHYqI2zpz8Qzj1o9j\nzRNr8LFmwsCBMHEiVK9udmhSBOTZs2LZsmX06tWLX3/9lRo1anDgwAEA6tWrR4kSJVwaZBatzxMR\nd+SK3HTlyhVmzpzJpk2bAGjXrh3PPvssxYsXd+p1r6c8LCLuypH5KSMjg0aNGtnf/7ob5WJxF4Mi\nB1GmWBne7/o+vPMOREXB2rXwv93LxLu4bOvSZs2aERcXZ//pDpSYRcQdOTM3dezYkXXr1vHyyy8z\nefJkp1zjVigPi4i7cnR++utf/8r06dPtjY3diXKxuIOfEn/isWWPsW/4Psod+x1at4YtW6B2bbND\nE5O4rMFmpUqV6NSpE0eOHOHhhx++IYjIyEiHBSEiIrk7efIkP/74I6tWraJPnz43PH733XebEJWI\nSNGXnJxMo0aNaNWqFaVLlwb0HlgkS0ZmBsO+GcbUTlMpV6wsDH4EXnlFhQpxqDxnVqSnp7Njxw76\n9+/Pxx9/nKNCYrFYXL5dXtZ1VUUWEXfjzNy0bNky5s6dy6ZNm3LtUbF+/XqnXDcvysMi4q4cnZ9i\nYmJyvYYZ74Fzi0O5WMw0fct0Vu5fyboB67DMmwezZsHmzaCNGLyay5aBZDl9+jRVq1Z12AVvhxKz\niLgjV+SmN998k9dff92hr2m1WmnRogVBQUF89dVXJCcn06dPH44ePUpwcDBLly6lQoUKOc5RHhYR\nd+WM/JSQkMChQ4d44IEHuHjxIhkZGZQrV86h1ygM5WIx08nzJwn7KIzvn/yeBhkVoEkT+PZb46d4\nNUfnpny3LnWXQoWIiDdzdKECYNq0aTRs2BDL/5pgTZo0iU6dOnHw4EE6duzIpEmTHH5NERFPMWfO\nHHr16sWQIUMAOHbsGI888ojJUYmY78VvX2TQ3YNoUKUB/P3v8MwzKlSIU+RbrBARkaLn2LFjREVF\nMWjQIHsFPDIykoiICAAiIiJYuXKlmSGKiJjqgw8+YOPGjfaZFHXr1uX06dMmRyVirvVH1rPxt42M\nbTcWvvwS9u6FcePMDkuKKC0qEhHxQs8//zxTpkwhNTXVfiwpKYmAgAAAAgICSEpKyvXc8ePH238P\nDw8nPDzcmaGKiOQqJiYm174SjlK8ePEc20NnZGTYZ6KJeKN0azrDo4bzfpf3KX3xKowYAUuWQIkS\nZocmRVSexYoJEybkejwrSTtjSrKIiOR06dIlPvroIw4dOkRYWBgDBw7E7zabV3399ddUrVqVZs2a\n5flG32Kx5Pmm/NpihYiIWa4vlub13rWw2rdvz9tvv83Fixf59ttvmTVr1g075Il4k/d+eo9aFWvR\no34PGDwY/vpXaNfO7LCkCMuzwebUqVNveKN64cIF5s6dy5kzZ7hw4YJLAryWmgmJiDtyZm7q3bs3\nxYoV489//jOrV68mODiYadOm3dZr/uMf/+CTTz7Bz8+Py5cvk5qaSs+ePdm6dSsxMTFUq1aNkydP\n0qFDB/bv35/jXOVhEXFXjs5PVquVuXPnsmbNGgC6dOnCoEGD3GJ2hXKxuNpv537j7tl3s2XQFmrv\n+g0iIowlIG7QcFbch8t3AwFITU1l+vTpzJ07l969ezN69GhTGm8qMYuIO3JmbgoNDWXPnj2AMQW5\nZcuWxMXFOez1N2zYwNSpU/nqq68YM2YMlSpV4uWXX2bSpEmkpKTc0GRTeVhE3JUz81NycjKJiYk0\ncZMmgsrF4mqPLn2UsKphvNHqJQgLg/ffh4ceMjsscTMu3Q3kjz/+YOzYsTRp0oSrV6+yY8cOJk+e\nrB1CRERc5NolH7e7/CMvWd8SvvLKK3z77bfUrVuX7777jldeecUp1xMR8QTt27cnNTWV5ORkmjdv\nzjPPPMPzzz9vdlgiLrf6l9XsOrWLl//8MowfDy1bqlAhLpHnzIoXX3yRL7/8ksGDB/Pss89StmxZ\nV8d2A1WRRcQdOTM3+fr6UqpUKfv9S5cuUbJkSft1r22Q6QrKwyLirhydn5o2bcrOnTv5+OOPSUxM\nZMKECTlmu5lJuVhc5XLGZRrPaszMbjPpeq4KdOsGe/aAvryWXLhsGYiPjw/FihXD398/1yBc/QY5\n67pKzCLibrwpN3nTWEXEszg6P4WGhrJmzRoiIiJ46623aNWqFWFhYezevdth1ygs5WJxlQkxE9h9\nejcrHllizKgYPRr69zc7LHFTLlsGkpmZyeXLlzl//vwNt4IUKp5++mkCAgIIDQ21Hxs/fjxBQUE0\na9aMZs2asXr1avtjEydOJCQkhPr169sbGYmIiIiImOH111+nS5cu1K5dm1atWnH48GFCQkIKfH50\ndDT169cnJCSEyZMn5/qckSNHEhISQpMmTez9iBITE+nQoQONGjWicePGTJ8+3SHjEblVh5MPMyN2\nBu93eR+mToVq1eCJJ8wOS7xIgRpsFsYPP/xAmTJlGDBggH263IQJEyhbtiwvvPBCjufGx8fz+OOP\ns3XrVo4fP84DDzzAwYMH8fHJWUtRFVlE3JE35SZvGquIeBZ3yk9Wq5V69eqxdu1aAgMDadmyJYsX\nL6ZBgwb250RFRTFz5kyioqLYsmULzz33HJs3b+bUqVOcOnWKpk2bkpaWRvPmzVm5cmWOc91prFI0\n2Ww2HvzsQcKDwxlT+a9w772wbRsEB5sdmrgxlzbYvB3t2rWjYsWKNxzPLfhVq1bRr18//P39CQ4O\npk6dOsTGxjorNBERERGRmzpw4AAdO3akUaNGAOzevZu33nqrQOfGxsZSp04dgoOD8ff3p2/fvqxa\ntSrHcyIjI4mIiACgdevWpKSkkJSURLVq1WjatCkAZcqUoUGDBpw4ccKBIxPJ38r9K0lISWBUq5Hw\nzDMwbpwKFeJyzmktfxMzZsxg4cKFtGjRgnfeeYcKFSpw4sQJ7rnnHvtzgoKCOH78eK7njx8/3v57\neHg44eHhTo5YRCSnmJgYYmJizA5DRESc6JlnnmHKlCkMHToUMHpY9OvXj7Fjx+Z77vHjx7nzzjvt\n94OCgtiyZUu+zzl27BgBAQH2YwkJCcTFxdG6desbrqH3xOIsF9IvMOq/o1jQYwHF/rMA0tNhxAiz\nwxI35Oz3xC4tVgwbNozXX38dgHHjxjF69Gjmzp2b63OzttK73rWJWUTEDNe/KZwwYYJ5wYiIiFNc\nvHgxR5HAYrHk2ng+N3m9j73e9TOOrz0vLS2Nxx57jGnTplGmTJkbztV7YnGWf37/T9rd1Y5w/xAY\n2wtiYsDX1+ywxA05+z2xS4sVVa/Z4mbQoEE8/PDDAAQGBpKYmGh/7NixYwQGBroyNBERERERuypV\nqnDo0CH7/eXLl1O9evUCnXv9e9vExESCgoJu+pxr3/9evXqVRx99lCeeeIIePXrczjBEbsm+3/cx\nN24ue4buhieGwvDh8L+lUCKu5rSeFbk5efKk/fcvv/zSvlNI9+7dWbJkCenp6Rw5coRffvmFVq1a\nuTI0ERERERG7mTNnMmTIEA4cOECNGjV47733+PDDDwt0bosWLfjll19ISEggPT2dzz//nO7du+d4\nTvfu3Vm4cCEAmzdvpkKFCgQEBGCz2Rg4cCANGzZk1KhRDh+XSF5sNhvDo4Yz7r5xVFv9Axw6BK++\nanZY4sWcNrOiX79+bNiwgTNnznDnnXcyYcIEYmJi2LlzJxaLhVq1ajF79mwAGjZsSO/evWnYsCF+\nfn7MmjWrwNPnREREREQcrXbt2qxbt460tDRsNhtlypRh6dKlBBegyaCfnx8zZ86kS5cuWK1WBg4c\nSIMGDezvfYcMGUK3bt2IioqiTp06lC5dmnnz5gGwadMmFi1aRFhYGM2aNQNg4sSJdO3a1WljFQFY\nvHcxZy+f5dk/9YEeTeGLL6B4cbPDEi/mtK1LnUHbNImIO/Km3ORNYxURz+Ko/JSWlsbs2bM5fPgw\njRs3ZujQoaxatYrXXnuNOnXqEBkZ6YBob49ysTjaucvnaDirIct7LafNuNlQvjxMm2Z2WOJhHJ2b\nVKwQEblN3pSbvGmsIuJZHJWfevbsSbly5WjTpg1r1qwhMTGREiVKMH36dPuWomZTLhZHGxU9irT0\nND4u0RsGD4a9eyGXxq4iN6NiheeEKyJewptykzeNVUQ8i6PyU1hYGLt37wbAarVSvXp1jh49SsmS\nJW/7tR1FuVgcaeepnXRZ1IWfB2yhcusO8NFH0KWL2WGJB3J0bnJpg00REREREXfme80Wjb6+vgQG\nBrpVoULEkTJtmTz7zbO81eEtKk+cBu3aqVAhbsOlW5eKiIiIiLiz3bt3U7ZsWfv9S5cu2e9bLBZS\nU1PNCk3E4ebvnE+mLZOBVxvDkteN5R8ibkLFChHJU0YG/PorlCpl9FkqUwa0UY+IiBRlVqvV7BBE\nXOKPi3/wj3X/YHWvVfg8NAjeew8qVTI7LBE79awQEbuMDIiLg5gYWL8eNm0y/s26cgVSUoyf5cpB\nhQpG8eJWf5YvD8WKmT1Kx/Om3ORNYxURz+JN+cmbxirOM+TrIRTzLcaMrVVg61aIjNS3UnJb1GDT\nc8IVcXtWK+zalV2c+OEHCAqCDh0gPBzat4fKlbOff/UqnDtn3FJSCvezWLHCFzsqVHDP2R3elJu8\naawi4lm8KT9501jFOWKPx9JjSQ/23/8F5To/bHxbFRRkdljiwc6fh3LlVKwwOwwRj5WZCXv2GIWJ\nmBj4/nsICMguToSHQ9Wqzru+zQYXLxa+0JGSApcvG7M7ClvscMbsDm/KTd40VhHxLN6Un7xprOJ4\n1kwrrT5uxfMtRvLEiNnQvz8MG2Z2WOJBbDY4cgR+/DH7dugQXLigYoXZYYh4DJsNfv45uzixYQPc\ncYdRnOjQwZg5Ub262VHemqtXITX19mZ3+PvnXcwozOwOb8pN3jRWEfEs3pSfvGms4ngfxH7A0vil\nxKQ+imX5cuNNoo82iZS8XbkCO3YYRYlNm4yfvr5w773Qtq1xa9oUihdXscLsMETcls0G+/cbxYn1\n643iRNmy2cWJ8HAIDDQ7SnNlze64nWLHpUs5Z3fs3Ok9uUl5WETclTflJ28aqzhWUloSjT9szKb7\nP6Nul37GJ8969cwOS9zMqVPw00/ZsyZ27oT69bMLE23bwl133bg0Wz0rPCdcEaez2eDgweyeEzEx\nUKJEzuLEXXeZHGQRlJFhzO7IKl7cfbf35CblYRFxV96Un7xprOJYESsjqFqqClPe+xnatYN//MPs\nkMRkVquxY+21SzrOnoU2bbILEy1bGjOL86NiheeEK+JwNhscPpyzOOHjk12c6NABgoNNDtILeVNu\n8qaxiohn8ab85E1jFcf5/uj3/O2Lv/FLxTco8f5MYwcQf3+zwxIXS0mBLVuyCxOxsVCjRs5ZE/Xq\nFW5lkIoVnhOuiEMcOZJdnFi/3miSmTVrokMH+NOf3G93DG/jTbnJm8YqIp7Fm/KTN41VHOOq9SrN\nZjfjX2HP0/2x1+Drr6FFC7PDEiez2YzGl9fOmkhIMP7TZxUm7rkHKlVyzPVUrPCccEUK5bffsmdN\nrF9v7H5xbXEiJETFCXfjTbnJm8YqIp7Fm/KTN41VHOOdH99hza9riI6qhCUwEKZMMTskcYJLl2Db\ntpzFiVKlcs6aCAtz3oQaFSs8J1yRAjl+PHvWREyMsUdxVmEiPNxoZqPihHvzptzkTWMVEc/iTfnJ\nm8Yqt+9Y6jGaftSUXXdOJHDcZNi92/gEKx7v+PGchYm9e6Fx4+zCRJs2EBTkunhUrPCccEVydfJk\nzp4TycnGFqJZxYlGjVSc8DTelJu8aawi4lm8KT9501jl9vVe1psmJWvx2rOLYf58uP9+s0OSQsjI\nMOpM124fevFizlkTLVpAyZLmxahiheeEKwJAUpKxhWjW7InTp+G++7IbYjZurK2tPZ035SZvGquI\neBZvyk/eNFa5PWsOr2Ho10M5uL8Tflet8PHHZockBZScDJs3Z8+a2LrVaKR/bXGiTh33+pJTxQrP\nCVe81JkzOYsTx48bO0NlFSfCwsDX1+woxZG8KTd501hFxLN4U37yprFK4V3JuELoh6HMqzyIe1+c\nZqwRqFjR7LAkF5mZcPBgziUdx45B69bZhYnWraFCBbMjvTlH5yY/h72SiJdKTobvv88uThw9Cvfe\naxQmFiyAZs1UnBARERER15ry4xSalK/HvRP+AzNmqFDhRi5cMGZKZBUmfvoJypfPLkyMGGHMvvbz\n8k/rmlkhcotSUoziRFbficOHjaSS1RSzeXMlFm/jTbnJm8YqIp7Fm/KTN41VCufI2SO0/HdLDp3u\nR4UjJ2DFCrND8lo2GyQm5pw1sW8fNGmSsxFm9epmR3r7tAzEc8KVIiI1FX74Ibsh5oEDxn7EWcWJ\nli2dt/2PeAZvyk3eNFYR8SzelJ+8aaxSON0Xd+fhK8E8M2YJ7NpVND4Je4j0dNi5M2dxIiMjZ6+J\nu++GEiXMjtTxtAxExMnS0mDjxuxlHfHx0KqVUZh47z3j9+LFzY5S5PYkJiYyYMAATp8+jcViYfDg\nwYwcOZLk5GT69OnD0aNHCQ4OZunSpVRw9wWSIiIiYhd5IJLDpw8w8JMTMHGiChVO9vvvxjKOrMLE\njh1G48u2baF7d5g0CWrVcq9GmJ5CMyvE6128aGz/k1Wc2LPHWMqRtZXoPfcUzcqnOI4n5qZTp05x\n6tQpmjZtSlpaGs2bN2flypXMmzePypUrM2bMGCZPnszZs2eZNGmS/TxPHKuIeAdvyk/eNFa5NRev\nXqTRrEasSepCyJZfYO1afUp2oMxM44vMa2dNnD5tfF7ImjXRqhWUK2d2pObQMhDPCVfc1KVLRvUz\nqzixcyc0bZq9W0ebNubuTyyepyjkph49ejBixAhGjBjBhg0bCAgI4NSpU4SHh7N//37784rCWEWk\naPKm/ORNY5VbM/a7saTG72T6+M2wZQvUrm12SB7v3DlYtsxo+7F5M1SpknNJR4MGaqafRctARG7R\n5ctGYslqiLl9O4SGGoWJN94wkkzp0mZHKWKehIQE4uLiaN26NUlJSQQEBAAQEBBAUlLSDc8fP368\n/ffw8HDCw8NdFKmISLaYmBhiYmLMDkPEbRw4c4DZ2z7iWFR9eOUVFSpuw9WrsGYNLFwI0dHwwAMw\ncKBxv0oVs6PzHppZIUVOerpRSM4qTsTGQsOG2TMn7r0XypY1O0opSjw5N6WlpdG+fXvGjRtHjx49\nqFixImfPnrU/fscdd5CcnGy/78ljFZGizZvykzeNVQrGZrPReVFnXtpfic7/PWR8U6ft6W6JzQZx\ncUZBYvFio9YzYAD07g133GF2dJ7B0bnJx2GvJGKSq1eN9WJvvw2dOkGlSjBqlDFla/RoOHHCKFhM\nngxdu6pQIZLl6tWrPProo/Tv358ePXoA2Jd/AJw8eZKqVauaGaKIiMeKjo6mfv36hISEMHny5Fyf\nM3LkSEJCQmjSpAlxcXH2408//TQBAQGEhoa6KlzxcMvil2E9foxO//4O5s5VoeIWHDtmfE5o3Bge\newzKlzea7f/4IwwdqkKFmVSsEI+TkWHMnJg0Cbp0MYoTw4fDmTPw978b+xhv3w5Tp8KDD3pvgxuR\nm7HZbAwcOJCGDRsyatQo+/Hu3buzYMECABYsWGAvYoiISMFZrVZGjBhBdHQ08fHxLF68mH379uV4\nTlRUFIcOHeKXX35hzpw5DBs2zP7YU089RXR0tKvDFg91/sp5XvjvCyz9PgDLM89AkyZmh+T2zp+H\nBQuM5R1hYXD4MMyebfycMAFCQsyOUEA9K8QDWK3GlKyshpibNkHNmsaSjqFDjWlaqniK3JpNmzax\naNEiwsLCaNasGQATJ07klVdeoXfv3sydO9e+damI3FxmptEf6dKlnLeLF288VthbZqbRwM3X1/jC\nNOv3mx27led64vk+Pu67yUFsbCx16tQhODgYgL59+7Jq1SoaNGhgf05kZCQREREAtG7dmpSUFE6d\nOkW1atVo164dCQkJJkQunmj8hvG8/HtdKv96Ar4YZ3Y4bstqhXXrjGUeX38N990HQ4bAww9r5z93\npWKFuB2rFXbvzi5O/PADBAYaxYmBA40qqBrbiNyeP//5z2RmZub62Nq1a10cjYhjZWQUvihQmAJD\nejoUL27sJHX9rVSp3I9n3SpWhBo1bv6ckiWND+ZWa/YtIyPn/byO3cpzczt2+fLtnX+717/Zc202\n488lq4DhTo4fP86dd95pvx8UFMSWLVvyfc7x48epVq1aga6hZscCsCdpD6s2L+DAAn/4fKk+dedi\nzx6jQPHpp8ZnigED4L339HnCEZzd6NjNUrt4o8xMI4lkNcT8/nuoWtUoTvTvDx9/DP/bnEBERDyM\nzWb0FnLmrIPrXyszM/8P/3ndqlYtWJHh2luJEu77DX9RZrPlLGC4085elgL+hbi+EV3sX6GTAAAX\nM0lEQVRBz4OcxQrxTjabjeFRw4ncUR/fHmHQrp3ZIbmNU6fgs8+MIkVyMjzxhDGr4prJTeIA1xdK\nJ0yY4NDXV7FCXM5mg59/NgoTMTGwYYPxzVKHDtCnD8yaZXzLJCIijmez5b5kwZkzD3x88v/An1dx\n4I47bq3YUKoU+PureOANLBZjRoW7zaoACAwMJDEx0X4/MTGRoKCgmz7n2LFjBAYGuixG8Xyf7P6E\nhnuTaLDjEiyMMjsc0128CKtWGQWKzZuhRw9jBkX79sa/Q+J53DC9S1Fisxm7cvz2m9FVNybGuJUt\nC+Hh8MgjMG0aXPfvt4iIx7LZjCnq6elw5Yrx83Z/d9RrXb5s/F6sWOFmHZQtmz3z4FZmH7jjh0kR\nZ2rRogW//PILCQkJ1KhRg88//5zFixfneE737t2ZOXMmffv2ZfPmzVSoUIEATSWVAjp76Szjo8YQ\n/4U/llkfem1H+cxM44vPTz6BL7+E1q2NZR4rVhj/Roln09sHKbQLF4xtQfO7+foa68NatzZ255gy\nxWiQKSJSGJmZ7lkIuPbm62sUBIoVM3oZ5Pb7zR7L7fcyZQr2/Pxeq0QJIz4RcR4/Pz9mzpxJly5d\nsFqtDBw4kAYNGjB79mwAhgwZQrdu3YiKiqJOnTqULl2aefPm2c/v168fGzZs4I8//uDOO+/kzTff\n5KmnnjJrOOKGxq4fy0fbqlHingbw0ENmh+Ny+/cbBYpFi4wZ2v37w9tvQ/XqZkcmjmSxXb9Yzo1Z\nLJYb1vaJ4125AidP5l18OH7c+JmebizXuP4WGJj9e/XqxjdxIkWZN+Umi8XCTz/ZXPbhP7fXtVqz\nP4A7qhBQ0N8L8jx/fxUDRMzgbbnYW8YqN9p+Yjv/mNKF1Z/54LNnrzHlzQv8/jssWWIUKY4dg7/9\nzShShIWZHZlkcXRuUrHCi2RkQFJS/kWI1FSoVi334sO1twoVtCZYBLwrN1ksFlq1srn0w//1v/v5\nKfeIyI28LRd7y1glJ2umlT/Pbs0375/mjrFvG5/Wi7DLl41tRhcuNJrwP/SQMeSOHbXE0B2pWOE5\n4bpMZiacOZN/EeLMGahcOe/iQ9atcmU1oRG5Fd6UmywWC7HHYvH18cXX4pvjp5+P3w3HbvbzVrre\ni4jkx9tysbeMVXKavW02tokTGXKhPpbVq4tk9d5mg02bjBkUy5dD06ZGH4qePTVj292pWOE54d42\nmw1SUvIvQpw6BeXL37wAUaOGsf2nKpAijudNuclisdB8dnOsNivWTOsNPzMyM/J87NqfmbZMLFgK\nVeTI+unn4+eSc1x6rUL+efhYVGEW8bZc7C1jlWy/X/id7uPr8cN/bPjt2FnkmsAdPmwUKD75xJhR\nOWCAsdTjzjvNjkwKytG5SR9dTZKWdvMCRNatePEbiw4hIcYWPNf2hShe3OwRiYi32DZ4222/hs1m\nI9OWectFjsIURq7/mZGZUfBzbFauWK9w4eoF51/rNsYGFLjIYbFYsGDJ9aePxcfhj1n43+MufMzl\nY3HBNbNuWcUpX4tvjvu5HcvvviPP0UwpEed7Zc0YFkWXwu+NMUWmUHH2LCxdaizzOHQI+vY17t99\nd5GcNCK3SMUKB7t8OffmlNcXITIyblyOERgILVvmPFa6tNkjEhFxPIvFYnyAxhfUjPK2ZdoyC1wY\nsWHDZrPl+TPTlunwx2z873EXPuassdzw2LVxOPma1kyrvciXacu038/tWH73HX0OkGeh41aKIbdz\njkhRtum3TVT5dCU1S4fA8OFmh3Nb0tNh9WpjBsW330LXrvDqq9Cli9GkWiSLihUFdPVq7s0pry9C\npKUZMx2unw3RqFHOZpXlyqlaKCIijuFj8aGYbzEVfsQ09mLGdUWMWymG3M451kwrq1hl9h+DiFNk\nZGYw/tNBfPWdFb8f5nnkllM2G2zdasyg+PxzaNDAaJT58cdG036R3Hh9sSIz09gG52YFiBMnIDkZ\nqlS5sQjx5z/nnCFxxx1qTikiIiLeJWs2hJ+P17+1FHG4mVtmMGHZGYqPfMH4BtSDHD0KixYZsyis\nVqMPRWws1KpldmTiCYpsg02bzVgDlV8RIinJqOZdvxzj+qJE1aoeWcQUERfwpkZn3jRWEfEs3pSf\nvGms3u7E+RO8PrQeH+yoTvFde409vN1caqqxi8fChbB3L/TubRQpWrfWzPKiTg02gfPn8y9CnDgB\nJUveWIBo0MDYlzfreLVqHvH/vIiIiIiIeJnxK/7Ou9E2in+z0K0/tGRkGP0nFi40+lF06ADPPQfd\numkjACk8jytWlC1rzJq4fvZDzZrQpk3OHTJKlTI7WhERERERkVv33ZHv6Dzrv5T825Nwzz1mh3MD\nmw127jSWeHz2mbG0o39/mDkTKlUyOzopCjxuGci5czbKltUUIhFxH940HdebxioinsWb8pM3jdVb\npVvTeXZkbaatSqf0/sNQpozZIdkdPw6ffmoUKdLS4IknjCJF3bpmRyZm8/plIOXKmR2BiIiIiIiI\n88xYN5G3lv1BqU++dItCRVoafPmlUaDYtg0efRQ++MDYbECbC4izeFyxQkREREREpKg6mnKUUv+c\nROmO3bB06WJaHFYrrF9v9KGIjDQKE4MGwapVRm9AEWdTsUJERERERMRNfDBzAOPi/Si7co4p19+7\n15hB8emnEBBg7OQxZYrxu4grqVghIiIiIiLiBlb/vIqBszZTfPrHLu1SmZRkNMn85BM4fdroQ/Hf\n/0KjRi4LQeQGHtdg04PCFREv4U25yZvGKiKexZvykzeN1ZtcunqJj/4ayN+u1KXq2p+cvqPApUvG\nko5PPoFNm+CvfzVmUYSHg6+vUy8tRZTXN9gUEREREREpauZ+OpqnN16gfPxypxUqMjPhhx+MAsUX\nX0DLlsZOHkuXQunSTrmkSKGpWCEiIiIiImKiQ78foNX4f5M5YQIEBTn89Q8cMAoUixZB2bIQEWH0\npqhRw+GXEnEYLQMREblN3pSbvGmsIuJZvCk/edNYvYHNZuPDJxvx8K7L3LnjkMP2Aj1zBj7/3NjN\n47ff4PHHjVkUTZo4fYWJeCktAxERERERESkior+bQ78VBykTu/O2CxVXrsA33xgFipgY6NYNJkyA\nBx4AP33yEw+jv7IiIiIiIiImSLtynhIjRpEy7CkqNmxcqNew2eCnn4xlHsuWQWio0Shz4UIoV87B\nAYu4kIoVIiIiIiIiJvj6jX60uVySmv+adcvn/vqr0YNi4ULw9zeWeGzfDjVrOiFQEROoWCEiIiIi\nIuJiB/ZtpMMHUfh+s9qoNhTA2bPG7IlPPjGaZvbtC4sXQ4sW6kMhRY8abIqI3CZvyk3eNFYR8Sze\nlJ+8aaxFlc1mY12batxRJ5S7F6296XOvXoXoaGMGxZo10LmzMYuia1coVsxFAYsUgBpsioiIiIiI\neLCYD16i3q8p1Fj7Za6P22zGko6FC2HJEqhb1+hDMWcOVKzo4mBFTOKYfXG8WExMjNkh3EAxFYy7\nxeRu8YBiEs/gjn8nFFPBKKaCUUziCdzx74S7xnTudCJ1x71H2ox38S1TNsfjv/0GEydCw4bQpw9U\nqmQ0z9y4EQYPdk6hwt3+nNwtHlBMZnFaseLpp58mICCA0NBQ+7Hk5GQ6depE3bp16dy5MykpKfbH\nJk6cSEhICPXr12fNmjXOCsvh3PEviWIqGHeLyd3iAcXkraKjo6lfvz4hISFMnjzZ7HDy5Y5/JxRT\nwSimglFMnqcgeXTkyJGEhITQpEkT4uLibulcd+SOfyfcNaZdAx/k15YhNOgzHIDUVJg3D+6/H5o1\ng6NHYe5cOHQI3ngDatd2fkzuxN3iAcVkFqcVK5566imio6NzHJs0aRKdOnXi4MGDdOzYkUmTJgEQ\nHx/P559/Tnx8PNHR0Tz77LNkZmY6KzQREcmD1WplxIgRREdHEx8fz+LFi9m3b5/ZYYmIeIyC5NGo\nqCgOHTrEL7/8wpw5cxg2bFiBzxXP9seBOEK+/5l6//6G6Gj429/grrtg1SoYPhxOnICPPoK2bdUw\nU8RpPSvatWtHQkJCjmORkZFs2LABgIiICMLDw5k0aRKrVq2iX79++Pv7ExwcTJ06dYiNjeWee+5x\nVngiIpKL2NhY6tSpQ3BwMAB9+/Zl1apVNGjQwNzAREQ8REHyaGRkJBEREQC0bt2alJQUTp06xZEj\nRwqcg/fWr37jxfPoa2fJ64E8GuFZbtofL/cHz/xxgX2Lctl+M69r5BlT7octhWja98fZixycPz2X\n18rrjFv987Dd5M88d6VPpfLvh4fy4T21uesuo1HmtGlQuXJe1xDxYjYnOnLkiK1x48b2+xUqVLD/\nnpmZab8/YsQI26JFi+yPDRw40LZ8+fIbXg8jHeimm266ud2tqFi2bJlt0KBB9vuffPKJbcSIEfb7\nZv8566abbrrd7OYO8sujNpvN9tBDD9k2bdpkv9+xY0fbtm3bbMuXL8/3XJtNuVg33XRz35sjmbYb\niOX/27vfmKoKB4zjDyKuxNTZAuneFnnxXrzXO0yQMnvBZo6V81ayMbS1lb4wa5W+oHTVxvqrzdzY\nnKsXygi3SMdarfyTmxW5EpZSK2rrNg9/Ll4MmZYgdQOe3wvH+XkDiVvncE75fLY24XLi61GeuTM4\nJy0NaeN8b9NYr1GPaBIRsdV4uwxoh0VE/spf7eiIf7Kn2mIRuRZM6tNAsrOz0d3dDQCIx+PIysoC\nAHg8HnR2dpofF4vF4PF4JjNNREQweo87Ozvh9XodLBIR+XeZyI6O9W9fr9erDRYRucKkXqyIRCKo\nra0FANTW1uKBBx4w319fX49EIgHDMBCNRlFcXDyZaSIiAqCoqAjRaBRtbW1IJBJ49913EYlEnM4S\nEfnXmMiORiIRvP322wCAEydOYPbs2cjOztYGi4hcwbYfA1mzZg0+++wznDt3DrfccgtefPFFbNmy\nBeXl5dizZw9yc3Oxf/9+AEAwGER5eTmCwSCmTp2K3bt3T/hb6ERExDpTp07Frl27UFpaiqGhIaxf\nv1431xQRScHVdvStt94CAGzYsAH33XcfDh48iLy8PGRmZqKmpmbcY0VErkmW3gHjb3j00UeZlZWV\ndCPOr7/+mnfeeSfD4TBXrVrFX3/9lSS5b98+Llq0yPxvypQp/Oabb0iSX331FRcuXMi8vDw+9dRT\nk9IzMDDAiooKhsNhLliwgK+99pp5jFU9qTb9/vvvfOSRRxgOh1lQUMBPP/3UlqaOjg6WlJQwGAwy\nFAqxurqaJNnb28t77rmH8+fP54oVK3j+/HnzmFdffZV5eXkMBAI8cuSI5V2pNvX29rKkpIQzZswY\ndfMqp5o+/vhjFhYWMhwOs7CwkMeOHXO8qampyfyaC4fDrK+vd7xpRHt7OzMzM7ljxw7HmwzD4HXX\nXWeeq40bN1reZBe37XCqTdpibbGVPdph7bBT3LbF2uGJ0Q7b06Qt1haTpOMXKxobG3nq1Kmk0Skq\nKmJjYyNJcu/evXzhhRdGHfftt9/S5/OZby9ZsoRNTU0kyXvvvZeHDh2yvaempoYVFRUkyUuXLjE3\nN5ft7e2W9qTatGvXLq5bt44k+fPPP7OwsNA8xsqmeDzOlpYWkuTFixfp9/v5/fffs7Kyktu3bydJ\nbtu2jc8++yxJsrW1lQUFBUwkEjQMgz6fj8PDw5Z2pdrU39/P48eP88033xw1zE41tbS0MB6PkyS/\n++47ejwex5suXbrEoaEh89gbb7yRg4ODjjaNKCsrY3l5edIwO9X056cfXcnKrz07uG2HU23SFmuL\nrezRDmuHneK2LdYOT4x22J4mbbG2mHTBxQpy9G9o1qxZ5q87OjoYDAZHHbN161Y+//zzJMkzZ84w\nPz/ffO2dd97hhg0bbO85fPgwV61axcHBQfb09NDv9/P8+fOW96TS9MQTT7Curs58bfny5Wxubral\n6Ur3338/jx49ykAgwO7ubpKX/2IHAgGSl68gb9u2zfz40tJSfvnll7Z2/VXTiJqamqRhdkMTefnx\nvnPmzGEikXBN0+nTpzlv3jySzp+n9957j5WVlayqqjKH2cmmqw2z3V97VnHbDqfSpC3+P22xdT2k\ndlg7PPnctsXa4dRph61tIrXF1/IWT+oNNicqFArh/fffBwAcOHAg6a7II/bv3481a9YAALq6upLu\nlOzxeNDV1WV7T2lpKWbOnImcnBzk5uaisrISs2fPtr1nvKaCggJ88MEHGBoagmEYOHnyJGKxmK1N\nbW1taGlpwR133IGzZ88iOzsbwOWnv5w9exYAcObMmaTP7/V60dXVNer9VnVNpGnEn++PYte5SqUJ\nABoaGlBYWIiMjAzHm5qbmxEKhRAKhbBz504Azp6nvr4+vP7666iqqko61unzZBgGbr/9dpSUlOD4\n8eO2NtnNbTs8XpO2+DJtsbU9gHZYO+w8t22xdnh82mHrmwBt8bW8xa68WLF3717s3r0bRUVF6Ovr\nw7Rp05Jeb2pqwvTp0xEMBh3t2bdvHwYGBhCPx2EYBnbs2AHDMBxtWrduHbxeL4qKirB582bcdddd\nSE9Pt+2GpX19fSgrK0N1dTVuuOGGpNfS0tIcuVHqf6GptbUVW7ZsMW/G5XRTcXExWltbcerUKTz9\n9NP45ZdfHG2qqqrC5s2bMX36dNufNT/RpptvvhmdnZ1oaWnBzp07sXbtWly8eNHWNju5bYfHa9IW\n/zd2z2092mHtsBu4bYu1w1fnts37rzRpi6/tLbbtaSD/RCAQwJEjRwAAP/74Iz766KOk1+vr67F2\n7VrzbY/Hg1gsZr4di8Xg8Xhs6zl48CAA4IsvvsCDDz6I9PR03HTTTVi2bBlOnjyJu+++29aesZpG\nzlF6erp5lQ8Ali1bBr/fj1mzZlne9Mcff6CsrAwPP/yw+Rja7OxsdHd3Y+7cuYjH48jKygIw/vPE\nrexKpelqnG6KxWJYvXo16urqcNttt7miaUR+fj58Ph9++ukneL1ex5qam5vR0NCAZ555BhcuXMCU\nKVNw/fXXY/Xq1Y41TZs2zfwH0uLFi+Hz+RCNRm3fJ7u4bYfHatIWX6Yttr5HO6wddgu3bbF2eGza\nYXuatMXaYld+Z0VPTw8AYHh4GC+//DI2btxovjY8PIwDBw6goqLCfF9OTg5mzpyJpqYmkERdXZ15\nEu3oeeyxxwBc/kt67NgxAEB/fz9OnDiB/Px8zJ0719aesZpGztHAwAD6+/sBAEePHkVGRgby8/Mt\nP0cksX79egSDQWzatMl8fyQSQW1tLQCgtrbW/ByRSAT19fVIJBIwDAPRaBTFxcWWnqtUm6487kpW\nnqtUmy5cuICVK1di+/btWLp0qSua2traMDg4CABob29HNBrF/PnzHf2za2xshGEYMAwDmzZtwnPP\nPYfHH3/c0aZz585haGgIAHD69GlEo1HMmzfP9n2yi9t2eKwmbbG22I4e7bB22E3ctsXa4dG0w/Y0\naYu1xSOf3FEVFRXMyclhRkYGvV4v9+zZw+rqavr9fvr9fm7dujXp4z/55BMuXbp01P9n5DEoPp+P\nTz755KT0/Pbbb3zooYe4cOFCBoPBMR8V8097Um0yDIOBQIALFizgihUr2NHRYUvT559/zrS0NBYU\nFJiPpTl06BB7e3u5fPnyMR+r88orr9Dn8zEQCPDw4cOWd/2dpltvvZVz5szhjBkz6PV6+cMPPzja\n9NJLLzEzMzPpcWQ9PT2ONtXV1TEUCnHRokVcsmRJ0l17nfyzG1FVVcU33njD8aaGhgbzPC1evJgf\nfvih5U12cdsOp9qkLdYWW9mjHdYOO8VtW6wdnhjtsD1N2mJtMUmmkTb/cIuIiIiIiIiISApc+WMg\nIiIiIiIiInLt0sUKEREREREREXEVXawQEREREREREVfRxQoRERERERERcRVdrBARERERERERV9HF\nChERERERERFxlf8BtCYpUO68XD0AAAAASUVORK5CYII=\n"
}
],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"basoutput_1_npyld"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DINyld</th>\n",
" <th>DIPyld</th>\n",
" <th>DONyld</th>\n",
" <th>DOPyld</th>\n",
" <th>PNyld</th>\n",
" <th>PPyld</th>\n",
" <th>basinid</th>\n",
" <th>scenario</th>\n",
" <th>year</th>\n",
" <th>TNyld</th>\n",
" <th>TPyld</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 114.465294</td>\n",
" <td> 14.808620</td>\n",
" <td> 257.047516</td>\n",
" <td> 13.802054</td>\n",
" <td> 298.917570</td>\n",
" <td> 127.649034</td>\n",
" <td> 1</td>\n",
" <td> c</td>\n",
" <td> 1970</td>\n",
" <td> 670.430379</td>\n",
" <td> 156.259709</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 122.558266</td>\n",
" <td> 16.179745</td>\n",
" <td> 243.116318</td>\n",
" <td> 13.134938</td>\n",
" <td> 281.660123</td>\n",
" <td> 120.280974</td>\n",
" <td> 1</td>\n",
" <td> c</td>\n",
" <td> 2000</td>\n",
" <td> 647.334706</td>\n",
" <td> 149.595657</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 142.632462</td>\n",
" <td> 18.145676</td>\n",
" <td> 236.836594</td>\n",
" <td> 12.887953</td>\n",
" <td> 265.506498</td>\n",
" <td> 113.584564</td>\n",
" <td> 1</td>\n",
" <td> g</td>\n",
" <td> 2030</td>\n",
" <td> 644.975553</td>\n",
" <td> 144.618192</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 139.427444</td>\n",
" <td> 17.684406</td>\n",
" <td> 230.408676</td>\n",
" <td> 12.530482</td>\n",
" <td> 256.198258</td>\n",
" <td> 109.800094</td>\n",
" <td> 1</td>\n",
" <td> g</td>\n",
" <td> 2050</td>\n",
" <td> 626.034379</td>\n",
" <td> 140.014983</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"output_type": "pyout",
"prompt_number": 8,
"text": [
" DINyld DIPyld DONyld DOPyld PNyld PPyld \\\n",
"0 114.465294 14.808620 257.047516 13.802054 298.917570 127.649034 \n",
"0 122.558266 16.179745 243.116318 13.134938 281.660123 120.280974 \n",
"0 142.632462 18.145676 236.836594 12.887953 265.506498 113.584564 \n",
"0 139.427444 17.684406 230.408676 12.530482 256.198258 109.800094 \n",
"\n",
" basinid scenario year TNyld TPyld \n",
"0 1 c 1970 670.430379 156.259709 \n",
"0 1 c 2000 647.334706 149.595657 \n",
"0 1 g 2030 644.975553 144.618192 \n",
"0 1 g 2050 626.034379 140.014983 "
]
}
],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"basinput_1_dam"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Ddin0to1</th>\n",
" <th>Ddip0to1</th>\n",
" <th>Dsed0to1</th>\n",
" <th>basinid</th>\n",
" <th>scenario</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 0.00014</td>\n",
" <td> 0.00026</td>\n",
" <td> 0.00030</td>\n",
" <td> 1</td>\n",
" <td> c</td>\n",
" <td> 1970</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 0.00014</td>\n",
" <td> 0.00028</td>\n",
" <td> 0.00032</td>\n",
" <td> 1</td>\n",
" <td> c</td>\n",
" <td> 2000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 0.01175</td>\n",
" <td> 0.05264</td>\n",
" <td> 0.04961</td>\n",
" <td> 1</td>\n",
" <td> g</td>\n",
" <td> 2030</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 0.01655</td>\n",
" <td> 0.07415</td>\n",
" <td> 0.07644</td>\n",
" <td> 1</td>\n",
" <td> g</td>\n",
" <td> 2050</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"output_type": "pyout",
"prompt_number": 9,
"text": [
" Ddin0to1 Ddip0to1 Dsed0to1 basinid scenario year\n",
"0 0.00014 0.00026 0.00030 1 c 1970\n",
"0 0.00014 0.00028 0.00032 1 c 2000\n",
"0 0.01175 0.05264 0.04961 1 g 2030\n",
"0 0.01655 0.07415 0.07644 1 g 2050"
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment