Skip to content

Instantly share code, notes, and snippets.

@emiliom
Last active November 23, 2020 09:21
Show Gist options
  • Save emiliom/aaea46ea695661504ec3e23fd1e265ee to your computer and use it in GitHub Desktop.
Save emiliom/aaea46ea695661504ec3e23fd1e265ee to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Access EVI from MODIS Subset Tool online package\n",
"- Sample Subset Tool package: http://daacmodis.ornl.gov/glb_viz_3/30Mar2016_12:10:50_607958470L40.11384L-75.19914S41L41_MOD13Q1/csv/statistics_250m_16_days_EVI.asc\n",
"- Includes some code from Nanxi Lu \n",
"4/4,1, 3/31/2016"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mayorga/miniconda/envs/bigcz/lib/python2.7/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.\n",
" warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')\n"
]
}
],
"source": [
"#%matplotlib inline # or nbagg | notebook\n",
"%matplotlib inline\n",
"import requests\n",
"import urlparse\n",
"import datetime\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"import seaborn as sns"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"matplotlib.style.use('ggplot')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# IML\n",
"# 01Apr2016_10:56:57_210106385L41.7296L-91.7373S9L9_MOD13Q1\n",
"# My original \"CRB\" test subset\n",
"# 30Mar2016_12:10:50_607958470L40.11384L-75.19914S41L41_MOD13Q1\n",
"\n",
"url_tmplt = \"http://daacmodis.ornl.gov/glb_viz_3/%s/csv/%s.asc\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"datapack = \"01Apr2016_10:56:57_210106385L41.7296L-91.7373S9L9_MOD13Q1\"\n",
"statsasc = \"statistics_250m_16_days_EVI\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# url = urlparse.urljoin(url_base, datapack, statsasc)\n",
"url = url_tmplt % (datapack, statsasc)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"#r = requests.get(url)\n",
"#r.content"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Can read url directly; but using requests would be safer,\n",
"# allow for better error testing\n",
"df = pd.read_csv(url, parse_dates=['date'])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>date[YYYYDDD]</th>\n",
" <th>date</th>\n",
" <th>product</th>\n",
" <th>band</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>sum</th>\n",
" <th>range</th>\n",
" <th>mean</th>\n",
" <th>variance</th>\n",
" <th>standard_deviation</th>\n",
" <th>tot_pixels</th>\n",
" <th>pixels_pass_qa</th>\n",
" <th>per_cent_pixels_pass_qa</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>A2000049</td>\n",
" <td>2000-02-18</td>\n",
" <td>MOD13Q1</td>\n",
" <td>250m_16_days_EVI</td>\n",
" <td>0.1169</td>\n",
" <td>0.2235</td>\n",
" <td>13.6649</td>\n",
" <td>0.1066</td>\n",
" <td>0.1687</td>\n",
" <td>0.0004</td>\n",
" <td>0.0198</td>\n",
" <td>81</td>\n",
" <td>81</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>A2000065</td>\n",
" <td>2000-03-05</td>\n",
" <td>MOD13Q1</td>\n",
" <td>250m_16_days_EVI</td>\n",
" <td>0.1448</td>\n",
" <td>0.3125</td>\n",
" <td>16.0559</td>\n",
" <td>0.1677</td>\n",
" <td>0.1982</td>\n",
" <td>0.0011</td>\n",
" <td>0.0333</td>\n",
" <td>81</td>\n",
" <td>81</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>A2000081</td>\n",
" <td>2000-03-21</td>\n",
" <td>MOD13Q1</td>\n",
" <td>250m_16_days_EVI</td>\n",
" <td>0.1603</td>\n",
" <td>0.4715</td>\n",
" <td>21.4342</td>\n",
" <td>0.3112</td>\n",
" <td>0.2646</td>\n",
" <td>0.0047</td>\n",
" <td>0.0689</td>\n",
" <td>81</td>\n",
" <td>81</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>A2000097</td>\n",
" <td>2000-04-06</td>\n",
" <td>MOD13Q1</td>\n",
" <td>250m_16_days_EVI</td>\n",
" <td>0.0272</td>\n",
" <td>0.4950</td>\n",
" <td>19.5573</td>\n",
" <td>0.4678</td>\n",
" <td>0.2414</td>\n",
" <td>0.0113</td>\n",
" <td>0.1061</td>\n",
" <td>81</td>\n",
" <td>81</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>A2000113</td>\n",
" <td>2000-04-22</td>\n",
" <td>MOD13Q1</td>\n",
" <td>250m_16_days_EVI</td>\n",
" <td>0.1892</td>\n",
" <td>0.6563</td>\n",
" <td>29.2063</td>\n",
" <td>0.4671</td>\n",
" <td>0.3606</td>\n",
" <td>0.0112</td>\n",
" <td>0.1058</td>\n",
" <td>81</td>\n",
" <td>81</td>\n",
" <td>100</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" date[YYYYDDD] date product band min max \\\n",
"0 A2000049 2000-02-18 MOD13Q1 250m_16_days_EVI 0.1169 0.2235 \n",
"1 A2000065 2000-03-05 MOD13Q1 250m_16_days_EVI 0.1448 0.3125 \n",
"2 A2000081 2000-03-21 MOD13Q1 250m_16_days_EVI 0.1603 0.4715 \n",
"3 A2000097 2000-04-06 MOD13Q1 250m_16_days_EVI 0.0272 0.4950 \n",
"4 A2000113 2000-04-22 MOD13Q1 250m_16_days_EVI 0.1892 0.6563 \n",
"\n",
" sum range mean variance standard_deviation tot_pixels \\\n",
"0 13.6649 0.1066 0.1687 0.0004 0.0198 81 \n",
"1 16.0559 0.1677 0.1982 0.0011 0.0333 81 \n",
"2 21.4342 0.3112 0.2646 0.0047 0.0689 81 \n",
"3 19.5573 0.4678 0.2414 0.0113 0.1061 81 \n",
"4 29.2063 0.4671 0.3606 0.0112 0.1058 81 \n",
"\n",
" pixels_pass_qa per_cent_pixels_pass_qa \n",
"0 81 100 \n",
"1 81 100 \n",
"2 81 100 \n",
"3 81 100 \n",
"4 81 100 "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Drop date[YYYYDDD], product, band and tot_pixels. The last three are metadata\n",
"# that should be preserved elsewhere, as single values for the whole data frame\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 365 entries, 0 to 364\n",
"Data columns (total 14 columns):\n",
"date[YYYYDDD] 365 non-null object\n",
"date 365 non-null datetime64[ns]\n",
"product 365 non-null object\n",
"band 365 non-null object\n",
"min 363 non-null float64\n",
"max 363 non-null float64\n",
"sum 363 non-null float64\n",
"range 363 non-null float64\n",
"mean 363 non-null float64\n",
"variance 363 non-null float64\n",
"standard_deviation 363 non-null float64\n",
"tot_pixels 365 non-null int64\n",
"pixels_pass_qa 365 non-null int64\n",
"per_cent_pixels_pass_qa 365 non-null float64\n",
"dtypes: datetime64[ns](1), float64(8), int64(2), object(3)\n",
"memory usage: 42.8+ KB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>product</th>\n",
" <th>band</th>\n",
" <th>tot_pixels</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>MOD13Q1</td>\n",
" <td>250m_16_days_EVI</td>\n",
" <td>81</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" product band tot_pixels\n",
"0 MOD13Q1 250m_16_days_EVI 81"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Just to print out the \"metadata\" columns before they're dropped\n",
"df[['product', 'band', 'tot_pixels']].head(1)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# axis=1 corresponds to columns; use it to drop columns rather than rows\n",
"df.drop(['date[YYYYDDD]', 'product', 'band', 'tot_pixels'], axis=1, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# utc=True, \n",
"#df['dtutc'] = pd.to_datetime(df['date'], infer_datetime_format=True)\n",
"df.set_index('date', inplace=True, drop=False)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"df['year'] = df.date.dt.year\n",
"df['month'] = df.date.dt.month\n",
"df['day'] = df.date.dt.day\n",
"df['doy'] = df.date.dt.dayofyear"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"DatetimeIndex: 365 entries, 2000-02-18 to 2016-02-02\n",
"Data columns (total 14 columns):\n",
"date 365 non-null datetime64[ns]\n",
"min 363 non-null float64\n",
"max 363 non-null float64\n",
"sum 363 non-null float64\n",
"range 363 non-null float64\n",
"mean 363 non-null float64\n",
"variance 363 non-null float64\n",
"standard_deviation 363 non-null float64\n",
"pixels_pass_qa 365 non-null int64\n",
"per_cent_pixels_pass_qa 365 non-null float64\n",
"year 365 non-null int64\n",
"month 365 non-null int64\n",
"day 365 non-null int64\n",
"doy 365 non-null int64\n",
"dtypes: datetime64[ns](1), float64(8), int64(5)\n",
"memory usage: 42.8 KB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>date</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>sum</th>\n",
" <th>range</th>\n",
" <th>mean</th>\n",
" <th>variance</th>\n",
" <th>standard_deviation</th>\n",
" <th>pixels_pass_qa</th>\n",
" <th>per_cent_pixels_pass_qa</th>\n",
" <th>year</th>\n",
" <th>month</th>\n",
" <th>day</th>\n",
" <th>doy</th>\n",
" </tr>\n",
" <tr>\n",
" <th>date</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2000-02-18</th>\n",
" <td>2000-02-18</td>\n",
" <td>0.1169</td>\n",
" <td>0.2235</td>\n",
" <td>13.6649</td>\n",
" <td>0.1066</td>\n",
" <td>0.1687</td>\n",
" <td>0.0004</td>\n",
" <td>0.0198</td>\n",
" <td>81</td>\n",
" <td>100</td>\n",
" <td>2000</td>\n",
" <td>2</td>\n",
" <td>18</td>\n",
" <td>49</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2000-03-05</th>\n",
" <td>2000-03-05</td>\n",
" <td>0.1448</td>\n",
" <td>0.3125</td>\n",
" <td>16.0559</td>\n",
" <td>0.1677</td>\n",
" <td>0.1982</td>\n",
" <td>0.0011</td>\n",
" <td>0.0333</td>\n",
" <td>81</td>\n",
" <td>100</td>\n",
" <td>2000</td>\n",
" <td>3</td>\n",
" <td>5</td>\n",
" <td>65</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2000-03-21</th>\n",
" <td>2000-03-21</td>\n",
" <td>0.1603</td>\n",
" <td>0.4715</td>\n",
" <td>21.4342</td>\n",
" <td>0.3112</td>\n",
" <td>0.2646</td>\n",
" <td>0.0047</td>\n",
" <td>0.0689</td>\n",
" <td>81</td>\n",
" <td>100</td>\n",
" <td>2000</td>\n",
" <td>3</td>\n",
" <td>21</td>\n",
" <td>81</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2000-04-06</th>\n",
" <td>2000-04-06</td>\n",
" <td>0.0272</td>\n",
" <td>0.4950</td>\n",
" <td>19.5573</td>\n",
" <td>0.4678</td>\n",
" <td>0.2414</td>\n",
" <td>0.0113</td>\n",
" <td>0.1061</td>\n",
" <td>81</td>\n",
" <td>100</td>\n",
" <td>2000</td>\n",
" <td>4</td>\n",
" <td>6</td>\n",
" <td>97</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2000-04-22</th>\n",
" <td>2000-04-22</td>\n",
" <td>0.1892</td>\n",
" <td>0.6563</td>\n",
" <td>29.2063</td>\n",
" <td>0.4671</td>\n",
" <td>0.3606</td>\n",
" <td>0.0112</td>\n",
" <td>0.1058</td>\n",
" <td>81</td>\n",
" <td>100</td>\n",
" <td>2000</td>\n",
" <td>4</td>\n",
" <td>22</td>\n",
" <td>113</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" date min max sum range mean variance \\\n",
"date \n",
"2000-02-18 2000-02-18 0.1169 0.2235 13.6649 0.1066 0.1687 0.0004 \n",
"2000-03-05 2000-03-05 0.1448 0.3125 16.0559 0.1677 0.1982 0.0011 \n",
"2000-03-21 2000-03-21 0.1603 0.4715 21.4342 0.3112 0.2646 0.0047 \n",
"2000-04-06 2000-04-06 0.0272 0.4950 19.5573 0.4678 0.2414 0.0113 \n",
"2000-04-22 2000-04-22 0.1892 0.6563 29.2063 0.4671 0.3606 0.0112 \n",
"\n",
" standard_deviation pixels_pass_qa per_cent_pixels_pass_qa year \\\n",
"date \n",
"2000-02-18 0.0198 81 100 2000 \n",
"2000-03-05 0.0333 81 100 2000 \n",
"2000-03-21 0.0689 81 100 2000 \n",
"2000-04-06 0.1061 81 100 2000 \n",
"2000-04-22 0.1058 81 100 2000 \n",
"\n",
" month day doy \n",
"date \n",
"2000-02-18 2 18 49 \n",
"2000-03-05 3 5 65 \n",
"2000-03-21 3 21 81 \n",
"2000-04-06 4 6 97 \n",
"2000-04-22 4 22 113 "
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAE7CAYAAAB9iONsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWuUJMd5HXijup5d1dVd/ZhHDzCDwRBDkCAB8TEiSK1I\nUYJ0TMtHotfalQlZJCTINr2S6LO0tfQRD0CKHNqUJZviEZeULO+CAC3KElbHlEjJMpcUZvXgQyIJ\niBgMHoMZYB7d0z39qu6u9yNjf0RGVnZ1PTIivsjqmc77Z6a7qyoyKzMjvrjf/e7HOOccESJEiBAh\nQoQIISE26gOIECFChAgRIuwvRMFHhAgRIkSIECFURMFHhAgRIkSIECFURMFHhAgRIkSIECFURMFH\nhAgRIkSIECFURMFHhAgRIkSIECFUxHXf+Oijj+L8+fNgjOGBBx7AiRMnAADr6+v4zd/8Te91y8vL\n+Kmf+il83/d9n/nRRogQIUKECBFueDAdn49z587hi1/8Ij7wgQ9gYWEBn/nMZ3D69Oldr3McB7/y\nK7+CX/7lX0YqlSI54AgRIkSIECHCjQ2ttMvZs2dx6tQpAMCRI0dQLpdRq9V2ve7MmTN405veFAUe\nESJEiBAhQgQPWsFHsVhEPp/3fs7n8ygWi7te99WvfhU/+IM/qH90ESJEiBAhQoSbDiSC016Zmxde\neAFHjhxBOp2mGCJChAgRIkSIcJNAK/goFAo7mI6NjQ1MTU3teM13vvMd3H333WZHFyFChAgRIkS4\n6aBV7XLPPffg8ccfx3333YeLFy9ienp6F8Nx4cIF5QqXxcVFncO54TA/P79vzrUb0blH577fEJ17\ndO77DfLc5+fn+75GK/g4efIkjh8/joceegixWAwPPvggzpw5g2w26wlRi8UiJicn9Y48QoQIESJE\niHDTQtvn4/7779/x89GjR3f8/Gu/9mu6Hx0hQoQIESJEuIkROZxGiBAhQoQIEUJFFHxEiBAhQoQI\nEUJFFHxEiBAhQoQIEUJFFHxEiBAhQoQIEUJFFHxEiBAhQoQIEUJFFHxEiBAhQoQIEUJFFHxEiBAh\nwh4HL66BO86oDyNCBDJEwUeECBEiDAG/+DycJ/50NGMvXYXzSz8DPqLxI0SwgSj4iBAhQoQhcL70\n++Cf/y3w0lb4gy9fE/+uXw9/7AgRLCEKPiJEiBBhGGTQUSmFPjSXYzYaoY8dIYItRMHHDQz+rb+C\n81u/Ct5uj/pQIkS4uVF2A4BqZQRjb4t/G/Xwx44QwRKi4OMGhvO1Pwf/9l8DG6ujPpQIEW5uVNwA\noFIOf2wZ+DQj5mO/gV9fBOd81IdhBVHwcYOBOw74wmXxw8aa+DealCJEsAbuOEDZDTqqowg+RODD\nI+ZjX4E/9104H3wv8OQ3Rn0oVhAFHzcanvomnA//AvjZbwNFl/GIJqUIEeyhWgG4KHPlI0m7SM1H\n9JzvJ/ArL4l/V5dGfCR2EAUfNxj46rL498VngZJLBdejSelmBl9bAV9fGfVh7F9IzQUwkrQLlymf\niOHcX5Dp9FpttMdhCfFRH0AERdSqAAB+/pnO70KclJxv/n9guTzYXa8Lbcz9DuffPAgAGPudPx7x\nkYwGnHOg3QaLj2i6KvsqXEaSdomqXfYliuvi38bNGXzc8MwHd9rg2yOovR8V6u6NePGFzu9CpGP5\n5z4N5/H/O7TxInTAi2ujGZdzOH/0u+BnvzOa8b/8BTj/6qfB/QxEmPCPG1W7RAgJXDIf9Sj42JPg\nf/gYnA/8LPgoVOijQF0wH2g1vV+FJUTjnIvxN9dDGS8CdirdLzwH5y/+DPza1XAPYnkR/Eu/D+fL\n/y3ccSWuviTSHUsLIxmejzjtElW77FPIgoKbNO1y4wcfywvioSxtjvpQwkGvKDisHZGc/Erb4K1W\nOGPud/gWHOdP/kAwT1/4L6EeAn/5vPjPVjHUcb3x5f09qqDXF3zwkNMu3HE6xmYR87FvwB0HcJlO\nHqVd9ijkxNBsDn7dTQLuaj52IKxcsH/ntb1Pgr1Rw3+9XfU7ZDAQFkYcfMhFl2+OaPwdmo+Q0y7V\nCiDZr0jzsX+wvQlI88iI+dij2G+UZC/moxnSjsg/+W1thDPmfkevYHN9BTzEQMBjPkpbo3HT3UPM\nR+hpF//YYT3nEUYPv3FkiMwHX18Ff+bJUMa68YMPSUnuE+aj52IUWtrFN85mFHyEgu7rPXdI/Hvp\nQijD83YbuHLR/YGPhvGSpeSjYl7kBoex8Ktd/KyL40Tpzv2CDZ+4PETmw3nkN+D8xofAn/6W9bFu\n6OCDc+5Lu+wT5mOUwYeP+Qhz572v4TJd7C0/BPa/PojYTzwAAOCXQkq9LF7uYrxGcN1l2qU4GubD\nE5xOzYSfdumu8AlLXP70t9A+/X7w58+GMl6EneAjYj5w4TkAgPPF/2rd1l27cP7RRx/F+fPnwRjD\nAw88gBMnTnh/W1tbwyc/+Um0220cP34cP/dzP0dysLvQqANyJ7BfmI96DRjPikkwmxNGY6PQfIyI\n+eCVMpyP/x9gP/AOxH7wH4zkGEKFDDYPHUHsh3/cK7flYTEfl14U/5meA9ZXRhp8jI752AbG4kBh\nBrj0IjjnYIxZH5avLoOvdLlbNhsAsvbH/u7fApdehPPrvwz2rn+2P561vQR/WX2YpbZT08DKEvDS\nC+BffwLsLT9obSgt5uPcuXNYWlrC6dOn8d73vhePPPLIjr8/9thj+LEf+zF87GMfQywWw9qaJX8C\nPyXZ2kfBR2EW7MH3g73rn4vfjYD5GFnlwzPfAa5dAX/uuyMZP2x4AuN0BgDApmbEBBGW6FQGmcfv\nEMczCq3PyDUfJRHoZ8aFCDCEYJ+3WnBOvx/8878lfpFMin/DetZ9u17+e/8Jzh//XjjjRhCQaZfx\nbGjBB+dcPGPJJJBKgz/yG3Ce+FNr42kFH2fPnsWpU6cAAEeOHEG5XEbNzUtxzvHcc8/hDW94AwDg\nZ3/2ZzEzM0N0uF2o+Erg9kvapV4FUmnE3vQ2sJN3id+Fde57QfMhc5GjMpwKGzWX5k9lOr87cgwo\nroOHMSm5aQZ28Ij4ecTMB3ec8McvbwPZCbDxnPg5DN3HyrWd9/iUO4eGxnKKzVzs/R8FpmfBv/T7\nUWO7EOGlGA/MA/VaOJ1tqxVxf915D2If+FVgPAf+RXtBp1bwUSwWkc/nvZ/z+TyKRTEpbW1tIZ1O\n47Of/SwefvhhfP7zn6c50l7wMx/7IPjgraZIM7m7YCRT4vej0Hxsh78IccfpuGyW9knw4ZrKsXTa\n+xWbmhb/CYMJkMGPDD5CLnflnHeCD8cBSuG6GYuOtj7mAwgn+Fi8vPNnec3DqniR8+nhW8Hu/l7R\nWO/alXDGjiDmt1QGyE0IFiqM9c2dT9hkAezW48CJO4HtTXBLzxxJswR/VMY5x/r6On70R38Us7Oz\n+PjHP44nn3wSr3vd8F4g8/PzSuNWXnoOMqEzmR3HhOL7RwnVcwWA9vYmFgFkJguYnZ8HbzZwFUCK\nAQdCOPfy8+OQy128vI3DmmPqnDsA1J8/i+tutUWsWtb+nFFC9Zg3kwlsAZg5cgvS7ns3bzkmfheP\neb+zhTVwVADMveYeXAeQadUxE+J15406rvrml7lUAsmQrjtvNlD8z59AiTvIHJxHfO4AtgHMZseR\nUjwG5et+ZgNbgKiw4RzZE69E+YVnMJvPK4+tg9WxGKoADt96FJW77sbGmT/FVGkTWY2xb8TnlAq6\n575YrwCTU0hOTqEK4FBhCmOTBdqD60Lt+lWsAJi49Rgm5+dRvONV2H76W5ht1pCav1P584adu1bw\nUSgUPKYDADY2NjA1NQVAsCAHDhzAgQMHAACvec1rcOXKlUDBx+LiotJxOFc7u4PN1RVsK75/VJif\nn1c+V0B0NwWAGhffFeccYDHUt7e1Pk8VzvVl7/+t9VWtMXXPHQCcr/yJ+A9jcLY2sbCwEIrwjwo6\n5+5cvw4AWCtVwNz3OmMi/7/64guITR+iPcgutNdFeL8aSwAAKkuLqId43bv7uaycfx4sZV9wCQDO\nmf8O/qXHgUO3oP4j/xC1J78BAFi9fAksHzyVrHPu7edElUnsY78NjI2h8vUnxNiLC2DTB5U+Swdt\nt1/WtbU1ICfm9o1nnsLmXW9Q+hyT531U4Btr4Ge/Dfbmt4PFE9qfY3Lu7c0icOgIam6WcenSy2Cz\nPSodCeFcEDqy7bEEyouLcCbEdV95+knECgeUPkue+6AARCvtcs899+Cb3/wmAODixYuYnp5G2qWF\nY7EYDhw4gKWlJe/v1JEvX7iM9q9+AHj5xc4v90O1iyc+FN81Y0yIg0YhOK1WQs0Bc8cB/8YTIuV0\n8jVAu9Xpc3MzQ55jetz7lZd2CaP0tFoGWAzITgjxW9iaj/rOeyxUwaub+oj93PvB5o+K80dIFuuL\nV0SaZ/Yg2PScl2INT9/lzqfxBDB/DADAFy6FM/aIwb/yR+CPfQrOv/3X4PXwdS682RBzenYCSLnp\n1jD0XV7aRQTW7PCt4vdLdnpJaTEfJ0+exPHjx/HQQw8hFovhwQcfxJkzZ5DNZnHq1Cm85z3vwac/\n/WlwznH06FG88Y1vJD1o/hd/Brz47M5yw32g+fAWIr/4MJkK32QsOyHEcFtFYNb+LgwA8PzTwPoq\n2P/0w0CrBQ6IvKhvUb4p0RVwAgAk/RqG5qNaATIZEejmC+EHH/LenpoBimvgX/tzOGsrwNgY2I+8\n02hnOgx8XTCNmHF3fSFpPnizCVxfBG67o8Ps+fRdoXB9zQYQj4PFYiLomp4D9knwgaIb4F55CfzP\n/h+wH/+pcMd32T6Wy3eCj17+TtSQm5kpd345fAsAWGtkqa35uP/++3f8fPToUe//hw4dwkc+8hH9\noxoCfvbb4j/+gGM/MB8y+vUvRMlUeIGXZD5mD4oHZHMjtOCDf+2rAITZFv/O18Qvy9vhBT8jQnep\nLYCO+LAYAgtQrQAZN82RnwKWroK3WmBxErnYcEiDpdtfCTz3d8DzT4M//zQAgB17BXDX8HSuNtau\ni8k/OyHGy+RE0GvbaGx5AWi3BdsikQi51LbZBBKpzs9HjgFPfwt8ewtsIt//fTcDnE4LAS77KYUJ\nKabP5jrBRxjXXQYfk2J+YeM5sdGxJDS+4RxO+fVF4Pq13X/Yr8xHIsS0i/yOZ92dYEi7YH7+HPg3\n/wI4dAR4xavEQwnsj4oXGXD6r3le7Ex4aMyH2PEzybiE2UHavbfZwXnEfv0xxD74H8De/vcBCMM5\nq1hbAabnOuyDZD4sj+vtNOdv9X7HpM9HWPNcqwEkOqwSOyJSL1h4OZzxRwgv4I/FgNXlwS+2Aalz\n2pF2sc988M0NkWLNT3Z+eegW0UvKQvrpxgs+nv5O7z+EYDLGOYfzjTPWSo+Gjt9rF5xMhe5wyly2\ngYfg9cFrVTj/+T8AAGLv+UWxEGTFzmtU1yFU1KpAPLGDaWDxODAxaV3zwTkXpbYytZUXArRQy21l\nYJ1MgSUSYLfdARy7w/2bvTw4r5RFemXGJ7QbD6nUdlOIfNn0XOd3o9B8SLYF6FDwvTZ+NxtqVVFl\ndPhWYPV6OB4bfshNVa4TfISiPdlcByanwGJj3q/Y4VtFqe8yferlxgs+nnGDj9d26UjCSLtcfB78\n//qP4P/vH4tjcRw4X/gv4C+E1P9ANhhK+dMugvkI5QGRC4FMdYTBfFx8DlhfAfuBd4C94tXidzlB\ng3tNBW9m1Ko7g02JyWn7gtN6VUw8csc/4e6IwtR9+IIPCc/zxKYIb11UGbEZXwCQkSZjltMubqUJ\ncr4dqAwEwhJANuo7mY/CrPhP0ZJb9V5CTRg5YvageAZCZli9Cq9sPjTmg3Mu5hM35eJBpngtbPRu\nuOADly8IKvRu4bAKKTizuCPgS1eF45x88Fbc6H/xEvif/AGcL3/B2tg7IJuMdQtOudPpcWMTXcwH\nwqg8kGzPgcPer5ibgw9rUuDFdbT/z49ZE14NhJwIuzE1DdSr4DWLC2HFdTeVmg837RJmxYm34/MF\nH0iGEHysdYlNAS8Is57ukZ2D/dqKsJmPVhOI+5gP6bA6ouZ+oaIuAn5vnlsLOfUiBafZHJgXfFgO\nOht1cW9163k8wSv9s3ZDBR98e0uIHI8cA7vlNvFLNzLjltIu3HHgfPwDcB77lBgfHRU8v+yKkcJ6\nIHtVPsgdUQjOh1ymd2Zk2sX+DrhnqkkyHyFZrPO/+xvgqW+Cf+n3QxlvB+q9mQ8WhuhU7vAzbl8Z\nmXYZMfOBlPt/i8EHXxPMB/ypj3RG0PG2q116MR/y/MPUd/mYDxTcedbfbfVmhWQbZfARtu6jNALN\nh3RSTnXNNV7aZx8HH7zVBBZFqRe75RhwyzEgHgfmXJMlWzuCWkUscsuLHepp3X0ApRI6rIZX9d0L\nMQtzUpLfcWFadPkMYwfcS3Dpaj5Cs9p2Jx/+na/tMr2yCaG56Jd2CaHcVrIqXcxHqH193ICX+dkf\neS/Y3A26zAfzMR8sFhP6F9tpl9Km662S6/wuEZ7glDsuk+rTfLD0uGB+NvZB2qVeBVIZMFdY7wWi\nYUHOMf5SW9vMR61HJSXQmXssBD83RPDh/OWX4fyLfwT+9T8Xv5g/BpYeR+xffQyxn/55sRux9VDK\n/jHbxc5iV1wHb7fBr1wUP28WwX3lWTbg/PVXwWXJU6qr1BYIR3Tq34Xmp8LZAddkb5PdzEdogYBs\na95qgn/jTDhjAuKedpzewYdk/GyybnKH72k+RsF8uJNiT+bD4m5QLjgzXc6OmTCCjy0gNyGCHYkw\nu9pKFjmZ3Pn7qZmbPu3CZdfiETIfHc1HLkTmo8cmD76gf78yH/yPflf8+9eu18MtouyLveJVYHOH\nBD1oS3AqRY3VCriM+rkj9B8y+OAOsGWv/JAvXAb/7CcB2VRth+YjxEmpUQfG4kINnZ8CtjbsC129\niLxL5xJPhKf5WF0WLFssBv6tvwplTACdNFs3FQrXgAiw+h3wahfz4Zbg8VGnXZL2d4N8fUWwe939\nNMaz1kttsb0ldr1+hNlE0nM37Q4+poHy9s3d3dbPLsv08ijSLoyJey0s5qMHqw6gM/fsW83H8ZOd\n/4+NidpjP+IJi8yHb3L3dZrk55/ZOQnZVIFvdn12T+YjpLSLDHbyU2KHYNt5z/M28XV1ZUywH2Ex\nH6vLwOwhoDDbESKGgV6sj4TX3t1ixY/HfLiaj3hC5KFHHXy41DC3WGqL8jaQy+9kHwDBfNQqIjVh\nAbzdFmNPTO78QyJEwakUlid2usfui4oX3zPHMuPifl8dQdplPCc2eZ7mwvI826uSEuikYfZr2mXH\nA3dgfrelciJpjfngZV+Acd3XJOipvxH/yh2KRTpy105zh+A0xEmp0fAWARZW/l/qDroX4OxEKMwH\nr5TEZDB3SOyCtzasLTy7UO/B+ki4fUZQtrgLr7oTccbXyC2sdJvEQObDYvBRr/WuMspkRfmxrbHL\nbmq3u+pABgJhpFflXJLokXYBgI2bOPXSzTbOHgTWQvb6KG97rrqh6JuA3gaWgNXeMjdG8OFjGLwq\nFz/iCXsmY/7dtW/R4U9/SxzPa0WXR6u5d/9kn99pAhM68yEnJNdl0/pC1E8IVZgFqmU4f2s5DeJS\nrmz2oAg+5M40DPSq9JGQwUcozIevf05+SlDvIZj6AehMuj79AYvHRUrEZvDRR+jL5PduK/XiVrqw\nLuaDxWLhuRl7wUfXJq8ggo+buuKl+5mbPSC+j7DcnDl3gw+X2UwmRQrGts9Hv3l236ddyiVgYhLs\nf/kZsH/wk7v/nkiGk3aRYwFe10H2ph8QP9usOnBv/Nj7P4rYx35r599CDT7qnfOflOJDu8yHRzem\ndjaQi73znwDpjDB9u3yhxzuJIPO9swfBpAFPWNVNUuA8ntv9N/d33BLzwc9+u1PV5WM+OuW2IVms\ny/s6ldr5+1TaWvDBHUd8dvdEDNhvLic9PnKTu/9mc57zQ7LIXcwHK0ivj5s/7SKDDzYTsui0VhUb\nHJdRZ4yJCivbOiOv1LY7+LCX9rkxgo9KCchOIPYj/3BnsyWJhEXmo/ui+5gX9r3f31HDh8F8zB4U\nJW9+uDtCHkq1y+60i3Wvj1pNlB12Ke/ZsRNg//ifAu0W+PP2HGb5ist8yLQLEE5DNwBcLv7Ts7v/\nKAMCC4sgX7gE55O/0qku8zMA+XCCTu9YvLRLj0nRFvPR6K38B+D73u1UvHgeH72at4XVwbof8+Gl\nXfZP8CErXkITnbobDia9jAAh9LX9nfepdtnXaRfOuRt89Nj9SYTIfLC5w51GW2/+Ia/9MLe4G/A0\nH3Li9yMk5oNzvjPtMhHSIlSrAul0p7mXD+zAvHsMFgOgVbfMdu5gx+EzLOZjw/Wa8BtduWBjY2KC\ntGEx362lGfdpPiZDSrdJNHanXQAIJsRW8OFSzL2FvpbTLrJpX7fgFBALQRit1b3go4ttkmmXm5j5\n4F06K+n1ERrzITV0fpvzwgxQKdmtMuojOGVjY2LO34/BB2pVobXoRT1LJJJAq2VFCMi7J/eJPPDK\nu4E7Xg3c9grBRKQz9pmPVHo3JQaAheVw2moJoZ1cBMLqr1LvYy8O+FI/9hZCLpXuMwd9rqIhBR+S\n+Sj0YD4Ae2Wf3RRrukvzgRDLbRt10VjPr3MCxA7N1mRc76P8BzoW65bTLqy71BYQAUlp27qnkMci\ndzMfIZR3jxx9mA+EZTTmBR+djSabCiHd1a/UFrAW9MaHv2TEcBc3NpD5cB+SVnOnKp4C5a7FNZfH\n2D/+p+Ccd3bjU5abfG1t9mY9gM752lZDy+BGBjtyQbJtuFSr9me9wlgIN9eF22FmHDxkh0++viLa\nek8Ver8gk+0EKJTjdk00bMzX5XJyGhywMm5PNOq9n2mX+eCOs7sc1hSDhL6W0y4YkHZhkwVw7ojX\ndPuPUKJPtUuootdRobu83U2rh5V28fom5X3X15/ukmwvNXq17pCwlOLc+8yHXPwHMR/SDMdGuW15\nW0w4cqfvFwJJTE4DpS0rFQDccYS7ar/gQz4ktulYaXMtFwJ33O6Fihz1Wu/cOyB+n0zaTQFsFTu7\nEJcK5WHZi2+sAlMzu3f9EtkcUC3T74TlRPP6N4P9zL/c+TfZ4E+6vtpGv+BDakBspFt7eMtIeGXH\nthi/Uo++LhJhWOrDpx/rZj4Au+muvYDazmvPpJtzyGkX5g8uvb46NpmPATqndGafBh+V4cGHZ4Zj\nYyKqlMUk72ocWC8hmNyZVy0sxOWSSDtN9Ak+pPreZndToLPb8ZgP2e3QXvDBnbYYt9cOFG4AOGHP\nd4I7bUGDy8BvIi+YiM118EsvWmm25I3dbgs/hV5iUwlvF058DdxrGrv37Yi95Yd2/m3mADA2Bu73\nvLEA7rTBLz4vBLU9gg+bts8DJ+KMXcaPe8FHj3nGCz4sp7zkPNrtcAqIoM8i88HbbeHoHKavhh+9\n0g+zB4H1VfvpLqAzl/mCjzDSLnxQqjGV3qcmYzL4yGb7vyZuMfhw3ea8m6HHpOB1ArQRALg3I+vH\nfFieDD3I79bVfHjuezbHlamkfpoPQAQG25t2JqvStgj8XArUs5W/8Byc0+8H/7M/pB9TYnMd4E5P\nsakEkwE59S580M5/bEzYTl+/RjtmN576Gzj/7pfENej1XFkMPnp2UpYYt5x2qVaAZFJ4mXQjLMFz\nq3epLQC7VUYA+F9+Gc6HfwH89/6TtTEGooepIZs9CLRboWi9PFbVn3bxnGUtji+f+Z4pzrTQVBIz\n+3s++OBB0i7yIWm1aMduNl0/j1xn8e+1I7GZ+vBygP3SLlIAZ5v56JEHTo/bTfcMsheXyE+JicEG\nDb4lKVDfd+9TofOrL9OPKbHu2rj3E5sC9iovBi2+gEi9lLZ2i7EJwZcXOj8cvnX3C7zmchYWwlr/\n4MtmiTOAgWnG0FyF+9irA3DLfS2mXS69CADgT/wJnDP/3d44fdAz8JwJseJlc0PMsX5jvzDSLjXh\n6NtTP2XJZXXPBx+e4HRg8GGJ+fCNzd7+98Hu+/HeE6GX+qBfiAeW2QK+wMc289HD5jqTsTvusEUQ\nlifkXt+9f9GxuPv3PD5m+jMfneCDmvkYYOsOgB10RW822Q93omU/8TOI/dS/2P13b0K0l3ZhPU3G\nxHdurdqlXut/v+fDCj76dLUFRNDXaNjrbeOzNuB/+NmOANMy+NoK2h/6BcB1rt5hahim18fmhnCx\n9msKc5PC0ddqtUufdgLwPQfEqZe9H3yoMB/UwYfX2ngC7BWvRuwnH+wdGdpkPrYHp11YLCbGHwXz\nkcrYZT4G0P8ePNMr+jy4Z6Dmp0D9aZCVJXt9XlwLazaQ+ZBpF0vMRz+h75wQnfJle7oPuctjb/kh\nsMO37H5BGMxHryAgmRTNLW09b4NKy6WnUEjMR1/Nh/811NhYA+JxsHf9M6BWBf/C79oZpwv8ya+L\nxqGNxi5TQybLbS03mPOKC6amd/yexWIi5WZVcDrgvrOU4tQutX300Udx/vx5MMbwwAMP4MSJE97f\nfv7nfx6zs7OIuQv1+973PhQKmqVhnuZjov9r/KW2lAiiNwF8lR8V7LbCMsQw5gMQ6Q/LwYdHse9g\nPsaBRh283d5RjkmGAMyHv9yW/rvfrTyPvecXwZ/9O+CZJ8G//dciDztIFKoL2T13gOZDMh+8UiI9\n94GaBwDs4GFRbrtikfkorgktV67Pcy8XQRspgAGCU5t211w2rOu3CORcwbNtNqCPvTqAnUHfoE2B\nLjbWgMIs2NveAf7En4L/1VfA/9F7wAbN/xTw3+vc2ck8hGU0Vi4Ja/Vec31hBnjpBXCn3b/6zQS1\nam9jO8Bafxet4OPcuXNYWlrC6dOnsbCwgM985jM4ffq093fGGD74wQ8i2Yu2U4V8yAcFANaYjwCB\nD+C7ODY0HwGCj8y4x5BQgz/3XaBcAv/DRwEA7LY7On9M+9JNg3xYdDGo6sAFy0+JhdBGxUsP8Reb\nPQj2/T8CR05EK9esBB+ei6Tsp9EDbDwnzp16IRykfAc6XgPLltMuhZmezrYAvGorXq/TB53Dgt5U\nys7Ov9Wj0JmMAAAgAElEQVQSi08/zUdsTFR3WWc+ZGXbbs0HS6bFPWdD6NtqicDqjleDjY2Bvf4t\n4H/6B8BLLwCveQP5eDsw6Hym5wDGwNcsBx89NjsepqaF+H1rcxczYopO0Nvvft9DaZezZ8/i1KlT\nAIAjR46gXC6j5ouKOOdk1QfBBKdS80HLfHA5qWcGMx/MqubDtVseFnxUq+QVH7y8DecTD8P5rY8D\n6ytg7/wnYHe82vs7s+wxMmwHDsBn824h+BgU+Ll+F9yW7mGrKOj9QYGvTcFpPNG74gKwXm7rLUID\nAi+P+bDR7XNYui9pyevCK/McwChMFoDNDbulqEGYDxvltpsbAOdgUyKYZydeCQDgF54H3yp25mMb\nGDCHsXhCGH1ZTrt4/i353cGHV25ro9Kp0RDu1f3uu/QeSrsUi0Xcfvvt3s/5fB7FYhGHDh3yfvc7\nv/M7uH79Ou68807cf//9+kdYKYmJcJBzqZub5M0G7S6o2aevRDfk4mgj9bFVFJPAoAU4My4qPpoN\nWofXrU0Rbd96HOzet4P98I93jWtZ7DpqzceA4IPNWU49bG4AE1OD3TtlQF4lFpy6/XT6gY2NCYpW\ndmClxpZchAawPim5A6dfBPkwxi2ZFh4s1JDVXYPu98kCcPmCeG1mvP/rTNCvsRzgC/osBF8bsp2A\ne91vd4OPZ58C/9J/BU7cibF/8+/pxwW8YIq97e+B3fOm3X+fPQC8+Bx4q9U/KDeEpzHrxXzY7Kk0\nbJ5NdQwlKddXEsFpdxT+kz/5k3j3u9+ND3/4w7h8+TK++c1v6n/4sKZygC/tQqz5aIrSXRbv8RD6\nIQMDG7uwreJu9XMXvE631EGArPa56/WI/cg7dx+DzaALCFZqK70PbKVdxnO9Sw4tMh+cc7EAD7PQ\nlsxHmTrtUh2Y6gIg/m7L72FjeMrJps/H0LSL212WnH0IkmYModyWj4j58EpJXZE1y+VFiu/Cc+L3\n8l8bkBVOb/17YK/dneJhswcB7nQCJBsYlHaR2jYb112e+9C0yx5gPgqFAorFzmS/sbGBqanO7vCt\nb32r9//Xv/71uHz5Mt70ph7RZBfm53f71i/Ua4hN5HG4x98kynNzWAcwlc0gN+B1qtgaz2ATwPSB\ng8gM+Nxmu4ElAOMxhumA4/c6125wznF1exPJ20/i4IDXr8/MogzgwEQOCcLzry6+hFUA+YOHke/x\nuVsHDonvJzs+8PvpRpBzB4DNZAJbAGaO3IJ0n/dwznE1HkeyURv4HelgobSF2PRsz3uPHz6MhVQa\n8Y1VHCI+d6dcwkKjgfTBw5gb8HpnahILAFJOa+DrVHG1Xkd89sDA81qayKNVXAt8LYHg171y8RzW\nAEweux0Tfd5T31zFdQC5RBxTxNd92XHQGBvD/NGjPYP+lXweNe5g/sBcp7HjEAQ59/rWmjinmdm+\n57R55FbxTCRifZ8JU6yMxVADcPjoMcS62JWtuQPimc9lAz/zQa/7ttNAEcD0iTsw7r5n7bWvQ+Wr\nnfTe4cOHB27EdLEeY2IOPXqs5xy6edsrsPX1JzDDW0rfu8rzsdFuogRg9sQdSHW9r3r8hJiL4fSc\ni03QqJexDCA7PYNCj8+uHp7HKoDJVLLv89gLw85dK/i455578Pjjj+O+++7DxYsXMT09jbRL01Yq\nFXziE5/ABz7wAcTjcZw7dw733ntvoM9dXNydQ3bqNTiThZ5/k+AlsfMrrq5ia8DrVOGsi0h8fWsb\nbND4W6Ikt7K2ilqA8efn5weej/e55RLQaqKRyQ58veNuwK5fehmMDWFpFOBcuQwA2Go7KPW6Ni4z\ntL5wBezwsUCfGfTcAcBZETnWtVJl4PePZBqN0nbgzw0C3mrB2SrCOXxr38/lswfRXLwSeNzA133p\nKgCgnsoMvu85B1gMteI62blzzsFrFTTjiYGf2Y6NAfUaFq5eCaS+V7ruF88DALZiCWz3++63xTNX\nWltFhfC6A0B7exNIpXHtWm9Wq+1WVy++/PLghpcuAl/3q1cAAKVWq+85ycrutSuXwGYOD/1MHbTd\nrrXXVtfAxnYyik5NpGTWri0iRjjXAYDz8ksAgA0eQ9F9j3Po6I7XLF44P9jzSROOm0a7vrkFhh5z\nnev7sfr8OcQO9Cj97gGVcwcAZ0Fc/9VGa9d8x1viwm9dvdxzLjYBd+f5cruNao/P5hXBBG6uLPd9\nHrshz31QAKIVfJw8eRLHjx/HQw89hFgshgcffBBnzpxBNpvFqVOn8PrXvx4f/OAHkUqlcNtttwUO\nPnqi2ehN//lhK+3Sr7V0N2w1WRtmre6Nb8liXQq8+j3slnKBHqSIeZAAT/6d+rt3G6exQcrywiyw\ncAm8WumIjimwGaDCCW7ZZyLR8WChQKs5sOLCg6RiG/XO/UcFqacYmHZxj89GqW2tOtjYLpXqVHxQ\nVnkNMXcTf3OrfGo1O88cIK5pLNa7fD5p0V+lW/MBgN37NmB9RbgJP/0tMSdaCD4G9jaBSLtwwKro\ntGOt3uO5l7+zkXYZ5usjv5O9UGoLYJeI9OjRToT6jne8A+94xzv0j8oFb7fFRDhMcyHzkNQLkAxm\nho5vSXkvdQz9mspJ2Orv4jm89q72YZlx8UDaEpxKF8lhi1sy3TGEIwI/96T4zytf2/c1rDAjzr+4\nRir+81wdg7RNTyZpyz4DBnwsnXGvfdVC8OEuQgMEp51n3pLPRz/PA6CzABPrHnh9yCLg/5vNzrLN\nZt8NXyfwsqD5KK6JCq9857tn6XGw//ndcP7b58Bl8HEoGPOghEG9TYBwvD62ikBuorfGMDcpyn2t\nCE6HBL2W7rm97XA6qMGRH57tMLECvRUs+GCxmLhAxIv/UGt1CXfh45YEp313Gp7g1FKprRd8DVgI\nACtdF/nZ7wAQYtu+kO6j1CI09z5mPUrudiGRol0E3Xuor/hMwiuztuD3sBkg+HKrLriNks9BFueA\nteDD+y4HVLswi+J2XlxD+9/9kqim6cf2eoyXJeZjstA7jWexqg3A4N4mgAiEGev479jA5kbPMlsA\nosIml7diMMeHVbvIqkbiNg57O/gYVPLlh2c7PJrgA4CYrCylXYbS7x7zQTy+l3bp43OStudvAkA8\njLn88NK2VNrtN0HT8po36sDzTwNHjoENMhBz6WHyhk+DSu66kSBmPuoBU10pixVelTKQGR/smmuJ\n/ufttvg+B5W72go+hlUdAD4K3ELw8ex3gYvPD35R0pduoxybc3HfT/ZJc/qcjK1giGMrGxsTKTZL\n5eW82RSL+6BnPj9lJ/ja3gIwoH/ahJ3vfo8HH2LxH6YoZ+lxsfgXiaNCj3kJkJ3K2As+hmo+vOCD\ntuSSD2M+bPt8BCk3BXbqDyjwwjNAswH2mgGsB3x9V8iZj1GmXQIYuwGd4MRG2qNaHprGYrGYHbOv\nIN4y1piPACZjNtMuTd/5lPqkMW311CltC6+iPsEHs818DOptIpGz7G2DPmW2EvkpoFIGp3bXXRX6\nNswd6vlnlkgIs0NivckeDz4CMh+AsJylZj7cao5AzIeNJmvbAdMutnw+PHfZfsyHPZ8P3myIHfCw\nc4efiqZZDLjb1pudfM3gF0phHDHz4Wk+Apw7Eklawekw8ZmELZ0T4AYfQ/opyWOgXgSDeMvYSj0E\nCXxsBn1+v5g77+79Go9xIg68Nt1Ggv0E3taDjwH24t4xTALlbTKGdQd6tHLoBrNkNMavy+DjYP8X\nTRbI19c9HnwE1HwAImLe3gQnbC7HVdMuzYagbanGV9R8kKddqmUglelPf6el1sReT5uBOwEJb0Ik\nOg7JIOXyg1/nMh/0aZcNIJ0Z7HQpkUwB7RbdhBik4sL3d+przx1HBLP9Al4/UmkLAcBwoy95v3Hq\nBTjI2FbTXWKzEfuXH0LsFx/qM76lwKs4hO2zmHbhnItgbliqMTcpbMj7sUIm8ETmA+Z6WwHYyjVg\nYrJjVtkLkwXBuhCyfXs7+Gj1aOPeB17EvEl4YVSCDxv9XbaKQDw+fCK2lHZBuTS4oV8qDTBmJ+0S\nYCfggZj5CJp6YBk33Wcj7RLkvIHOs0HEfnjBxLDAxxb9X6+JCT4o80HNAEgWb48KTjultvaCD8wc\n6N/OQgp9qbU28nnvx3yM54CxuB3mo9kQ7qVD7nk24W5GXI0EJTxr9UHPfZ7e3Za328D6St+UiwST\n6TDCsfd28NEMHnx4Ny2lGjmozwf8TdYIF+KtoujvMczRzxYDMYT+Fu3FLaSbgGA7AQlq5iOo7gEQ\n7Ach88HbbaC0Fey8gU7fIao8cD1A2gG+/iPU194VOfcr796BZIp+By4Xlon+rJe3MFOmu+CrOhiV\n5iNIE8+UpbSLO2+zfpoPxkTVm5VSU/dchgXc0vKgZEH3sRlQ8wFi9md9BWi3wYYEHzZ6y+zt4KOh\noPnwIjPCvJQMPsYCCE5tdHgtbQ2cBD2k0gCLkWovPPp7mIlSetyO8j7ITkDC0x8QaT6Ugo8ZkQem\nmowrZbHzH1Ze7IJ8IQwsOLVE/8smeUGYj3QGaLVEF1wicKmzGuStY7naZWBvl7ExsRmz0dK+OsRU\nEBBjM0Z/7sOYD0AsvttFCz11AjT0A7y52Os0TokAInMmNySU5bYrUu8xxC13it7OYm8HHyqaD/em\n5UXC4KPZBMbigzuLShCXnfJm03VQHNBS3QVjTFSeUKZdqpVg9HeaeFyJIDsBCWrxY1DRJYTRGAA6\nxs01S2MBrjsAn7sv0WIQRHcAWHM9RMUNoIMEH14QQHgMbjUDyw8I/lIWxgXEd59IDi4xBtx0kwW2\nsVwCksnejRRdMMasME6eTcKwnX+jQR/wBr3nLTIfgYwFs+5GtEznt8FXAohNAW8TSNnYbm8HH1Lz\nEQ+g+ZDMB2Xw0WoG03sA9JUfqotQJktbdeK5mw5hPiYmgXKJVOgLwJd2CR58cKqFsFYVk/CwRQDo\nuHCur9CMLZ1ag1pIUzMfQ2ymPchgm5z5GOIt4wMjZrwAdEopR+BwilqAck/AiqkeAPHMZwLcd8mU\nhWqXDeFuOkDkba3cNqDOydN82GI+4vEhrJO7FlHOtbKNxBDmo7O+7pPgg6uW2gK0tcitVjCPD4Ce\nhpaLUC5o8DFOHHy4i8CQtAubnhUMCWXQB1/aRcnngyj4CNJSXsI9Pl4iEqFJ0Z8y80EUfMgFNTkk\n4LdU8snlfRfErt5Gq+9RBh9BvCYAV2dlQfNRKQevMqJO+xTXgXxhMMtsS/AZ1FhP3hO2NB/5wmB9\nH/WzDj/zEVTzsU+CD+VSWxCnXTSYDzLRp7cDDrgIjWeBWkVoNShQCZh7l0Zb68QVH1sbQmsTgAFg\n1CK8IY3FdkAeHxEVyuV1D9qwzKt2IVoIvWeuT7WDRMpS1UVVQXBqIfjw8vm5AMEH9e6/NsTWXSKd\noXd2dRwRfAS574hLnIW76frwjYZ81irEad7AaRdxT3BiozHutMX5D2qkCHQ24ZQNVDdWxTw77Luf\n2m9pFzfCG5SDlGCplFiAKatdmsGDDybpQipKsKTKfGQFA0FVbROQ+YBrP86p0g4SmxvAZIBKH6Cz\nYxlB8OGlpaj6HrhBTOB0G3W1S1C20ZbgdJilvx9JG8xHUXjbpAYEX9SOuhJDLL53jN9uCV0Y5djc\nCZbuSxL3E6qUBMs8SGwKeMfGiXuMDO1tIpGbEGJbapfTrU1RcVIY0MoB8DYapA6nzQaQTA2dZ1l6\nXHw/+09wOmQXJpEv0CqBVZiPWZe2kjSWIVR3wN5OkSj1wgMyH6wwJ/5D6HXBORdBXFCvC8JFiDvO\n8MZifsjvnSz4UGU+3GeDaELiAZs5snhC7Jio6feqguA0TZxuA8TCMkhsCnRMxggXYN5qCnvxoMEH\nQBv4BdV4yfFbLTpDxWJAcbkMyIk7WAfyVwFEw7tsjj7tI0v1hzEfcQvMR7MptCZBMFnYjz4fAQOA\n/BRQ2qYrvVMJPly1ML9+jWZsORlkA5TaAp3JmoqSlH4LAZkP0rRLvSaufcByU1Lmo+GaXAVtE58l\npoIl46XIfHAqwanKM2ej6kIKTgNVu9AyH5xzsbAMc7alTnUBwal/+NsJEAZdMm0YJOilbuon9VJD\nnneWJQ70JWRDvyAbjompTtsLKsiN21TA4INScNpqBpM1AO7mfpMstX+DBB/BvhwvcqYSBLWagQMf\nlkwJ2nB1mWbskuIOeNxO8DFU+CfTLpQun94uLMACBNAuQkF6e/ghqWCq3ZjKIgDQl9o2G4JaDupt\nQ6098JoZBhGcSptzomOolgX7MKyLdCzm9tQhDD68+y4I8yE9hQi/+6AaL/irjKjSnJLtGnLNPX0V\nteYjYNoFEKLXcom0v4vXnmFI2oWNjYmKIMq0i8oGOzMuUnNE498gwYcC8wGQWKxzzkUeMiglBQjF\n8PoqTdmpcrWLTLsQ7QqC7kDHc2InRKn5GNZNtxvScpow+BiZ4LSixnywJK29Opoi4A6ktbHCfCik\nXTyhMVEQ4IpNWRDGjVr3sBWgykbC81ihL60f2E5BIkPbyJJ7lvZDgg/5TFhiPgJVuNno7+Ju3Niw\ntAsgbCdI0y6N4BtsYiPNPR58KFS7AJ0Hl0L02VLoaOuCzR0WkeHqdePhO5oPhWoXALxCNCFVg+1G\nGGOC/aBkPlR3/xaYj6CltiweF4sBpeA0Hu9Q28NArPlAsxHIVweAy3xYEJwmkmBB+jmliG31vTLb\nIK7CxMGH29W1X0v5HaAWWMNX4hwk4JdzAhXLWgvQTwegZxm98QOW2sJSyqsYjPkAIAKFUTEfxFqj\nPR586DEfJN73Kk3lJGSt9CqB6DRInwUfmMd80EwIXCX3XpgVWhuqHajiuSMeF3TkKJgPQBwn1URc\n3gayE8GYB6BT7ULKfCgEH60WrcFcpRzM4wOgZz6CWKtLJFO0i7+0CBhW8QH4Ko3o0y6BBKfEc42X\nchp23TPjIiVIzXw0gglOd7yGMOjmG2vivIJ4GsUTZJoPzjnQbAVfX4ldjfd48CEDAEXNByXzEfTC\nAF7wwSkqXsrbQCYbzGUToNd8eMxHAAHcNG3FC1dMuzDG6IyPtIKPLC3zETToAug1H63gNKwVk69q\nQKMrgNzmnG8HEz4CoE+7yHYCQYIPN+jilKxTWYH5kCwrlalhVT5zQ1jWWEwEIMQ+HzxgtcuO11B6\nvGysCoOxICn+RIIu7dJuC6Y+6GaD2E9pTwcfvKUmOPU0HxTltm50yZTSLi7zcZ0g+ChtB087ABaC\njzKQzojysmGQFS9UqRev0ifgIgSI1AtFqa1O8JHNAdWKsQhNGD2VgqfagJEyH50cMGG1yZBOyjtA\n3V/GZT4G9nWRcIMPsiZnkvkIknax0VG4opDqJGc+gm90kJ2gL7WVQWSQ+z5FW+nDOReltkH0HoA4\nxhbRs67K7u9Lzccwq2cJSu9/rbSL8MfnKwTltpVttUWIekKoVoIvAgVpNEYUfKjswiTSo2Q+iMpt\nZTM/laDThuZDmYYlWgSbDcE4qgYfVD4fkvkYVmoLiODDcUR1DAE6aZfh1Du5oy+gVu1CXdYvGZQg\nOqvxHH3apakSfBB/96VtsdaoBB9UzIe3xgVtIbIfNR9BA4CJEWs+chMiUDK0eOeNutjJagQfnDT4\nCJZ776RdiCpeVKtdADLmw2uvrRB8kLmcqjYTBHyeEyPSfAB0VRfuIjQ09y+RIqxyAtSqHqTImSr1\nUlwXzqpB/GWIGSfA9x0Gue/l9aEyNAxaagsIhrfRoHV3bTSEyDlQhRdxebesdBnm8SFBKTh1v8Mg\n4m4A5M+bQh3pTjz66KM4f/48GGN44IEHcOLEiV2v+fznP4/z58/jQx/6kN4gzQYwNhZY98ASCbFg\nUbiweZU2CmkXxsTEZTohSYvtoGW2AKkC3aO/Dx0J9gZqozGd4COdFjS44wxuTjUMJsyHqf+AapUP\n0DEZI9B8cKctdvKBaVhZcknEfASssPJAba+u4CvEkilwQOT+Ve7TfthcDyY2BXxN/QjTLl5DwQBV\nVtQpXoVnjmUnxPdeKQUTaAZBsxE84E4Ss21ysxh0wxFPAI4D3m4H1wP2g+IGm6Uy4rsfZdrl3Llz\nWFpawunTp/He974XjzzyyK7XXL16Fc8++6zZ0amU/UnkiRzoVCkpCQoVvKrFNvwlnwQTQqMuKGXV\ntAuV4FS1zBgQkwLn5rsCLc0HkfOiznknCDusNqXIOuAzR53qU6k6AGirnOBziR3U10UiRfe981ZL\nlPkGDT5s2Ks36mKjF2S+s1HtkkgG09d5gT6h7qPZCJzaZ9SCUzlfBZUWyGeTouJFtZp0L2g+zp49\ni1OnTgEAjhw5gnK5jFoXBfi5z30O73rXu8yOrhncYdQDlcW6TtoFoFHBe4tQQGt1iUyWZkKQnUWD\npl3SGbEbImM+yq7XRfDAk8x1UdHnA4AXLJg2vNIKurxOlwRUrJf7VnA8BGHVg5zQAwYfjDE33Ua1\nECjk/iktxrcC9jaRIF4EAIg5K6i3jOcpRJjiDRrs27BYbygwH9SBnyrDTvm8q65xxNVtWsFHsVhE\nPt9ZGPP5PIrFDttw5swZ3HXXXZibmzM7OhU6zAWTolNTi/VRBh+ex0ZA+llinCr4UHCZlCgQGo25\n5aaBvS4AugfDKO1CxXwoMF6xmLhHKTQfijlgRpz79yb0oIsgIBgIqoVApeqBss+GiscHAGQsdHdt\nNIJ/76m08KWguu41leBDNpcjLLdtKgRexMyH16E2qJ2EfB2F5qWpWu1CG3xoaz788JeblUolnDlz\nBg8//DBWV9UWo/n5+R0/LzhtxDIZHO76/SBszN+CEoC5ZAJJhfd1o3r1AlYB5GdmkFf4nOsTedQv\n1XH48OGBi2f3ufpROZ/FGoCpuQPIKYy9PDmFxtLC0LGHob61husAcnMHMBVw/JXDt6C2cAmHpvKI\nDcmBDzp3AFioVRDLT6ld98K0uO6TeaPrvgIHNQCHj9+OWMDgr3rrUXGvxGND75VB574ZA7YAzB47\njrTCOVxNpRHnDg4ZnDcAtJiDawDGJycxHeCzaitHsQJgIj6GyQCvH3bdKy89izUAkwcPYSLguVzL\n5uBUykM/OwiWALSSKRw5MlzrtFmYxhaAmanJQNdq4PP+8vPivI/eFui8Oee4mkgi2WzgIMF5A8Bi\nuwVkxgN/j1fHc4g364HuuWGfebVeQ3xmLtBnleZvwQaAqeQYskTnfqXZRDKbC/RdNuplLAPIxsdQ\nIDj3ci6HdQBTc3OB5vr1yUmUARycLiB+2Oz8a6uL4vmdngn0/Mr5IRNjmCE4d63go1Ao7GA6NjY2\nMDUlGIezZ89ie3sbDz/8MJrNJpaXl/HYY4/h3e9+99DPXVxc3PGzU6vByWR3/X4QnJg4pZUL58HG\nFdMWPvBl0SBuq1JFSWF86fSw+PLLHfvnLszPzw88J+e6sGcvVqrYUhk7ngScNhZfuqhUrdENfvkS\nAKDUdlAJOL4zLnYk1545C3bkaN/XDTt3zjmc0hacuUNq192N4lcWFsCSioyRD+1iEWAM19Y3wFgw\n7RCvil3Q1tLiwHtl6HVfXAAArNWbYArnzuMJNCtlpe+r5+csXAUAVJot1AJ8Fq8IxmH7+hLKQ14/\n7NwBwLkm/r5ZrWE74Lm0x+JAtWJ87gDQLpeAeCLQZzlumnlt6RrYtNm5Oy9dAABssnjg88Z4Do3i\nOsl5A0C7VgHyhcCfx9MZNLc3h75+6PPuOODVCppjwb533hDp9I2Fq9gkOHfuiEZpDbBg42+Kcuzy\n+hqqFPf8ijvXl8qB5no5zy1fvQrGzYpV+ZLwo9quVoc+vwDAtwUzW9lYQz3guQ8KQLSCj3vuuQeP\nP/447rvvPly8eBHT09NIu5TMvffei3vvvRcAsLKygk9/+tOBAo+eaKmnXfwW6/p7f3Qso3XSLoCg\ncIMI13pB5p4VNA+AqL8XSvCyWtqgC14OP6jTJOAzGlsBBgQfQ1GvCrGragWB/N5Nqz5qVSCVVmOO\nskQ+H14zQcWgOZkkygGrUcDUJZeqmg8AXok159yI7QOgJDz0hOim2jKgo/kY0k13B8aztK3dVTQf\ngEjJrhF08JYUftAU8zix5kPVS4q6r4773AYud5XPJoXRWEtRb0Ks+dAKPk6ePInjx4/joYceQiwW\nw4MPPogzZ84gm816QlRTCN95dcEpyxfEAmzq9aEZfLBkWoxvovtoyBtSMfCRD6bpYqCjOfEZjRkt\nAW4ul6kEPgCd30W9qh64ETW84iVpcqUgOAXEuVN01VVVv0vBKZXPh1vtwlTEvqlUp8pJZfHsOb5K\n8EGo+dDRWGUngKUF89JyuLt/Fc0HAIyPA1eFq28gF+R+kN4ugTUfRIG+hIrIGPBKbTmVv4tq81RP\ncGp+33HlsZMAi5EJnbU1H/fff/+On48e3b3bnZub0/f4aLfEpKLKfEwSWaw3DUptAbPgw1sEFCdT\nuWBvbZixD57ZU/DJkE3PiqDLVHSq4/EBdBYNUwagXhve2rsbuQlR8mnqL1PaEqyL6j2fIGI+VHeB\n1MyH12NDRXDqM/syDT6a9eCBnxt88GbTLNgGOjtJVUt/7gixpqnPiOp1BzqBUq1qNn7Qjrbd41Ld\nc95GL+C9Q1nlBKgH/AmieQ5Q9/lgTDA/N31jObmD1Uy7UDEfyuyDF3wYXCAFsyM/2O13AgD409/S\nHxvQYz6ojMY0Kj4AeIGa8Y6krp4uY7Ex0ZPDNPAqKVrqS7hpF+M+I4r3HYsnxGupdqGqPh8QZl/i\nvQQ7UZWSS8q0i0aFFaOqsAJ8ad7g9z2ZxboMIoIG/F55NxXzoeazwWIx2o7Gqv3LKBk31bQLICwI\nbnp7dfeiqDR2A0BnsW6q+TApxdIMPvDq7wEy4+Df/prZQiQnFBUaeFLYA/NNM2t5bebDS7vof++c\nc7EAqmgOJAozQHHdrLlcaUtd7wHQ9XdR7CINQCwGZJoP9eCj43JqFnxwxxHPvGrapU1Af+uctwxS\nKbbbzCoAACAASURBVLQP7jPDlDQfRKyXDLyCbnSoXXVV0y4AXQdtoGPsF3SdIfX10VhjqXpoYS8H\nH6r5KBfCYj07Ms0HifNhQy0al2CJBNg93wusrwAvv6g/vqrNNSCONR433gl5xkWKwQejSLs0GyLV\nl1QPPlhhVghlN/XuO9HPp64XfBClnLgqBQyIxYBK86EVfBAxH4rzjTdhNymYj4rwzVBZ/KXZFoXT\np4q1ugSVxbrH+gQ0NJTmg2Rsm8Zcm0zR2au39NIuJL1tdNa4VGYfdLXVmQgl8gUCzYdiRCpBqvlQ\nZD4AsDe8BQDAn/ya9vAepami+WDM7ThJMxkplwonCXb/8prpVCnJrpS6qZeS21ROVWwKn1LeVGyr\nc98RMh9aDABZ8CF3wAGvPSX9XasCybSacFS66lKYbemkuIks1rmq5gMQgQoV26ajr0tRuuoqfvcJ\nwvtOZ4Ofkj20DBheF3s4+NBjPgDQWKzr5MMAbzI00h6o+v37ceJVYvxlgxp4j/lQrfrImtPAdQ3R\nIUBT7eJOKEwr7SJLjdf0xi4ptHPvBtUCrKNzGs8KvQnFZKgVfCR3vlcXUnioXGpLdN6aFVajZj6M\nrfU9cbvC+WeydGybDvORSo/QXn10glMAnfuUQGO1h4MPfeaDxGLd2OdDfzLkumJbQOyIWMws7VQt\ni/beqiV0LvNhpDfxJkLFAIDC50NeM42qCeYyH9rN9XQ9PgBf5YHhhKzLfAA0O9F6Tdy7SjQwUWt7\n1XP3mA8iwali8MG8klM6zYea4JSoi3ZNUXAK0OqMdDUfrRZ423z3z3VE3gCtvbpK53b5vBGkXvZw\n8CG/GA0KXDZoMlmAtX0+KNIuGg+EHD8WAybyZueusxMDRPDRbpmdu87uFyBiPmTwET7zoe3xAXQC\nANOFQGcykosGRfVBvQ6kFQ3eKJhGQN3Yj5r5UL3fvR4nhP4uOqW2pte9qig4la8lYtu4LvMB0Agv\nVUXeo2wsB/iaGpqf+x4OPtzJQNVnAwAmJsW/muI/Mb6mzwdF4yGTlBMg0k7bBqxPo66V8iEp/9PV\nXcjjNQp8TDQfMvgw03xoMR/jRAGAYpMrAD7mg4CGrlf1GS/T4KOhmPsn0nxwxxl52oXrpF0oNFZA\n555VOX/Ke05D88EovT689H7AdcZLu4yG+fC6fROc+94NPryIVGMhyBOU2xpqPox24G43X2276PwU\nUK10KD1VqLodSlBYH+uyDxTlpho+Ex4mCwCLgRtqPphW2sV1WDWlonWCXqodMOC2JFD77hmFrw6g\nvvunSrvoGIwBng8OSWdbreCDRuTM5SZJbhgDwGPbKHQfqlofoHOtSJiPBjA2FjzFbcPnQ7XUFiDR\nvOzZ4MNbOHXy73nztIt5bxeDG7NR16vyccHkg6x7/k2NnjpAZzdmQP9rVTwAPvp9NGkXNjYmAhBt\n5sNNu2iYjJHl33V0VpSaj1pNnXWianGuqrNKEKVd3ElcWeQsA32KtEtDsdIHIPHVASDmqLG4Wml9\nhjDV19BIcVMFvIAI+FWYRkrBqc7zvi80Hzo3hQSFxXprlKW2TT2ti4Tn8qqeeuEmfTKyBMyHadrF\n4KHkJmkXwGc05qi/1yjtQsQ+tHSYDxrHSW2DNwqmEdDQfBDtQDXcTQHXVTeTJap2kbt/jeDDtJHj\n5gaQn1IrM6a0WNcVnAI05bbNhtriT9nbRed5d9MufD+kXfq1pR+IqWkAosmZNkZpMqbSXbMXTCzm\nTcp8xwmo4HpN0JCq3zvFTswk7QKI+67d0loQzASnRJOxxk6IUeXfpcGbdvBh6HCqrPkgslf3mD4N\ngXeWwFcH8KVddHb/BsE+52KOUunmC3QsACiCD530vqf5INCctJpqi3+cUnCqscGmYlmxl4MPg4oP\nTE6LL+naFYPxG6Lsb0yx3JTE56OuHvT44WleNJgfA8aJUWk+dNIesZhYEIyCD2kzrRd8MJO0U7UM\nxBNqu08JoglBtexPjE3Euhim2+g0H2qCU+OKC03mA4AI9kfl8+E5bRosgtWK+N6Vgw8ijxFAr7zc\n03yMgvlwj5PEZEwKzBU2GzKlb1LQ4GLvBh8miyBjwPxRYHlB34a2IRqMKYs+KZTQuoJPF8ztb6N1\ng6h2efTDU+AbLEQN9cZuHhIpsx2BrsGZhIn3gklXVs/wKfxSWzLNh/vdK2sfKJhGQMNkbLRpFwDi\nfmvUza22dfR1FJb+LjPLpDVCUFAKTnWYXrnBpKp2UVnjqO3VYzGhVwuK/RF8GFS7AGBHjoleG8tX\nNcfXXAwM6X+huVC8IbtBkXbRWYBl8GGyCGoyHwDcngvmDqf6QYBBqbHJNU8TC05VBHDuwsGXNJ8z\nCU9voys0prJXV/T5MFwEuAw+NFJ9jKq5nA7zMRYXzLDJ9y6Z2bxa8EEmsAb0xLbUPh8qLLcX9FII\nThXHBoD8fgg+DKpdAADzxwAAfOGy3vvresEHkw2idBfBdgvgzgg1HwbpriyBz4drNKUFt7W8Nkw1\nHyYMREuRfvWBxePimClKbRVTjWzmAHDkGPDMk+BG191dhHV9Pojs1QM7TcbGgFhMPK8mqBumXQDz\n1ItG0O3NcyYCb+nDNKmadqHrbMs1mA8m9Tkk1S6qaReaoBeAYD5Ugw9XEG/cNR57OfjQicZ9YEeO\niv8sagYfJjS423xHb1wDa3WJCfcG0YlO6wbBh8zFau7EvIoHXeYjkTRT33ultiNgPhqa5c0SmXEa\nk7FEQjnVyL73rUC7Bf4d/WaGRs62jNHZq6tc+3jCfBFwnSKVGykCZmk+H7hqpY9EMmnGNLrMh3La\nhbTUVmO+laJwwwWYt9uCnVcYm8XGBOtEUmqrzrayeELMczc182G6CM+L4IMvXNIc3yD4SKb0J8Om\n1FzoL0TeDRJ2tUs6I3bOupOhV/Ggq/kwmwy5LvXvoiM4DTntAojAj6LUVkdjder7AQD8b/9Sf2zN\n4MOYaZTQER7GE3SaD517joJpBPQ3eglDpnFTL+1CW2qrMd9Nz4l/Taop/WMrV/YliKpdGnoO4vnJ\nmzv44DrlXz6w/JQQx2gwH9xx9L0uAPE+XRpYZxLshfyUWfChIThlsZjb2VZzETRc/MVOrK7f2I4o\n7aIVfBikXbyxqxWzpn6qFLALNncIOHo78MJZPY8TGJjLAWbBvoTOfBOPE6RdpMOpQm8TCVnabpp2\nadQFe6TsaZQ01Hy485NmqS1JtUujDozF1ZpoTk4BY2P6TSQldNtoJJI0DQ11NzwTk0BpC9wxa6y3\nZ4OPjumPgdnWoSPA6rL6l2SqNyFgPsyDj0mgvK3eedFQ6CuCD82dmLv465a6egGT7m5ULgS6371m\nqS1vt4F22zzt0m4b2vobsC8zB8T4ugthwyDwNAn2u8dXCbpJ0i5S8zFKwalmOwdTpnFLU/ORyohg\niYr5UNzgstgYMDVjzny48xRTDfjjVMxHS8/SYWJKMNSGjNseDj4IFuH0uPiSVCcI05LLVEp/B67T\nZbEXcpPi3BUnJu38r8R4Tn8yrBl+76bGR67IWMlt0Y+spuaF4F5nHhVtMCHo2uoDYJPC2A+b63pj\nezbjGteegPnQER6KtIvhDtRLuxhoPijSLjqbjWTKTGO1uSE+Q/HcGWNibqfq7aJzzxdmhZux6ubO\nD6O0C5HPhw7TKSteNBy0/di7wUdddFbVbq4GdL5Y1cXIM5syXAR1olMi5oNJUZR0zgwKE1t7QDAf\njYZeHbph2sPzaNCdEHXsvf3QNRkz7WIM0OTBG3X9Y5C7V91O0l7FxajSLjqajzjQNiy1Nal2yRJV\nu5jYCjgOuG4AtrUBTBb05vjMOB3zoaNzmp4VVYlFzWAb0H/ukynjShvOuavx0mE+ZLmtmeBWQ20i\n8Oijj+L8+fNgjOGBBx7AiRMnvL995StfwRNPPIGxsTEcO3YMDz74oPoAzYZZfxMI0SYH1Bcjw0qb\nTvmfxkNtIvj0Q/YIKSlOTDpdHn1gubz4zreLHWFWUBg0dgPg81jR7eZrIDKGK/RNptR3op7I2EDz\nYeh9wJtNcf5ZhQZffrjMB9/cgNZ2wSTt4mMatTcrusxHk4r50DjvcXeDYWLqB7jXXcPW39/kTFG4\nyJ22EC3edof6uIC43001F4BYGyYU0z6AYD4AYGMFmFGc5ySkV4fqc5+dAK6+DN5uqxmE+dHW7F0G\neN8X397Ue9ZdaDEf586dw9LSEk6fPo33vve9eOSRR7y/NRoNfP3rX8dHP/pRfOQjH8HCwgJeeOEF\n9UEMFwIA+jS8aZmvSb8JilJbwBd8KDIfpnoXTwm+ov5e08ZuXptvzV1wXb2l+y6Ma1SdULBdps3l\n3FQRU+ku6oPXSXpTs5mjSbqRormcjvAwQVDtUq8JhldnEcnKXkqGzIduLykTpnFjDWi3hU+MDtIZ\noFY1E1gD+mkXN+Aw6h+m+9zLQNGE8TJgW0eadjl79ixOnToFADhy5AjK5TJqbr4+mUzioYceQiwW\nQ71eR7VaxdSURmRpkH/24Pnghxt8eDt3HRMcE5MvP6QZjHLaRb/aBQAwKyYTvnpd+a3ctNokYZDu\nAtyFwDDgHc9pMx8UaRftCgA5kWkzH4adpE3ue/m8hd3MMZ4Q/iaaFT4AxByho/cAxL0ajxtpPoS3\njqahYsIg6FtdFv/OHlJ/LyCCD1mVqIlOB2+NBVgyHzqbLAmddgbwpdRNgg+vcapG8oMo7aIVfBSL\nReTzndbf+XwexeLOA/nCF76A973vfXjzm9+MAwc0otuGYWdXwFjzob0QHXAfqCX1xnacIv8Pkf4A\noMF8GJY4y53MmnrwYZx2SeqnXbjTFg+kMfORA6pltQWJ4pqbMh9yAdOh3wEv7aLPfBj0cqLobKuz\nAx5zJ24T0WFdX2fEGNMLdv1ot8Qiris4BbQCAO4FHwbMB2DmctpqCVG+znM3LYMPgs7pusyHakrd\nD5nqNUi7mHp9kAhOe1Ff73znO/GpT30KTz755OjSLro7YVOzqaNC/8IvX1R/M0WJMdBx4QtbcDrt\nTiYGaRetigfANxlqLEKmfV0ksjkxoako8TVa2XfDuN+FKfPh7oa4cdrFYBE0EeHpMK3yepmkXkzn\nuewEYJJ2MXneDYJ9yXyw2YPq74XPEdYk+DCZawtu2sVEd6Jb7eIxH4pzux+6gQ/g9XfhhmkXLcFp\noVDYwXRsbGx4qZVSqYQrV67gVa96FRKJBF73utfhueeew8mTJ4d+7vz8PACAt1u42m4hlZvAAfd3\nOtiamcUmgOmJCWQUPqf8XAbrAKYOHEROY/z2RBaLAFLLC5jr8/75Pr/fzmRQBDB94CDGDc69xRxc\nA5Bx2phR+Jz1eBxlAAduuRUJjfGdwhQWAKRKW8rnvpVKiut1eF7peklsz86hCKCQyyl/d+31VSwC\nyEwVMGvwva/NzKIC4OBEDvGDuz+n17nXli5jBUB+egZ5zbHrxdtwHUCOAVMan1F+Ji7u+SO3at3z\nALCQn0Ksso3DitcdAFbGYqgBOHz0GGKKAdDG9DRKAObyeSR1j73dRCw33ffYe2E1N4EqgEOzMxgb\nYhHe79yvthqIZ3M4pHncy4VpNJYXcPjQIa0S8dbqMq4BGC/MKM0TAFCcnsE2gNnJCaQGvLfXua+V\nt8RzctfdiB9SP/eNmTlxzSdy2tfce+bzk8rPPOeHsZBKIb5dHHjtBt3z5Rdy4pmbnVN65spHjmId\nwGR8TPtZbTQqWAaQnZpCQfXcHQdXx8aQrFdwUPPcAc3g45577sHjjz+O++67DxcvXsT09DTSrklO\nu93Gpz/9afz6r/86UqkUXnzxRbz1rW8N9LmLi4sAAO7uGuu88zsdOG5UvL50DUzhc5xlEZUXK1Vs\n6Y4/PYfaC89gYWFhlwJ/fn6+73k5qyKS3iiVUTQ4d14Vu8DK9SXUVc7dLZW8XiyCQVNJnZtAbfFy\nz3McfO4iVbNeqihdL+/9Vfd6Ly8pf3f8unh9zXHM7jkmvrPlly6AdbHx/c6dL10DAGzV6ihpjs0b\nQr1eWriCis53tyBShJvNlvY970xMwllbVb7uANDeFru4a2trYJtqOzrHrThZWbgKlp1Ueq/3GbUa\nnKmY0rWX4y5dvQpW7r8D73vdOQev19FkTPuea8dFuevixQtgMvWmAH5NXPeqw5WPwXHZwtXFRbCp\n3umTfufevvIyEIthuenoPestkdZcuXIZLKOXKuRuarjWaml9/zw3iebGet/3DrvnnevuOlOuKD1z\nvCUmluLCFe1nlV8Rzt/lZhtVnc/I5dFYWxl67oMCEK3g4+TJkzh+/LgnLH3wwQdx5swZZLNZnDp1\nCj/xEz+BD3/4w4jH4zh27Bje+MY3qg1AZbTlpl14s6FWEmTq8wEAR08AT31DmC5NzQR/n6nJl0Q6\nI3LSimkXbio4BUTqZemKeumjabVLwiD3b+Iz4YdcABTy8CQ6H1+pqxbk8Y5raj4AYLIALFwCb9TV\nn51G3e2oqzElGWo+POGh6n0nO4zqpl1MqG8XLJsTpe3l7c69pwJp7KfjM2Ii8F5ZBgqz+qWi8njr\nJmkXQ6F3OiOqdrTHH6Hmw6S0HRBpVh1dnw/aPh/333//jp+PHj3q/f9tb3sb3va2t+kflVz8DX0+\nOr4PIft8AGBHbwd/6hvA5YtqwYdc/HWEQP7xGRMVL7qaD5PgZ2YOuHxBCJJU+jZ41S566n+WdH1d\ndHLQJr1F/JClqirCTwrNRyolvA90HUalbkBXcArRnZQDQnQ6p1jF4FYdaPl0mGo+Wk2h01F93uOG\nmg8dS/du6BrbSUhtkpatvZgjeKOutLnjjbq4T1/5WvUxJdzgg9eq+l4TcvHXnWtTaaBe1feX0fX3\noah2MXXxnpgUXiPNhnYT1L3pcGrqNSHhldoqTg5EwQcA8BeeUXsj1bkD4ibVqXbRaTLlQ6fiRVF0\navpAeKZHOv4qtMEHV6lAoOrnM1nQrzbxql00ds8S0utDp6Ghrt8C4D0rXLfaRfd5l8+IrtW1oaEf\nAHPPh7oJ86EpOHXnBV2xKYDO8Zq4nJoG/emMqHQKm/nKatoo+MANKwsZQcXL3gw+iNIuTFeNbboI\nAsDJ1wD5KfCv/jG4SmddqoUIEMxHpazWf6Ah/P6NbO294GNZ6W2mLe2NzKYMGnz5wSbcEmcVBsLb\nAZkGH9Oi26TGZOh1RtU0GRPjS6MxDfbFpIu0vF/qmsFHXTPNKj0SdDvbUnj6ZDWCXR+8RUjnvtcN\n9r0yW/3gg6baxTDtZXoMusxLNis2iCbMhwy4dec7aTR28wUfRGWPug8HBfORGUfsp/83oNWC89in\ngr+Ryl4d0KPnTBYBF5L54KrMR8PQ50N6m6wsKb+VmzT48uPIbeLzrrwU/D1U3i6TBsxDuSTSHibX\n3h2f6/R3adT1vWVkdYzuRDhi5sPoWc9qltRLGNz3TDPY97rZTk0rj+mBJPgwS3GzlGnwoce8sNiY\nMBU00XzUDTuIT5i7nO7N4IPK5dOz/w0/7QIA7HvuBV79PcCF5wLb8HIqe3VoGo0R9NTxDHhUa+Br\nVWBsTM91DwDmjwKT0+Bnvy1Mw1Tg7QDH9caWKMyIIEjF44VA8wHAxzxopF4qJTOxKfzBj8b4Jo7G\nMwbeMoB58KFLuxOkWL3UxfVreh8guwnrpF10TcZMxY5A5zk1EZyaCn5NRa8m4+cmiDQfZsEHN3A5\n3ZvBB4XoEdDOSXIq5gUAe62o9OHPPhXsDVIAZroIAnr9XUw6m0q41sPKBjybG0Bes8slABaLgd39\nRnG+FxWN7WpyEjZMuzAmKp1Wl4NT4WSaD4O29uVtfYMxCZP+LiaMm7zfQg8+DNMuFILTQ7cAAPjS\nVb33mzS209V8UFQTEjAfxlVmaYM2GoDZpiM7AZS29XvbGEoLWP4m1XxwE7dDP0aYdpFgr/4e8Z9z\nAYOPagWIJ8w6nErouJxS2Nrn8mJiVrAe5py7ZckGVCwAds/3is/77t+ovbFmVmmz4xhcsTGuBGQ/\nKAWnAHhRbfHnTltUSxhUuuwYXzH44O22EO5pnj9LZ8Sxq6b5JG7gtAvL5kRFmW7wUTe473Uby1HM\nr6RpF02m1TTtIuccne8hlxdBry7r4l2DKO0CQCxAzmOfAv+L/yF+QVZqqxGZM0Yj+jx8KzA1A37u\nqWD9PqqVTnt0U+QkNaaSdjG3tWexmNiNqjAfpW3Ra2HSLPjAnfcAiST4d7+l9r46jeAUgGA+oGCv\nT635UGUeZJmmKfORGRfnoDo+RZp1ehZYX9HbCRoGHzoCXwB06eVDtwBr1/WqfUbh80EYfHCj3i6m\nPh/uPK15DNJMUzaFVAEz9fogSrvcPMxHaRv8L78MPP+0+HlUpbZ1sQAbVXy4YIwJ9qO0BQQRIRIG\nHx41FlCAKJqrtWiCrsIssFUMPjFvCrMeZsp8pFLAkWPA8qLaQuRVuxAyH5cvBHsDleZjSjPt4qaH\nmCHzwRjTK/elEF5Oz4lFTSMPrp1mda8X/73fRvtTpzXGJarqO3SL8Cm5ruFUaZJ20a0mpAg+UoYp\nD8AL+rWrzGQAVNf0l6mWxSZX57s39fowreh01xZ+0wQflZ05cqP6d2CHCY4SKJra+XFc9LWRVsYD\nUS1rRcI9oSoAlDtwinRTYUZMiMWAC6F8nWHw4X1Gq7nrfhoIqmoXQBhsJVPBrjdAn3ZRXfwpymz9\nx7BdVOzqK0uNDYSXJqJT3cVQurGWtoG/+xv1RYjK0+ewq/u4tqD8Vl43CLq9tLZi8EFwv7NYTCza\nRsyHXkt77xhMUz/VCpAe1+rJ46VIVVhtH7hh2oWl0uK+vXmCjy6XPtPJ2IQWJAw+2FQwOpy3WmJs\nqrSLjE6Dll6adrT1Q7HlNPeCDwU32D5g8jMUrI+5idlS9/hyYgyoBeBUwUcmq5f28AzGCIKP/JTQ\nb6j4TlAIzKdFl1Et3YcUQCruAnfpslTtpomcnJkrOtXSfRAwH8qbO6oO0umMWvfobpg+d6bsiwnL\n7W00NB2NKRydJyaBm6bapXunanpzxuOC1hpx8BG4CsHbhRAFH9kJIBYLvhhROC5KqLacLtKkXQB0\n2JOgrAsgJhDG6K57bAwIuvun0nwwJs69qNZvwqNOZXWUyTHoVNxQlJe7wYdWxYup4FRCOfgg8vQ5\nbBB81GtAIqnXY0Wzl5IXrJiYOAKCpSQxGTNwOAUMgo+ydvDhlVivavZXqddEYYNubx1AbDS2NrUr\nbvZU8MF3BR8Ek3EioZeTJA0+AgoBXeaHUWk+YjH3BgkYnTaJdiQAmCLzQZ52geKuoF4FUmkSnQ8A\nYCwGBPUaaTVcS3vtVksdzBwANjc6brFB4H5PJIHfpNQZKbAvBM0UO/fbCNIuLrjqQkAlOC3MCpH1\nknraBfWaPttnsrkDiJiP0ZmMmQQfnHOgWtVnPmYk02cQfJi2kpiYFKkrzWuwp4KPXVQtRQCQSCk9\nHNxxjNwWe0KmP4YFH7JPgU53ykFjB067EFq7F2TqYwRpl0lN5oNC7yERGxPphyCgsLR3wQ4cFv9Z\nVXB5lfelaaUR4Hl9KLmcUnRSnjFPu+gKTj0othOget5YLCbOf11jIapVtRchJplC3WpCw+aZSGeA\nRl3dUFBilPbq9RrAHX19X8GA6ZPjGzJPzCu31Uu97K3go5v5oFgEE0m1yFzekKZRoQ8snhDq5KDB\nB5XmAxCLQb0WrCSNytwN0Ei7rItrRRF4ycBHJf1gsgPshdhYcOaj2QDiRMGu7Ca7EtzxksvviYD5\n0Eq7UAgv8wUgHgfXqfigSrsoMx+ETSSnD4hqQVXRa71qdt+rzq+AxywbB9tynqxpVptQNJaDT7Sr\nAneu12W5WSIhntdVxYBXolHX9/iQyN+MwQdzD4tCfZ9IqD0chAZjOzA5PTz4oHQ3ddEptw1Ag1f1\n6853ITchJqagaRfXYIwk7SHTLsrMB13AiTEF5qPZpAm0AbA5wXzw64rMB4sBE+aaDy/tosB8UJSc\nslgMOPEq4MpLnWAqKHSfeX+uOx4H1xSckqQ5NWh4zrn5fZ+bAIprauwDUVrbuLeKrHbRDfxNxq+6\nxRUmc/3MAfXvXoIi7aJo5dCNPRZ8iAsSe/gTiP3Hz9FoH1RpQU+BTph2AYTuo1oeqAzn8oakZD4m\ng98gnuaGIPhgjInFLEAdOm+3xWJFQfsDImiNJwKnXbjTFtedlPmIKQhOG+YeHxIy7aLSXK+4DkxO\niYZVpshr9Hch0j6w75Hutn+r9kZdR2Up0D1xp2AedAWnFHON10lagYZvNcU9apBuZHfcJTYtlxR6\nGVFp6gx7q5jaq7NEQuh+tIIPc5abzRwQGxyVTRZ80gJTwe+E9Pq4CYIPrxdGvtDJJ5lClRaUCzCl\n7gIB3ScpmQeJvMJOlDrtk8l2IvxB2C4C3BHeIAToVH2sgy9e3i1k7oYUZ1IzHyppF6pgd06o4HnA\nRmNcerFQBX6y4ZSqpT9gHnzc8yYx9lNq1vq6JmPs0BHEPvRJxP73jwKzB4DtTaW0BycQ2npwmQ8l\n9oXCWO/Ou8W4z303+HsIOmcDIGhpT2Dupyt6pZhrJdulne4z7GN1czEfcuEnSLdIuGmXwOVActLM\nElDQfgTJhRNXuwDoCACD3CAyD0kVeI1ngWpluOGUNMqhCjgBIVwtrsH50C+Af/63B7/WpLNnP6gI\nTinTLulx8T0G1XxUymIHTFHpAnQqdlRchaXJmKmt/9wh4W777N+p2W4b+NuwW46DpVJ6JmdNAqGt\nPI5pOb568MEMgm5252sBKAYf1MyHcdrFMPjQYF44RXGBe825qtBYHq8p8+GxnDdL8JFKg1GUHErI\nBzvoZCjTBDnDJlvdCMJ8yIeIMPhQanNepUu7eJ8j88qDIL9z08ZmPvjLRvm5pwYHn4TW6h5UmI8W\nYdoFEKmX9RWRzhoGl7L17hNDMFky3FLo9Epobsde+VrxrC8rlJ026sBY3GzekcGHSrqrQbDzq7Jh\nrgAAIABJREFU7h5fJe3iGesZBB/5AjB/FHjxmU4aYwA45zSdswHPFI8vXNJ7f7MhtE4mXhfpjJ7g\nlUDzwWY1rjngMb3MtLpP1cSyC3sr+CiXaFkPQLn/AC/RL4QAPOZjYMdRG5oPL+0SsuAUPgZlWOrF\nc9ik+8653/lwe3PwYmTS2bMfYjGgPVzzYdrRtRfY3GHxmUF24ZKJo0q7AGInqcF8kKQf5PxRVXC+\nrBM0UzxyDADALwXs5wN4i7CWvXY3pqaBWCz8tAsAdufdYn69dH74i1tNsSGhEJy+8fuAVBr8z/5Q\nr79Ks2le4p5KA/WqutGWYbULAF/Aqcp8GPZ1kcjmxDx3UwQf1TK91sLrPxDQdMndhTNi5qOj+RiQ\ndrGi+VBIu1QsaD6AocEH95gPusCTvfH7xX9e6dLCLzzT/8XeJEyo+YiNAdwZnnKislb3Q4pOA/SW\n6fir0DAfADzmg3MO/tILw3fEhOmHTvmlQvBBkQZ4xasAAPz8gPusG4RaHzY2JszGdJgP06D72CsA\nAPzKy8NfS1nhky+A/fCPC1O9r35R/QNaBOnOdEYE+qrNS72NpknaRep8VJkP97qbaj5iMSE6vTmC\njwrpAgTA1/xIMe1CrvkYnv7gNnw+xrMihXTh2aE9GLxqG0rNB7C7Z083iLqq+sHe/HbEfu2ziN3/\nz8UvBi0KJm3F+0HuZocGHzTW6n6w43cAAPiF54e/2GXE2CSN2BdAh/l4+UU4//Zfg//l/xj8eiqb\nccB7dnhFNfgwFLvm8kJvcuE50aMppHF3YGYO2FwP3kmaivm45Tbxn4WX8f+3d+bxcVXn3f+dO4uW\nGY00kmWtli0by/vCYicEOxizNkATSJMmfAo4r5PGeUmalNImn7SkhNKXkBYKocmbhvISkhpIoJBA\nibEDiTGbjbEBWxi8IGxZGsvWLs0izXLP+8e5586d0WyS7j0jz5zvP5JmRnPumbn33Oc8z+95HhoJ\nZ9bbcJe/SaUMyOWfAWx20Hf2TP6fzcgym6ruxIQQOykpZcbLZPu7hE0U2FdUAiNTay43s4wPSvMe\ndoHfIs2HVrmTZqp7EQqwGKSZBc4IAfnkVawA0e4/Zn5xKMBummaNn7PxYYHnQ1GY7qNhDuD2ZPR8\n6CEas7NdgOy6D72jq4maj/mLAUJAjx3K/tphCzwfNk3zwXdE2TKtzCozDoMbW7TnAwBZuJS9V2eO\noRczs5ygiU4phfrjf86po7JeHGu6533DHBby6ToO9eH7oP7jLek9fmb1ddEg5S5m9J38KHejj2OC\n0HvKtUaCJoXYq6on1UATgHlhF4CF9cdDoMfeBz1xbFL/OmWF1aOPPoqjR4+CEIJNmzZhwYIF+nPt\n7e14/PHHYbPZ0NjYiC1btuT8vsTMkANg8HzkFnaxIgQAaB0zK6uBTCmQoSBQVmZefxE+9iWfAt3+\nDOjvfwu67or0MeZggLV4Nmt87bukwQAyvmPQfM0HhxACtCwADr0NOj6WWtlvYkdbHWVyxoepN6Fy\nF9A0D/joCGg0wirspmPIAs2HwxHPogGyX3tmej64gG8ymg+zsi8WLgN2bgM9+h7I/EU5jBs2V2S9\n/nJ2A2jfD1rfDNrYAvrefihf/Xbqa1rvaDtNz4fDAdQ1AV3HgePHgFiUXdOpGhVaUMSRzDsHtPND\nwNcJtMzP/R8j4elf81OsNWKal9tbA5w6CRoez9mbRE0KuwAs3ZYCUO+7HaiohO2eh3P+3yl5Pg4d\nOoSenh7cdddd2LJlCx555JGE5x966CHcdtttuPPOOxEMBvHOO+/k/uYzIeyiKObqLjiz64GBvvQx\n8FDQknFJVQ3I+RcBPd3AyY/SvzAUNFVzExecZr4RWGXw6XCvQrrsDz3l0ALjI5volKd2m611WriE\nLa5ZBJB6R1sz05w1z4fu/s9SZ0cPB5qp+cjR+KCqFq83w/NxzlL2nh05hLsA0xtYkrblUL55B/vD\nPwL6i38H9r2evtCfVprbjPo6pHkeM+JjmvchnQ7ATHExh2tOJrnz5oLTacHPt0AO9YyMmFHhFGxt\nBzD5VhKAOZ5entAQCQODfbll2GlMyfhob2/HmjVrAABNTU0IBAIYM6Qb3XPPPfB6mRvX4/FgdDR7\nlUsds8MukxWc+kcBV4Xp3gdAy0KgKqLp+k+EgubqPYwsXQUAoB0fpH/NNFo8p0QXnGYp8hWwprCb\nDu8+mu7CsMLzYeOajywXI+99451l3tgAwG+Ex97P/LrRYaDcPb3W2slwzQc3PrJ12DWzx8lkwy5T\nrW6aCq7ryhZmhFZl0gzBYzI8/dTYpDNNCEQPzTTOmf64WraPTjrjwwrPh2Z84PgkjY+oCWEvXfQ5\nyR4roSDrbzPdshLc+BichO4jzNY7YlbYhUPppMSnUzI+hoaG4PHEXWoejwdDQ/FBS7WsgcHBQRw8\neBDnnntu7m+eb81HYMQS9z8APQsh6psYj6WqyhZME/u6GCHzF7NfPkxtfFA1xjwAZnpeJqP5KHOZ\nU947BSSb/mLMpNi3cUzd85HZ+OAaIL0lvFnj68ZHFt2Hf8RcrwegZbtE4kZFtgrD4bDW5dSE+j6T\nDbuEzRNAEpuNabZyEXxy76eZHgCAncN2e9yjBqSvueI7yfopmbDm6qJTjbTZdVb0zmpqYb11JuH5\noKqW4j7NzrpEb+Q4ifouAFvrzVhrvbyEw2Q8H/w7MNHzwZlEqXdTqnmlynEeHh7GD3/4Q3z5y1+G\n2537ye1taoarsdGMwwIAjM6qxRAAr9uF8izvS1UVXcEAnC3zUWfiMXCCi5aiH0D0VBca16xLeE71\nj6KbUpRW16DWgrFpfT18bg+Uzg/RkOL91dERdAMoq67BLJPGjyCGHgDlUGF/dTvKPvZJAEBj0vv7\nxkKAp2rC42bR73IjCKBuVg3sfLEwMGAjCACY3TIXDpOOod+tjVk7K2HM5DkORsbgBzCrbQlKzJx/\nYyN8sxtAOz5AQ0NDSk8eVVV0BfxwNs819Xw/43JjXFVRWVaKIQAlCtEOKfUYPaCIOkvQ1NQ07bHV\nqkp0Ayihak7XUdQGnAJQVuVFjQmfQZfTCTshqE96r+S5x0aG4ANQVlFp2vXG6a6ohDI+Bm5y1NVU\nw96QOIYaDKB7oBclq9ditgnjx0rX4dTPSqB4axA77UMloajQ3tc49+CxcvQDqJw1W3/eDE7Pb0O4\n4wgaamtzEm+rY2PoBlBaUTGt9TaqUHb++EdSnj/pzvnu8TEoFZ6Ua/FkCLWegz4AHjUCT47vNeR0\nYBTArKbmaa85Y60L0AuwzQOlqLYBZSm+91RMyfjwer0Jno7BwUFUVcUtoFAohLvvvhs33HADVqxY\nMan3HqIEw74ptMVOgxpku9qB06cxlOV9acAPqCrCjhL4TDwG/f3tzNqPnuqa8P60kzVmGndVWDI2\nAKjzFkJt34fuDw7F6/Lz8bX47xhRTBufjjLXb+CtN4DB5zBy5H00/8MPJ7x/bGQIaJhj3bw1r9dp\nnw8kMtEFHdOaYp0Jx0BMOgZ1fOKYjY2NE+eu1Uboi8G0sfVjaG0D3fMyfPv3gjQ0T3iene8xhJ2l\npn72Mc3bM3xaO6e08vnpxogF/IDDYcoxUFUFCMHY4EBO70d9nQCAUCxmzvg2OyLBQMJ7pfreucdr\nLKaaft6rZS6ohqKCp33dIDTRyU0/OgIACNfUmTY+ueunoD1dwH23Y/jkCYz6fBPmrp5mHoLh0BhG\nzVzna+qAI4fgO3Qw7o3IANeZTffzpzEVsNkQ7OzAeNL7pPreAbZZVwOjUKtrp/3ZU8oM+5ETH8Gf\n43up3czz3jcemfaaQ2vqQS66jGUUbn8a/R3HoLQs1OeeyQCZUthl1apV2LOH5VV3dHSgurpaD7UA\nLBPmmmuuwcqVKyf/5nXT3/0kwGN6sRxcoQG2SJpdYExHa3cePdU18bk+zW03K/uFM1XIQs0V/+au\niU8GTSh6kwyPv2u6hlTVF2kkzFyxVolNAUPaaxrx58mPgJrZ5vW0yWVMzkAf06SYHfoADLqPNKEX\nPz/fTa5pw13ZXHeRpb4Mq/RpUuqlorDQy1gQ9NA7UPe+kn1swLwwgMORm7hdH9fksAvAriWjyDTF\n8VAe+m0wQe+hQbw1ce2SyLALENc+5Or25ynu0w272Gys0uhkwi5BPwuFJYcspgIv4TCJsAvllY9N\nCPUShxPKpr8CWX4ee2ASNUem5Ploa2tDa2srbr/9diiKgs2bN2Pnzp1wuVxYtWoVXnnlFZw+fRov\nvfQSAGDdunW49NJLs7+xs8S8BlcaxG4HBYBIDjngfosKjPFjcbmBymqEj74PqGpCyivVTt5crPYp\nj7/+CtDfPQW67SnQ9VcmCo7MaHSUPJ7dwb5TvuCkKgNsQYGxCXBDIDbxHKDDg0x0ufpj5o6pTEJw\n6q0xp8R2EmThUnbuHz0ErL9i4gusyHQB4toNrqXJoPmg0QhT6s9baN74ZWVAKAj1377HxmhuTen5\nAWD+zTDX0vJmimyTSb6WUpz3OMU8PsRE4wNA9n4fJmpsEqiKax9yShUws7hfbT3w3tugY0HW2DEb\nWkVSU3Renkq21kxCa4H+XqCi0tzvgN+3c2njoTFlzccNN9yQ8HdLS4v++9atW6f2prMbzV+E9UyH\nXDwfFqd8AiDLzoX6+ktQTnwItBoWXG45W2l8VFSCXHYt6PO/Bn35dyBXXBd/0oq+MgAzZvgCP9gH\nalgIaX8vcFrzAlnp+chUc0NLPSbNrdaMmUFwSqNRdrFqHinTaZgDlLuyej5S1mOYBsTuYEZPKAfP\nx+lTQCwG0tiS/jWTpbQ8YTGmz/8K5Mt/k/q1Vng+csh2MbOZXjLEVYEEFV4mz4cZmS5GysqZATaa\npuqlmTVdDJCqGjbnXAtu6fV1pl/cj9TWs7HP9ORWZ0T3PNROf2zFxmr05Gh8UErZ+MnZSdNF712W\nuxE0oyqckjoLBIfcrZZD9TtqVXVTA2TlBWysg3sTx+7VUrVm1Vk2NgCQS/+UjXcosfYKtSLskvx+\nqopYf7zCq/qdzVD/7R/ZH+UWej4yGAK0SzM+5swzd8ykDBv1d09i7O3dbMyBXqZNGB4AKAUxO81W\ngygKsGAJ0NvDPDxJUIuMD+750Mtsh8MY+n8/Quy+2yceg6a5MPUmWFYeL1wHgL75Cmi6tgZWeD5y\nCbvohZ6sCLtk9nxQNQZ8dASoqjE95EYIYbtx0WEX7yTrXURN9nwAOYdeqInGBwDmdRgayN5HCmBG\nYTRiSsglgdIylmk1ibDLjDI+TNd7AHEXcC6ld7nmw6KwCwBgyWrAZgM98Fbi4309zBVmZq2JFJAK\nDztZk8sv8y6LZtfaSHq/tDVORGg+Unkhuo6zn5Z5PlTQYAD0mV+i9x++Dnrobajf3gz6xh+Y3gMw\nfyEwQLSGZ0hV70OU5iMSxtj+3cAHByZmxvm4+99Ez0ey946qQH/qtgZ6eMCssF+OYRcu+ISZ8+Yk\nb56Sj+ejo4B/BGTF+eaPDejNxlJ2ejW5vLoOr9Cbs+aDGx9meD6Ylo/25aj7GOBhF3OMD1LXyAzM\nTDWcksfmHXFNghDC6tycrZ4PWOL54MZHDruRoMmN1VJAyl0oWXYucOKYvhujsRjTQ1gYckmgYQ6r\ntGosxGRV2IV7PjQDIJauvLwIzUeKsAvtOs7KS5vtcTIWGTOce+rWn7JfPjgQ3wF5TdoBpSBjvQ/u\n+aiwyPjQwy5hqKPDrAhR0u6MnuKeD/NuwgktGvi17E8TBuhjOiRi1vevGR/ZWqzTwwfZuIsnlw2Y\nE8mGfNLGix5gXleyco35YwNM9xGNpK61YpXno9ILECV34SUPu9hN8HzwLtKZqkcb0TcdJhkf65ie\nS33xWf0xesYH9eH74hWM9bFN9roYqaoGRodzrnI6o4wPS8IuNl5aOwfPh5muuAw4F2gFv7SFD4N9\nLO5tYaaLEV1kdqo7/qAZLZ5TjcUXf23O0dPM+EhenE33uBhJ4/mg4+NATxfQPNd8rZFiyHYxLv6a\n8UVPfKhnAZldYCyB1oWsAFP7fqhPPgJ6qgt0dBjqjmfiuxSLwi664DQ8DnVU8zAkeyB9J5nBa6bQ\n3Og9bGE9pyYswpw+Hu40aSfocDAjK5PWJxJmnqjmVhALspySPbfJXW7pgb3MSFqyyvSxAcTT+FOF\nXiwyPojNxoyePHg+0DAHqK0H3f9GvFVEBuhALxOJmtXMsW0Z05rs362XTKDv7AHdvRM40p44dr+5\nXhcjpLJ6UlVOZ5TxgXoLwi6OSYRd+GvMqLSYAVLOS0Bri7MuNrVW76GjGR8JnS/1RkfWhF3IUlbl\nVvd8JC/OVpWVB9JrPj46zIy+BUusG1ONTTR8FQXo6QY9qnkjZltTXA1gqXCYew7Q0wW64xnQV7aD\nvvoi6JOPgPI0VLOND27w8/ObqszQAxKE3zQaAc74gMYWc9sZGM5hwgWAaYwP2n+GXe8ek24EusYs\nQ1XXY+8DkTDI4imUIsiFDJ4PeuIYCzUuXpG6yaIZZDA+TO3jkwzXPmTxOgEwV3CqKCAb/gSIhEFf\nezH7Pwz0Ad5ZplV0JoSAXP5pdp397kn2YIhdexM6/Vrp+Zhk6GtGGR+WpFvachec6jcnm7XGh1KW\naHzQXu2GLCjsQri4z2h86CEnk42ABYuZlmXtJxPDWXxxbm0D+dK3gEUWuJ856TwfWiiCLLTA+DCO\nadx5Ns0F+cSlTIdwYC8L91hhdBsgF10W/yPgB7gXQlXZuW624ccN/lT9VYzfgRWZLgBLteVono+0\n2Rf9Z4Dq2eZ5vvjNLENqP/1AC7ksscj4SKP5oP1noD74TwAhUC652pqxAYPxkULkqwttLTI+IuEE\nsXE6dG+QGWEXaNeYwwn68vYs40bZzdnsdgprPgnUN4O+9iLoqa74tZfs9eLGR40F3lYevg2MZH6d\nxowyPixhMpoPUZ4P3mqe7wyPMaEQmWOy6DEdKTwf1KKwi/LxS2C775cgtfVQ7vwJvF/7O/YEX5y9\nNVA+sdGSRn46SZoPGo2ChoKgRzURptWeD+28cl/757Dd8SBrva5BVn/M2rkDUNZfAeV+lv5Og/54\nIz8AcHvMH18PdaYIPRg3AYPmxr51DLUW9GtKq7JKh/qhPvs46PAgu/5Gh03V++hFqzKtN3yzMWcS\n7d8nQ3LmmPaZ0z8+DwwPgnx2k3V6DwBEm5e6eycbN+CHuudl5pHo7wXcFTmVQJ/0uDzjJZd0WzPr\nfEDbOLe2AWd8LJsoHcMDAFVND3sQmw3K9TcBqgr63ONxr2Pypru/l3nn3BYUNczl3De+3PwjmGHY\nJhF24e5xMzt8pkD3fIyHQCkFPXyA7VbMzrhIA6moZK72Dw4g9g9fg7Ll71jYxe5gbnqrxq30xgvb\naCfodCsM5oQedtEW4UceAH3zZbb7qm+2JO6uC05jcc0HnyuZu0Cvw0DMLm6WjrJy1n8h6E+sAWFF\nWrkjw7JiXJjCvJuwye5/bkBXVOo7TK75oP/9C9DdfwTdtR3k+psAAMQsvQeQ0wKs77qtSLMFJoq3\n+Xiad5OsWmvNuJy2Zay67rtvYvxwO+iuF0F/81+sqGFvD3DOYmvGNVQ5VU8cA339JZAlq0Au+/TE\nLEITwy46fG2LRIGSNPeQfu55MDfbBAArlOj2gHZ2xI3u5PuehUUNuSFHcynoiWLwfGgnF82lyJhu\nfIjxfGAsxHZBA33AohXWnBDpaJnPXKCnu5kbOBiwVneRjO72FGB8aN8njbFMC/rmy+zx8Lhect50\nEjQfSeK2+mZ24yl36yXQrYYoNnZTDvgTS2+brfcA4p6PVBiLzIVN7K5pgPCwi3cWy2SyOwD/CGjQ\nD7rvNfa5jwyC/vLH7HVm3gj0sEsGzUfU2nWGlJQk7uj5eBFrCnxNGJ8QKFd9FgAQ2v2yXntDfWMn\n2/VbkV4MJFQ5pXteBo68B/rbx+LaJiNaWMLUzZb+3acvqke5t8+C2j6EELaGj4fiXnWjxopSdv1b\ncc0Dk4syoBiMj0l5PsRoPuKC0zHQDw6wx6wSn6VBuekbIJ/6PPsj4GfZLmaLTTMh1PhIKnVuuNmQ\nZedZM6axvDr3fGiLE7HZoGz+GyhfuY2p9EXBe34E/OxztztAeJqgmWQKWxpDMVyEarbwkZ/H3hq2\nIFewold0zy4m9LzqemDZufFz0Mw061xczyLOfaPolGs+eHVRi7P5AOjpp+rwoB7ywoE32U+zq6pq\n6B5M/0hiobfQxIqz9Mh77BeuCTJjfC6izVRkTitkScxOb+eUlrFNrd7awHAskTAz/q1a53MxvA0U\nfthlEtYYFeT5MIZd8H5+jA9SUwusuQj0d79mN6RQ0BoFdDrMTHXLRlLYBUE/0NwK5ZbvWuP+NIxJ\nYzGQFCEmct6F1oybiXI3K+pFAVTPgvKN283L8jCS6aZq3ARo4kNidsEpbWen1+6o8ACnfaywm6KA\nXLgRZHYD1Pb97HVmngN87pluQNEIC4FZaXjWNcWzDpI9HyKuOe3mqg4PxivpciPc7H4yHG5UhcOJ\nN8Bw4s2QRsLA4QNAwxy2Dpo2fnbPB0Ka3soqA6CkjF1X3OAyZtrxsJtFZQ2Iw8lCutLzoTGZCqeC\nBacYC4J2n2BZIFZUd82GJkyjw4PsYhUZdtGL/Aiwf/X+PjGmNg8FAZcbZFaddWJP20TBqRAvTyZc\nFexzHx0Cyt0g9c3WLEQZjY8Umg+Twy5ongdy09dBrrye/e2uZAvy8WMsu6qqGli5Nq53MdPzwW9A\nmdabaBSw2S0VGitf/TYzroH4Z67XMbIg0ySZcjegKIgND8aL2XEs8nzENRfhxPMseSd+9D0gHI53\nYjVtfM34yWR4Wl3IsrQssdaG8Ty0oHloAlJwmghRbMwFnkuRMcGCUzoWYhdmRZXlGQ8p4cI0XmhJ\naNhF+6xFuIB5CCQWi+8IrCznDiSUV+fnlRUK/8lAXG62M1FVa5sn8k7SqTBehxaFXQghIIYuvqTC\nw46HqiCtbewxhwPkc/+LlRo3o7U5x56D6zkSsdz7QCo8oDWaUcU/8/A48/wICPURRQHcHqjDQ4ka\no7LyeD0Is+FrSSQ8MdxggB7UPF7LTS4vb/S8pEM3Pqy5/khJKTvXdW+T4XPgKchWbTJz8foZX27N\nUcww7PbcPhDRno9QiJ0QosqqJ+N0shNGMz4srTKajEDNh34zVGN6mqklNWWMGHQmNCnbJW8YDA5L\n5z/JsIslNR+MVBiMi3nxTtLKJy4FPnGpuWM5ctj9xaJivGB8HeNrXyQixuvBqahEbLCPfc+EsB15\nwxzrNlrc8xAeTyzylmx8HGlnhoLZYnPd+MkgOOUGgJWeD4B91kBqz4fVmg8ZdjFgc+To+YgBhJhW\neS4dpKQEIArL+Y7FrO1rkuk4CGFjW20Rp0Kk4NRY4ZTvwqw2tJSJRcbybnwY6z9Y6fnJVXDKwy5m\naz6SMYj7SOvCDC80gVwFpxbryhKOhWc8RMJi9B4ct4d1y47FWA2M0jIQQ40b03EYwi6RSPw8TPZE\njAwCVdXmlxVwTCLsYpUBkJxSbMwuC1kc8pGejxTY7bnX+RDhkiSEnST9WlMrK2ot5IrLHW+DXKjZ\nLsa0V25oWWzwEZst7m2Jaju9PIddEgwOi9y+ADJ/p8aUd35TMFvzkQzPgih3A7UWZPcY0eZOoxGk\n3d8LCLsAiBs4EYPg1OI0WyOkojJez6ahGeSvvscEkVahzY2GNc1HuZtpH5JDYAG/qY0MdXLwfCAU\nAErKrAt9JX++0YmCU8vW+UlqPorD82HP1fMRzVyjwEx4ShSQN88HG9twExLo+aC68l6E4DTuhaC8\nuqcozYcx1VaEuDYTxjlbGnbJVGTMsBPjYRereoxo6GmNrQut11blsvsVFXZJrnEUiZhWTjwnjMX7\n3JUgrgprrwGj4DQS1nf41GB80PFx9pwVGz5u/GTzfLgs3OQlez6MhoDm+SCWhV1yOPcNFInxkaPm\nIxYT4vkAkHiS5NX4MIwtUvPBvw8Ri6GxzwrXfFi58weSBKda2EWEuDYDJMH4EOT5SNJz0FSaD6vD\nLvXNLJy6ZLW14wAzK+ySXOMoMi7W+2Y0Pqyqa2HEYdR8GOpZGMMuWt+R5M6/5o6fSXDqt9bDnFQt\nmKbyfFgWdplckbHiCLvY7HEvQyaiUTGpn0Ci8ZHHsIueAQELLeJU6NkuItzPBi8E13wIFJzq4q8Z\npPmwVnBquIbK3fE26kCS5mOcFTqzWmNV3wzln/9DSB0b4tDEzZk2O6LCLskCwEjEenGvEaPBYVVV\nTQNEUdi5F0yqpWEUn1rp+cwSdqGqykSfTRaus8lhl1gqwalFHu5JFhkrEs+HYxKajzwYHzPF85EH\nwanw3i5BwWGXmSQ4zYfmI/lzNmo+xscsD7lwSG29mGqyWTwflFIt7CLW80EpFS44NfZMIgKMDwBM\ndMp3+A4HMwiMngiegmrBho9kCzuMhdhGxMJrjyT3STIei9WeD97bRWo+DNjtiYteOkR6PgwWquVp\nn5kwXggFmmobD7uo8Z2P1WGXFEXGiAh9SyZEhV2MBrzWb8PGK0kmh11E7sRFkE3xH9M8YSJSzBWF\nnYfRiKHAWL40H4KMD6czXsnT4WTzNe7Edc+nlWGXNILTkLUVRgHMjGyXXDb6KCbjI5dOe4KyXQAk\ndlnMa7aL0fORD82HSMFpFFRU2CVFkbH8h10ECU4Nu2tSWw/lb/8PPDd+jT1gXJjC49brPUTDb0Dp\ndn8ijW6AGYLRqKG0eoEbHw5nvJAg93wYBad882Gh4DTtdy9i4zMh2yVJcEoU6zKOcimwZ3z5VMd5\n9NFHcfToURBCsGnTJixYEG/QE4lE8LOf/QxdXV24++67pzqEedjsAFVB1Vjm+LIMu4gbl8dhRfZ2\n4am2ijJxh2D6mKkay+VZcOosYQtkOGztAmi8huwOkLblsPk+Yn/HkowPC7p75pVsglPDIIriAAAg\nAElEQVTdEBW0ztgd7Fi00IPQc9CdJ+ODY3fEz3eOnwtOLdR8pBOchixOdQVSZLskaT7Kyi3L+CI2\nrZq4lWGXQ4cOoaenB3fddRe2bNmCRx55JOH5X/7yl2htbZ3KW1tDLv0WAC3bpbiMj4SLUKjnQ2B5\ndb23ixZ2KXdbn3KZKuySb88HwIwOZ4m1pd6N763NWZ+7dvOllBam5yOb8RERrP+x59Hz4WL9XaAo\n4jY2xjAeD7tEBYdd0u38rdZcABM1VNEkzYfV34PdYW2qbXt7O9asWQMAaGpqQiAQwNjYmP78DTfc\noD8/I0hOOUuHwLCLbnzY7cJEdynhhk9Jqdj27kI1H7y3S5QtPiKMvZSC0/wnl5FFK4BFK6wdJMnz\nARhutvwaDIeZ9iGf574VcF1PuhtQVGC4EYh7PnTNh0DBqaJA8VQBrgqmPxGB0bhKJTi1MuySxfig\nFvd1AZBR84FQwHpdHz/fcnnpVN5/aGgI8+fP1//2eDwYGhpCfT3rUVJaWorR0dF0/y6eDPnHdHwM\n9Ff/CXLFZ/KTauuqyE9TOQ73fIgMuQD5K68eDJjbxTQdqbraOhxAOJb+fwSgfPlvLB9DFzrGYvGb\n3QTjw6KOtvmG161JpzET3eHYbmcN/PgNWGRvFwCVf/FVDA0OiRvQmRR20TQflFIQQgyar3yEXXiN\nIYGpttr5RmMxlm1jtXfb4RRbXp3StD0sZwTE5mC59yk8H/T5X4O+sgP0yHvsAdFhl3zqPYzjiwy5\nAII9H+w7paEA2wkI9XyoeoVJ4nAC4RzqzRQCNjszPnTPBw99adegVmCMFFrYhVcVzSo4Fej5CPoN\nYRexoT/3n3wWIz6fuAETPB9ONl89vdnBNB+KYs16p6eapjE+AtaHXYjDoV172kaan29jQcvHBpA4\nZraXTuX9vV4vhobi1uzg4CCqqqbflrqxsXHa75GKgUoPAgDqaqphb0gco29kECEAtlgUMQClLjdq\nLToOI9UNjegHUFI9C7MFjJcOSim6XRUoaWgSMm+Afc99NhtCAOqbm2Hz1lg6XqysBD4AzrEgwgDK\nZ9WixuK5RhBDD4Dy0hLExu0YAws9NDZ6LR13ptDtLIEaHkflrFmoaGxE+Dhb/FylJfA2NiISCbHP\nx1uN6jye/2ajBj3oBlBqtyVcT3xtCweGcBqAq8oLr4B595SVIzrYhxpPBXoBVFTXoFLw523Vup6K\nvspKcPPeUzML4xUejAFoqKmB4nLj1PgY1IpKNDU1mT62OuZl371C9O/eOPdBBfADqG2ZB6eFn0l3\nuQvq6DBslV7QSASNjY2I9nTjFIDyGmvXvlNlZVD9zMOT7XufkvGxatUqPPnkk7jsssvQ0dGB6upq\nlCaXdZ2CN8RnkYWsjjNL7LSvG4Qmxh5jp0+xn6Us7DAWjVp2HJzGxkYMBtnOb9zutHy8bJDb7kK4\nzC3kOBobG+Hz+RDzM/dnT/8ASChDIyYT4K7W8DAzmEOqdeeaPmZfHwAg6PeDanOF3Z7371oUqhbj\nHw4EMerzoVbbcQeGhxHy+UC7TgIAgtEYxgroM+F9PcZGR/Tvmp/zAEBPsfUmMDaOkIB5x7TiYv09\nbNzR8XEEBH7exrmLQI2q+u8jwSCgsvvQqc4TIJVexIYHAZc1ax1VWUh1bHQUPp9vwtzV3tMAgN5g\nCMTCz0TVPDCx0nIg2Aufzwfa2QEACIFY+n3EQHSvJv8M0jEl46OtrQ2tra24/fbboSgKNm/ejJ07\nd8LlcmHNmjW477770N/fD5/Ph+9///u47LLLcNFFF01tNmZgzyA45R1duQBJsOA0rx1tNUhzHjKT\nIgIFcDwEwssLi3D1p2wsNwOyXURhT9R6TBScagZnwWk+svS3yIvg1JDtIrKxXD5wpgi7ALruA4FR\nYLY1nY2JYmMhj2yCU6tD3GXlTMjtLIlfb3ppdQGaD6t7u9xwww0Jf7e0xFsU33rrrVN9W2vIZHyM\naOEjTfRJRGk+GuYAdU3A4pVixptp8BNUxOetGx/axS+iqqaxmV0sChBFbDZRvuHXHDc6bKk1H4WW\naksIydzOQXSRMTvXO2k3H2eBGx8Tsl0MnW5DQUBVra054nSmz3TiehOLawyRP/kzYHQIdN8bQDTC\njC7d8LE61dYeHzPbS609khmCXmMg0SKjlMYXQd54TpDxQVxu2O76v0LGmpFonT2FpODxmz7fbYtI\n79TmRbnnI9+l1UXDPR6OxJ+8yyYdF/hdiMaRodaB8GwXbRxufAgWnArHkM1D7A5QbmyFw3qND0s7\nWtsd6Y2PoQGgstryNU/52MUAgNi7e5nYVlWtL63OsWsC3xxKrBdHeXVuUCQvCMOD8d/5xTkDajEU\nBdGIwBLTSR4HEZ4PY3n1aBSwFfiin0yS5yO5yFjBptoCeq0DGotB3fpTjB96N/6c8LCLNk7I0O+k\nkMkQdsFAL/vdUznx/0wbvyRlqi1VVWCoH7BYXJ+A0ePP+92ICLsAoDmUWC8O4yM5zY/Tdzr+O09F\nKibXeD6JRIR5Awgh8XLngKCwi7G8eqT4jFpubOh1Pook1RaI7347O0B3/g7+3z2lP0UFh13IBM9H\ngRsfGcIu9NA7AACycJmF46fxfIwOsxCsUOPD4PEPiUq11TycOdT6KBLjI3V5dWo0PkKhxNdKrCUa\nESt+M/b0Een5UGNiewbNFNJ5Pvg1yMMuhdbVFmA3oGgUGGQ77dhAf/w50WEXW6Lno+CNj+QiY4aw\nC23fzz4PKyv8JnfR5Qyy7DcisJeRrl+MRsSUdkf8OqeR7BmMRWJ85OD5GOeaD+n5EEIkIjb+bPhe\niRDNh7G8usDKuTOF5GwXm42JupMrnBai5oOHXQbYDSem3XgAiA+7cK1N0Xg+knq7aBscOnAG6PwQ\nWLg0saO42ThL9PD+mb//34jd/4/s8UHNAM1X2CUkSHCqh7myez6KY0Xkiu9IBAmFzPvPTHytND7E\nEI2ILeluE+354GEXlc21EG+ymeC7LqOBySsvAoWbagvE+1toRoc60Bdfd/Q+P6I9H0VifDiTwi7a\n3/SdPQAAsvw8a8e3O4BYFHRkEOPvvMnGHh4E5QaoyC7OBm+jLjgts1BsC8SN3UgYsGe+tovD88HF\nfkmeD74zSSi3XWzCwHwhWgdhDLsIMASIogBEKV7PR3JPF4B9BgWeagsgHvfXdruqfyQuwNPDLmI9\nH7rbvcBTbRMEtXZHfP6H29nzS1ZZewDaxoYaRMb0/Xf0c4HkxfMREZhqqxkf6frbGCgO4yNdnY/B\nPtZh0NhkSHo+xCAy2wVI1FyI0hnYFE3zESk6zYce2jJWPubt3YF4antyI6xCwO5g6Y3GsC7PrBNd\n5yPZ81HomrakbBfCwzDc6LWowFh8TO3z1cSt+u959nwgFAScJdZ31jZ6PrJQFCsisadpLDc0AFQn\nnQzFtkPNA1TV0k9FuoBtBjtb1G5bsRWt54N86vPAktUgHkMvG1vc+KD8ZuyZfk+oGQe/AfX2xB8b\nHmTdlCN5qvMxViRhlwTNhyPRGCl3gZRau/MnDicoNG+HzQaUuViWTV0j0zxVCuztZCzsF/SLaR5q\nl8ZHIilKHtOxEBPheBcBvPcGUHQ71LwQE7wAA+KzXQC2+EQjTPdR6DvOJEh9E0h9UvMuo+ZjaABw\nV+jFxwoK/l37R+KP8TYOsXzV+SiSCqfJ2S7G66661vrxuXE3NADnouWIVNWA7nmZGZ+VXrEtFpI9\nHxUW1jdJGlOm2nJsE40PDGkxuKqapBNWGh+WI7KvCych7CJI5KjYDD015HmVoPkYHgCqBMa/BUKM\n5bu52F0Pu+TJ88HPw4L3fCQVGTNuNEQaHwBKlq4Gueiy+HMVgr18xk13KCBG4M/nH5aptgx+kzMK\nTnnqU1VNYr0JqfmwHtHphoD4ImN8TF7Posg8HynRwi7M6xgEqqrzfUSWQK7+fPyPWfXs55Dm+RBt\neCdfY4V+Hk4QnMb/JoKND+fi5UzgumoteyA4muafLIJ/98EAC/9aXWAMiHs+cmguVxzGh22i4JQa\n866Nng8ZdrEe0emGQPx7tdmsF13pY9riOwB5XsU9H9qNmFQWqPExqw7Kt+8B6ppANl7DHkwOu4g6\nH4zXmMPJqv0WMnxjYbezuRqNkWR9nyXjG4yPhUsBAMqmvwIWrQC5/mbrxzfCDYFR1jzV8tLqgKGs\nhcx2YaRqcz0UT31KSM+SNwnriQhW/ANxj5bIuhJK3PgQZvDMZLjglN+IRaYdCoacswS2u/4vyIWX\nADCEXYQLTg3nXSHqa5Lhazn/adxYCvZ82LTMGuL2wHbbP+sN34TBv/uRYfZTgPFBNG9mLsLeIjM+\nUoRdvDWJ1rE0PqyHG4Ei48887CKynLfNlh9x7UxF83zoXscC9XwYIaVlIGXlwBAzPnR3tLCwi9Hz\nUYA1VZLhxobeW0hw2GU8rnXIu5eJ38tGNeNDRNhl2XlQ/vFHKPt4dkOrSIyPiZoPOmTQfBgWArlD\nFYDoWgdA/EIUWdTKmGEjzyv2HahqvM9FgWo+krF5ZwGDfcwVzdcgQZscYqxrUQznoM3Oivs5Jhof\nQsIup7vZz9p668fKBl9fufEhQHBKFAWkeR4rspiF4jA++IUe8IN2n2C/D/azE9NVkbgjkIJT69FF\ndwIXQz3sItL4MFxehZ5lkAv85tentTUo4LCLEeeSlUBgFOq//n08/VaQ54PMWwic9wn2R6p2EgUG\nIYR5P+xJ4ReiCPG0kas/D1TVQPnKbZaPlRWuvxDp+ZgERWAKIy682fca6L7XoNzzMNN8VFWDEAJq\nXAiKYXeQb/Li+dCMD5E9VoyGbLnFPRXOBrRNAO3XKn8WQdgFALy3fAfBwQFg/+vxBwWGd5XPfQnq\n/teBuqbsLy4EZtXFi9fZbMzwqKoW4tUmc1ph+5dHLB8nF4jdzoprjorTfEyG4rjTJt/kBvuBkSFA\nUyPLbBfBUMp+CvVC5MPzYTA+3BXpX1cs8MW//wzzCnkEFD2aASglpVA2/AkzAACWcZWDW9osyKw6\nKHc8WDTNDZXv3KNfe4QQoHkuSH1zno8qD/A+ZTzbRXo+8kCSxUv7TrMbIK/45pB1PoQyfzHIn94A\n8rEN4sbMR9jFeC4ZC08VKcSm7cT6zgAeL4hSRNfarLr473kQH5OmucLHzBfJmRbKP/wbAJqfg8kn\nPKzNK3hLz0ceSHa3nTkFACAu7YaQYHzIrASrISUlINd+QeygmiFA8qT5INLzkZjyXiRiU53qWnY+\nFGGp/Xwj0ss0o0i+l80w46M4vpXkUEovMz50V7j0fBQ8+i5bpOvZuOi5pOdDeJ+NGQSx2eIdTaWu\nTCKC5PNshoVdisL4IIqS4G6nvNukK4XxIReGwiQv2S4y7JKAwbAnVrc2n4kYQy8SidUkVbcV0lhu\nEkz5Tvvoo4/i6NGjIIRg06ZNWLBggf7cgQMH8MQTT8Bms2H16tX47Gc/a8rBTgfl/seAo+9B/bfv\nxVtdazcE4nTGI4JScFqY6J6PfGk+ZNgl4dqaCXUQBENm1YEePsg6nEokVmPcSLfMn3E1rKbk+Th0\n6BB6enpw1113YcuWLXjkkcTUop///Oe47bbbcOedd+LAgQPo7u425WCnA3E44ulX2sVPUoVdZtgX\nJDGJfHs+RI47UzFcW6QIjQ/p+ZAIxWDsk/mL8nggqZmS8dHe3o41a9YAAJqamhAIBDA2NgYAOHPm\nDCoqKlBdzWponHvuuTh48KB5RzwdkmNeqcIuUvNRmOSjtwsfs7Qs/6WWZwJGAVxRhl1m5/sIJMWE\ncSPdWiDGx9DQEDyeeAzb4/FgaGhIf66ioiLlc3kn2fhwp8p2kZ6PgiQvdT60y2uGqczzhtGwL5Lq\npkaI9HxIRGLQfMxEz4cpd1pKzcmhbmxsNOV90kEpRRdPdwPQcE4blAoPwqFRaDUX0dA8B4rL+mqU\nVs91JpOPuQ9WVsIPwFtfD5eg8ftKSxECYPd40KCNWczfu6e6GlqtRTQ1z8nrsYimsbERUacNpwx/\nFwvFNNdk8jn3mLscPn4cy1cK975mm/uUjA+v15vgzRgcHERVVVXK5wYGBuD1enN6X5/Pl/1F06XM\nBQRGAaLg1PAIyKgfdGhYf/rUmV6QkhFLD6GxsVHMXGcg+Zq7GgoBAIYCIQwLGj82wJoXRu1O+Hy+\nov/eR/p69b+L6XPg3ztVVWD1x0EWLS+a+Rf7OZ/PuVPeQ6tlPk6dOpX5xSbD557JAJlS2GXVqlXY\ns2cPAKCjowPV1dUoLWWx9NraWoRCIfT19SEWi2Hfvn1YtWrVVIaxBh56cbnjxWecUnBa8OQj2yUU\nZD9lXxfGAOtmW3QFxjSIosB2y3ehXPan+T4USRFAHA4o9z8G5Ts/zPehpGRKd9q2tja0trbi9ttv\nh6Io2Lx5M3bu3AmXy4U1a9bgK1/5Cu6//34QQnDRRRehvn4GKdt5/N2Y+mhsLFes1fAKHX7DE1nc\nKhQAABABrazPBqj2eWDWDFoPJJIChgiQEEyVKW/zb7jhhoS/W1pa9N8XL16Mu+66a+pHZSXc82Es\n+uTQdsN2u8xKKFDIhk+BrFoLUiMw44DfbKXxAQBQPve/oIaCUL70zXwfikQiyTPFF2PgNwJXCs+H\nzHQpWIiiACIND8AQdpHZLgCramq77Z/zfRgSiWQGUHQxBt5WOKHRl80OEEXW+JCYSyzGfspUW4lE\nIkmg6IwPlGkxMEOjL0II835Iz4fETBpYOimpa8rzgUgkEsnMovjutqk0HwDLeJHGh8RElG99H7R9\nH3Dux/N9KBKJRDKjKL67bXmKbBeAucal8SExEVI9C+STV+b7MCQSiWTGUXR3W7JyDeiBt0CWn5/w\nuLL5VkBmukgkEolEYjnFZ3zU1sP219+f+PiCxXk4GolEIpFIio/iE5xKJBKJRCLJK9L4kEgkEolE\nIhRpfEgkEolEIhFK0Wk+JBKJRCIpdF544QW8++67GBkZwfHjx7F582a89NJL6OzsxHe/+10cPnwY\nL730EhRFwbp16/C5z30Ovb29uPvuuwEAsVgM3/nOd9DQ0IC/+Iu/wLp169De3g63240f/OAH0z4+\naXxIJBKJRGIR6pOPgO57zdT3JOdfBOVzX8r6Op/PhwceeADPP/88HnvsMTz00EPYtm0btm7dimAw\niAcffBAA8PWvfx0bNmzAwMAAbrrpJqxevRrbtm3Db3/7W2zZsgWnTp3ClVdeiS1btuCWW27Bhx9+\niAULFkxrDtL4kEgkEomkAGlrawMAVFdXY/78+SCEwOv1oqOjA7FYDLfeeisopQiFQujp6UF9fT0e\nfPBBPPLII/D7/fr/l5eXo7W1FQBQW1uLQCAw7WOTxodEIpFIJBahfO5LQA5eCiuwGfqVGX8fGRnB\npZdeir/+679OeP0999yDNWvW4Nprr8XLL7+M3bt3T/hfAKCUTvvYpOBUIpFIJJIioq2tDW+//TbG\nx8dBKcW///u/IxwOY2RkBI2NjQCA1157DdFo1LJjkJ4PiUQikUiKiLq6OmzYsAHf/OY3YbPZsG7d\nOjidTlxzzTX40Y9+hIaGBlx33XW499578dZbb7HmqyZDqBn+E5Pw+Xz5PgQhNDY2Fs1ck5Fzl3Mv\nNuTc5dyLDT537kVJhQy7SCQSiUQiEYo0PiQSiUQikQhFGh8SiUQikUiEIo0PiUQikUgkQpHGh0Qi\nkUgkEqFMKdU2Fovhxz/+Mfr6+mCz2fC1r30Ns2fPTnhNIBDAAw88gNLSUtx6662mHKxEIpFIJJKz\nnyl5Pl599VW43W7ceeeduO666/DYY49NeM1DDz2ExYsXT/sAJRKJRCKRFBZTMj4OHjyItWvXAgBW\nrFiBw4cPT3jNli1bpPEhkUgkEolkAlMyPoaHh+HxeAAAhBAQQhCLxRJeU1paOv2jk0gkEolEUnBk\n1Xz84Q9/wEsvvaSXV6WU4tixYwmvmUFFUiUSiUQikcxwshofGzduxMaNGxMe+8lPfoKhoSG0tLTo\nHo/krndTIVMp1kKjmOaajJx7cSLnXpzIuRcn2eY+pbDLypUr8cYbbwAA3nrrLSxbtizl66RHRCKR\nSCQSSTJTaiynqip++tOfoqenBw6HA7fccguqq6vxm9/8BsuWLcOCBQvwT//0TwgGgxgYGEBzczP+\n7M/+LK2RIpFIJBKJpHiYUV1tJRKJRCKRFD6ywqlEIpFIJBKhSONDIpFIJBKJUKTxIZFIJBKJRCjS\n+JCYjpQRSSSSYkCudVPHdscdd9yR74MoJPx+P55++mmMjY3B5XKhtLQUlFK9SFuhwi/Chx9+GJRS\nNDQ0FPycjYyOjuKZZ56Bqqpwu91wOp35PiRhBAIBPPvss4hGoygvL0dJSUlRnPMAu96ff/55lJSU\noKSkBA6Ho6jmLtc6udZNda2Tng8TOXz4MO69915QSvHBBx/gwQcfBICiODH5onP48GHs378fvb29\n+T4kYfT29uKBBx6A3++Hz+dDZ2dnvg9JGHv37sUPf/hDjI2N4cCBA/jFL34BoDjO+UOHDuFf//Vf\nMTw8jNdffx0/+9nPABTH3OVaJ9e66a51WSucSrITi8Vgs9nQ09ODOXPm4Itf/CIA4Hvf+x46OzvR\n0tKS5yO0DlVVoSgKFEWB3+9HRUUFQqEQjh07hsrKSpSUlOT7EC2Dz72/vx8A8OUvf3nCawp1J8jn\n3tvbi4svvhgbN25EV1cX9uzZo7+mUOfOGR0dxfz583HTTTcBAG699Va88cYbuPDCCwt+7mfOnCm6\ntQ6In/fFttZxBgcHAZiz1smwyzTo7OzEb37zG/h8PsybNw9+vx9LlixBVVUVBgYG8OGHH2L9+vVw\nOBz5PlTT4XM/deoU5s6dC5vNBkIIRkdHsWDBArz33ntoa2uDw+GAohSWgy35eyeE4OTJkygpKcET\nTzyBvXv34vDhw1i1alXB3YCSv/d33nkHgUAAwWAQW7duRSgUwtjYGObPn19wc+/p6cH+/fsxd+5c\nAMCxY8cQi8UwZ84cOJ1OVFdX48knn8QVV1xR8HPv7+/H4sWL4fV6C36tM86dEAJVVUEIgd/vL/i1\nLvl7D4fD6OrqQllZ2bTXusL6pATA430+nw8PP/ww5s6dixMnTuDxxx9HTU0N5s2bBwAIBoMYHh4G\npbRgREmp5t7Z2Yn/+q//wqlTpxAOh9He3o5169ahpKQE9913H/7nf/6nIOafbu5PPPEEjh8/DqfT\nid27d2PlypXYtGkTjh07hqeeegoA2y2dzaSa+/Hjx/H0009j4cKFWLVqFR577DFceOGFuPHGG7F7\n924888wzAApn7gCwdetWbNu2DQcOHAAAzJ49Gx0dHfD7/QCANWvWwOv1FsXcV69ejfnz5wMo7LUO\niM+9vb0dAKAoCoLBIA4ePFjQax0Qn/vBgwcBxL38b7zxxrTXOml8TJJoNAoA6OrqgsfjwYYNG7Bp\n0yY4nU68/fbbulvqyJEjqK+vR3l5OQghCIfD+TxsU0g195tuugllZWXYu3cvBgYGsGLFCrzwwgs4\ndOgQgsEgzjnnnILYBaaa+8033wyHw4GhoSH9Z3NzM9xuN7761a9iz549CIfDZ/1uKN05TylFd3c3\nvF4vLrjgAqxfvx719fX44he/iHfffReRSOSsnztvnOnz+WCz2XDxxRdj165doJRi6dKlqKiowGuv\nvYZAIAAAuO6663DixAnEYrGCnruiKPrzx44dK7i1LtXcd+7cqd+YCSFYtGgRduzYUXBrXaq5v/zy\ny6CUorm5GfX19ejt7UVLS8u01joZdsmR9vZ2/OIXv8CRI0fgcrnQ0tKCffv2Yd68eaipqYGiKOjo\n6IDT6URDQwP27duHtWvXIhAI4L777oOiKGhtbc33NKZELnM/efIkAoEA/vCHPwAA/vIv/xJ2ux3d\n3d1oaWk5a+Oh2eZOCEFnZydmz54NgLkl58yZg87OTlBKce655561C1Ku37vf78fRo0fR2NiIWbNm\n4fDhw7Db7Vi1alW+pzBljHMvKytDa2sr5s6dizlz5uDw4cMYGhrC/Pnz0dDQgNdffx3RaBStra1o\nb29HWVkZli5dmu8pTJlscx8ZGdHXMkII3nrrrYJc6zLNfXh4GI8//jiAwlzrMp3zNTU16OnpQTgc\nRktLy5TXOml85MDg4CAeeughXH311fB4PHjrrbdw5swZzJs3DydOnMDixYsxe/ZsHDlyBOPj42hr\na8Nrr72G3/72t+js7MQ111yDT3ziE/mexpTIde6HDh2C1+vFddddhw0bNqC8vBx1dXWorq5GfX19\nvqcxJSYzd7fbjY9//OM4ceIEtm/fjn379mHjxo1FMfeamhrU1NTg3XffxY4dO9DR0YFPfvKTukF2\ntpE89zfffBOjo6NYsWKFrm168803sWjRItTV1cHtdqOjowPPPvssjh8/jvXr16O2tjbf05gSucx9\nz549WLx4McrLywEAu3fvxtNPP11wa126ube1tWH27NlYuXIlLr300oJc6zKd8/x67+7uxrZt26a8\n1knjIw2qquLJJ5/EyZMn0d3djfr6emzYsAH19fWoqKjA73//e7S2tmJgYAA2mw2zZ89GLBbD9u3b\nsXHjRpw4cQLnnnsubrrpJjQ0NOR7OpNiqnN/7rnncO211wJgrrvy8nJ4vd48z2ZyTGXu0WgUzz//\nPK699losWrQIc+bMwWc+85mzbiGa6ty3bduGzZs362LrP//zPz/rDI9sc3/uuedwwQUXwOVywel0\n4vTp0+jr60NbWxsopbjwwgvR0NCA66+//qwzPKYy9/7+fixcuBA+nw9nzpzB+eefjxtvvLHg1rpU\ncx8YGMDChQsRDAbhdruhqirKysoKbq3L9L2HQiGcd955mDt3Lj796U9Paa2TxkcKBgYG8JOf/AQO\nhwPV1dX4z//8TwwPD+Piiy9GSUkJvF4vzpw5g+7ubixbtgzPPfcc1q1bh46ODnzewDYAAAXmSURB\nVCiKglWrVmHRokVYsGBBvqcyaaY6948++gh2ux1Lly7VU2/PNqYzd5vNhsWLF8Nms8Hj8eR7KpNm\nOnMnhGDx4sUoLS09624+QPa519TU4OTJkzh69ChWrlwJl8sFt9uNX/3qV9i+fTtmz56NuXPnoqam\nJt9TmTRTnfsTTzyBF154AfPmzcMll1xSkGtdprlv374dDQ0NaG5uLsi1Ltvc6+rq0NLSgoqKiikf\ngzQ+UnD69Gns3bsX3/rWt9Da2oqenh68//77GB4exvnnnw8AcLvdOHLkCK666ir09vbilVdewXvv\nvYfrr78elZWVZ22cf7pzr6qqyvMMps5053627XyMyLmnnzulFJWVlTh48CDOOeccjI2N4T/+4z9Q\nU1ODTZs2YfXq1fmewpSZztxvvvlmLF++/Ky8+QLTn/vZnEo/3XPeDD2XND7S0NTUhNraWqiqis7O\nTlx//fV49tlnsXTpUlRXV2NsbAxHjx7Fxz72MSxfvhzLly/H5ZdfjsrKynwf+rSZ6tzPxh1/MnLu\ncu7p5v7hhx/iwgsvRCwWg9frxec///mz2ujiTHXu1dXV+T70aSPnnr9zXhofKSgtLUVdXR0IIaCU\n4qmnnsLVV1+N8vJy7NixA16vF++//z66u7txwQUXwOFwFEwvDzl3OXc599Rz7+rq0mPgTU1N+T5s\nU5Bzl3PP19xlefUs8Nr1brcbV111FUpKStDe3o6hoSF85StfQWlpaZ6P0Drk3OXc5dzl3OXc5dyt\nQBofWRgYGMBFF12kpyKdc845+MIXvnDWxvomg5y7nLucu5y7nHthk6+5S+MjC6Ojo/j5z3+ON998\nExs2bMC6devyfUjCkHOXc5dzl3MvBuTcxc+d0EIoRm8hhw4dwkcffYQrr7wSdntx2Wpy7nLucu7F\ng5y7nLvIuUvjIwuF3ho7E3Lucu7Fhpy7nHuxka+5S+NDIpFIJBKJUM7O6jASiUQikUjOWqTxIZFI\nJBKJRCjS+JBIJBKJRCIUaXxIJBKJRCIRijQ+JBKJRCKRCEUaHxKJxHQ++OAD3HLLLRlfc+zYMb20\ns0QiKS6k8SGRSCwhW+2AP/7xjzhx4oSgo5FIJDOJ4irlJpFILOO///u/8eKLL8Lj8eD8888HAITD\nYfz4xz/GiRMnEIvFsHbtWtx44434/e9/j127dmHfvn0YGRnB1VdfjaeeegqvvvoqIpEI1qxZg5tv\nvrloCz9JJIWOND4kEsm06erqwvPPP4/7778fFRUVuPfeewEAO3bswPj4OO6//34Eg0F84xvfwNq1\na3H55Zfj9ddfx6WXXop169Zh165d2L17N37wgx/A6XTiX/7lX7Bjxw5ceeWVeZ6ZRCKxAhl2kUgk\n0+b999/H0qVL4fF4QAjB+vXrAQDXXHMN/vZv/xYAUF5ejjlz5uD06dMT/n/fvn245JJLUFpaCkVR\nsHHjRuzZs0foHCQSiTik50MikUwbv9+P8vJy/W+XywUA6OnpwaOPPgqfzwdFUdDf349LLrlkwv8H\ng0E899xzePHFFwEAqqrC4/GIOXiJRCIcaXxIJJJp43K5EAwG9b9HRkZAKcXDDz+M+fPn49vf/jYA\n4Pbbb0/5/16vFxdccIEMs0gkRYIMu0gkkmnT1taGw4cPY3R0FKqq4pVXXgHAjJDW1lYAwIEDB9DT\n04OxsTEAgM1mQyAQAABccMEF2LVrF8LhMADgxRdfxK5du/IwE4lEIgLbHXfccUe+D0IikZzdVFVV\nYWxsDA899BBeffVVnHfeeejo6MAXvvAFPProo9i5cyecTifOP/98/PrXv8aSJUvgcrmwdetWjI6O\n4lOf+hSGh4fx8MMPY/v27RgZGcE111yD0tLSfE9NIpFYAKGU0nwfhEQikUgkkuJBhl0kEolEIpEI\nRRofEolEIpFIhCKND4lEIpFIJEKRxodEIpFIJBKhSONDIpFIJBKJUKTxIZFIJBKJRCjS+JBIJBKJ\nRCIUaXxIJBKJRCIRijQ+JBKJRCKRCOX/A6eM8cG5TzJDAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1d71f93f90>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df.plot(x='date', y='mean', figsize=(9, 5));"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAADRCAYAAACHF2s/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOW9+PHPOTOTnYRJyEKQfS1l07BZ4RoRCr+Kt+pV\nrN4qWK21t4hiW7lVqtDqz6pV8VX0StFavCouuFwtV0R+ouBCpLiwJ0CAACEQSMi+TGbO74/JTCaZ\nLMNkzjkzme/79eJFEibnnIc558z3fJ/v8zyKpmkaQgghhBA6Us0+ACGEEEL0fBJwCCGEEEJ3EnAI\nIYQQQncScAghhBBCdxJwCCGEEEJ3EnAIIYQQQncScAghhBBCd1azD6C4uNjsQzBEdnZ21LS1LWm7\ntD3aSNul7dHG0/bs7OwOXxNQwFFUVMTjjz/O3LlzmT17NmfPnmXlypW4XC7sdjsLFy7EarWydetW\n/vd//xdVVbn88suZMWNGyBojhBBCiMjVZZdKQ0MDL774ImPHjvX+7PXXX2fOnDksX76czMxMNm/e\nTENDA2+99RYPPvggDz74IOvXr6empkbXgxdCCCFEZOgy4LDZbNx3333Y7Xbvz/bu3UtOTg4AOTk5\n7Ny5kwMHDjBs2DDi4uKIiYlh1KhR5Ofn63fkQgghhIgYXXapqKqKqraOSxoaGrBa3b+akpLCuXPn\nqKioIDk52fua5ORkysvLQ3y4QgghhIhE3S4a7Wjtt0DXhHP+4qruHkJEOIYCaGCxoty8EMXeB9fK\nP0JjgzEHoKgo19+KetkVaJqG69ElcLhA332qFpSf/hKuuxmttATXn+9DvflOqK/D9bcnoalJ3/2H\nAe/7HoVMa/uYHNT5C3H9YTFUnQvttpPtqA8+jbb+DbSP/9HhywJqe2Iv1KVPoW1ej7bxndAc39iJ\nqNfcjOux30FdTcsxP7AC7e2X0L74f/6/Y4tF/Y/fodVUo724Apzduy7lnDep7d+/CHXh/bge/jUc\nP2LsvmPjaXj4GVzf/hOuX9Dhy4IKOOLi4nA4HNhsNsrKyrDb7djt9lYZjbKyMkaMGNHltmJGje3y\nNT2FVl+Ho7CAxNMnsCoa5+rrsF4wCDU5Rd/9Ohw4DuwlvriItOxsHEWFlBzajyUtHUtmxxXF3dpn\nQz2OQ/kklBwDILWhljNlZ+hVdgpXdRVVjY3YBg9HiU/QZf8iOjkO5cOhffRpauR0RRmWPplYMrJC\nsm3nqWKcZ0tJV1yUHS7AQfD3L2fZGZwlJ7BXnqVy37c4VJWYEd/v1vE5CgugYA+9q89RVlOFte8F\noKo0nSgipXAf5XmfosQnYhs4xPs7Wk01jqOHSDpTjKu8jGpHI7ahI1Fi47p1LMJYjsMHoGAXWcm9\nKC4qRO2VgrX/IEP27aoop+lEEY7DB7z3+44EFXCMHTuWvLw8pk2bRl5eHhMmTGDYsGGsWrWK2tpa\nVFWloKCAW265pcttORf/MZhDiDjZ2dmc2L4Nli2kpqoKYt1PXq6rbkIbP0nXfWvnzsJvb6Guppri\n4mJcn25y73vuT2DaLH32WXICfv9LaqurSQXKzpQCUHnuHNRWA+D86X+gDBiqy/7DhQyTM7bt2h/v\nhtMnOVN6GgDX1MvgxzeGZNuudX+HD9+m9NQpXA0NEBvX4f2rq7a7tn8Gf32MskMH0EpLICO72/dC\n7f/+Bo4VUn6qBADnnGtR+g+GP9xF+et/A0cj5P4fnPNubfmdQ/vhT/dSVVoKle57kvNn96Bk9A36\nOOScN77t2qNL4FA+JcfdH/ja98bj/PlvDNm366stsPrP4HJ67/cd6TLgKCws5L//+78pLS3FYrGw\nbds2Fi1axDPPPMNHH31Eeno6ubm5qKrKjTfeyMMPP4yiKFx33XXEx8eHsFk9gKcWxuV0//H9mRH7\nbe7m0vbvBEAZNU7/fbpcrfaNs6klZata9Nu/iE6K6j7XPOddKK8v3+tIc7n3FSQltY878V5yHGpr\nYMjI7h+fzebupmxsdO8jJgb6DYSkZCh1ByF+13xc8z26vg6tvq71z0TksNrc52RDQ8v3BlFUFQ3Q\nXM3XRSe6DDiGDBnCgw8+6PfzpUuX+v1sypQpTJkyJfAjjTYWnw9hzw3RYkDA0Xxj1FwuNJcTCnZB\nehZKn0z99tk24PD87XS6/wBYTJ93TvQ0iuI+1zw3PkUJ4bbbXL9qN7ZtTwNAK9zv3rS9T3ePruVD\nxlO7YYtFUVWUkWPRdnzuvibbdtt4uk4a6tx/AGIl4Ig4bd97AwOOluvC2XKf74BMbW4kzxvj+6Hb\njaekgHmfzFxw7DDU1uib3fDdpzfD4Qk8fAMOOf1EiKmq+1zTNcPhcmc5unPtpqS6f99T3Nc7rduH\nhy3G/bfnQyem+XvPtT54BEpcm5qp5myG1lAPDfXuY/L8nogcNk/AUdv6eyN4gnpNa8lkd0Du+Eby\ndCFoPk9gRnQreE4IlwvtZHNRz8Bh+u7T9+aMO7sCSIZD6EtRWt/4QhnQ+1xH7gxHN7pULBZIsbcE\nRqmhyHA0X0+1ngyHO3BQxk2EuHiUSf/i/zuxLV0q1NdBXBxKKLNCwhCKtU3AYWSGw/fhsouAQ+74\nRjK5S6VV37ZV57de9XTjOFv2De5gw/Mzi9RwiBBTVHCFfw0H4O5WOXcWCE2XimK1ufvSm4uyPZkK\nJTUd9em17XYvKTabO/D3ZDikOyUyNQcYmikZjjZd9p2QDIeRVJO7VHwDHb3368nctO1ScTahSdGo\n0IuqtO5SCWkNR9sMRze37Rtk2EPYpVLbUsPhoahqx5mL2LhWGQ4RgTzvfb2JGQ6t6wyHBBxGav6A\n1Xy7VIx4yvf2sfmcEN29WXZFikaFGXwL2CDEGQ7fLtFu1nDgHqniFZIuleYPmdo2NRxdiWsOOBrq\nJMMRqWxtC4ZNqOHwfaDtgAQcRmovw2HksFhDMxwdDIttVTQqGQ4RYp6uPD0yiGroajiAlqxGfIJ/\nMWcwvAFHc5eKLcCAIzbe3fff2ChDYiOVp4s8zGs4JOAwkm83g7eP2YgMR5u+ZyP2q/g8DUIHGQ4J\nOESIeZ629AjoW11H3c9wYE9v/jsE2Q1oeao97wxHfEuQIjOMRibvCKXa1t8bofma0yTDEWbMnvjL\n54RQjO5S8YxWkaJRoSdvwOGpE9Irw+Hsdrek4slwhKJ+A9qdhyMgPlkNRTIckcnUUSrtjL7s6KUG\nHI7waK9rw4CAQ/Gt4TCrS8Wb4fCZadSIglkRXTw3P2+XSiiLRkNbw0FWP4iNRxk4vPvHBi0ZDk0D\ni8U99DYQvlkNyXBEJptnlIoZE38FXsMhVXtGMqtLBZonRNLMKxr1HRbrdLpXzZXx/iLUvDc/PYpG\nQ1vDoSQlo/5pdejqJnwLBc8jpa7ExbesbyoZjsjkCTCap6dXjCwaVX26VGQejvChmNWl4t55m6JR\nfQMdRVFappkGn789AYd0pwgdtO1SCenEXy3zDYRkHg7cQUfIWIMLOFpnOCTgiEhtRyiZMrW51HCE\nH4vF5AyHZ78GZBc800yDzzwcEnAIHfkuHwD6ZDg0zT25mBHX0Pnw/ZCJCbB+A1oHGTIPR2TyKxo1\nax4OCTjCS9tMg2EZDsXYYbGefXgzG21Wi5WAQ+jBEwQ0eTIcOi3epjnDrwbJN6txPhkO324UyXBE\nJm+XipnDYrWW+3xHLzXgcIQv1f0hrBndpaLnolad7dNvptHmFQVlllGhA0XXDIfPk5xLM+7aDZDS\nKsMRZJeKZDgikmJrro5oruEwY+IvzeWUDEfYsViauxUMnGkUWrIN3kWtDOpS8dz4Xb5Fo00yy6jQ\nh2+dFOhSw4GnhiPMAo6gazhkWGzks7Z5v02Z2lyTGo6wo6it+7qMSst6ajiMrB3xreHwfAB4Cmal\nS0Xooc3EX4qeNRzhNsrKFmwNhxSNRry2GQ1DJ/7yHQwhAUd4aVs0aliGQ2l5MvN8r7dWXSpthsVK\nl4rQg98oFb1qOHpOhqNVVkPm4YhMbTMaJmQ4NJfW5bDYMLtiooCnm8HItVQ8+zG6hqNV0Wibib8k\nwyH0oBpQw6FHd00o+DzlKsEWjUqXSmRqm+EwZeIvyXCEH9XSukvFqCd9U2o4LC0351YZDpfUcAh9\n6LharLd7Ro9p00PBFoKiUelSiUxtAwxDi0bbWaurA2F2xUQBUzMcJtRwtLs8vWQ4hE7aLt4W0qLR\nttsOsxqOVl0q51HDIRmOyNc2o2XKsNiuMxxBPWbW19ezcuVKampqaGpq4tprr+WCCy5g5cqVuFwu\n7HY7CxcuxGqVp1g/qgoOh/uNURTjpvduOw+HUcNi/Sb+apKJv4R+POd1kx6Lt+m47VAIelis1HBE\nPN/3XlGMvb96h8V2XcMRVETwySef0K9fP2644QbKy8v5wx/+wPDhw5k9ezZTp05l7dq1bN68mVmz\nZgWz+Z5NtYCrvnm1SQNPClV179PoolFH883ZN9NhdNtF9NAzC9F2jo+wq+Ho5sRfVhuKPCRGplbZ\nLZux61SdR4YjqCsmOTmZqqoqAKqrq0lOTmbfvn1MnDgRgJycHHbt2hXMpns+TzdDCBZ/Oi9mZDh8\ni0Y9kW+Tw7uapRAhp2edhZ4FqaEQdIajuftFJv2KXL41G0Z2p4D+NRw/+MEPOHPmDIsWLWLZsmX8\n9Kc/pb6+3tuFkpKSQnl5eTCb7vlaBRxGZjgsrVeLNeLprL2ZRhsb3H9L0ajQg++sh6BTDYcOQ25D\nwRZcDYeiWtwBihSMRi6riQGH78rgenSpbN26lT59+nDfffdRVFTEs88+2+rftS52GtU8XRsuZ8/P\ncLRXNOo5NyTDIfRgxNTmPS3DAdAnC3qlhPZ4hHEsFvc9XtOMnfQLfIL8rleLDSrgyM/PZ8KECQAM\nGDCA8vJy4uLicDgc2Gw2ysrKsNvtAW0rOzs7mEOISNnZ2ZTExdOkaVgsKi6b1bD2n4yNwVUL8fFx\n1AAZWZnYdN53SWwsTbgDjMSEBKp9/i0+MZE+UfLeR9M53pbRbS/v1YtqIM5qpR7ok55ObIiOof70\ncUqBxLhYqoH4hM7PYTPe92PNSyf0Ts8g6Tz273pqDVgsqPEJITkOOeeNdzwmBq2hAWtcHH0NPAZn\nUgLFAJoLSxdBeFABR1ZWFgUFBUyePJnS0lLi4+MZPXo027ZtY/r06eTl5XkDkq4UFxcHcwgRJzs7\nm+LiYpxN7omvmhoaQDOu/c4mJzQ1UVvt/tg/XXoGRdE39eb0Gf5b01zz41HX6IiK997zvkcjM9ru\nqnWvlllfWwPAmbIylBAdg9bcTVxTWeneR0NDh+0z7X23xoCzjnM1tVQGs//yc90+BDnnzWm7ZrEC\nDTShGHoMWk3zo6TLhdPh6PS1QQUcM2fO5L/+679YtmwZLpeL22+/nezsbFauXMmmTZtIT08nNzc3\nmE33fKbVcLSdh8OILhWLfw1HM0W6VIQedJz4y7+GI8y6VABsVmgA5XzWUhE9g6dLzcwulS6KRoMK\nOOLi4li8eLHfz5cuXRrM5qKLZy0VpxMsRtZwtJ1p1KQaDg8pGhV60HPiL78ajjArGgXzPnSE+Tzv\nuZlFozK1eZjxLWoz8gnJjLVU2lu8zcPIYEtED08QoMfkXN5rN5wzHM0fOudbNCoinzfYNGtYbNej\nVMLwiunhPF0JTQ7jZ4NzacZP/KW53KOWJMMhjKA0X1N6TPzlWRUzIjIc0qUSdTyTtkmGQ3h5p0d2\nGDuszqzVYqFlOW9fUsMh9KD6rFwJ+tZwhONsuZ4PHclwRB9PdsvwDEfgNRwScBhN9clwGHnDUlRw\naWjeDIdBXSrQfuQbjjdrEfmMrOEIt4m/wOdDRwKOqNOc2VAkwyG8fBeAMjTDoZhTw0HzrI9+NRzS\npSJ00LbOQs8ajnCb+Ata0umS4Yg+NrNqOJoDb6nhCEO+NylDZxo1YZZETxajvSlvpWhU6EHPxdsi\nIcMhNRzRy/PeG5zhUBTFm0HXZVisCJ6iWvB+9Bo9DwcYe7P0SbV517bwkAyH0IOei7dFQA2HctHF\naDExkJBo9qEIo9nMCTgAUBX3PV6Pqc1FN5ie4TAwHax01qUSfjdr0QO0nfgrymo41EvnwKVzzD4M\nYQLFGuN+mDWjfsezjot0qYQZ36ciQzMcOhbTdbhPKRoVBmt7nkdbDYeIXjaThsUCqKp7uLgEHGEm\nijIciu8ToRSNCiP4dXtEV4ZDRDFvDYcJ91ZFbbnmOiEBh9F8uxKM7FYwsYaj3WWLpWhU6EHP87xt\nQapkOEQ4MXNItKqiScARhny7MoycGrlNhkMxcFhs+xN/SYZD6EDP0VhtC1LDcWpzEb3Mmtoc3MF4\nkwQc4cesLhXfvm2j9utbwOeX4ZAaDqGDthmNUAYFZgwtFyJQJg2LBdwZjiZn1y8z4FCEL5O6VBTf\nDIdRT2a+a0+0reGQolGhh7bntq4ZDqnhEGHErIm/QGo4wpZZXSq+N0ujnsw6G6UiXSpCD23Pbanh\nENGiuXbD8KnNIeAaDrnrG823WNLIwknfdLBRT2aqT5eKLN4mjND23JYaDhEllLEToTAfRowxYedK\nQBkOCTiM5nMDVEyZh8P4DId7lErrLhVFAg6hB6nhEFFKyeqH8ot7Tdq5itbU0OXL5IoxmuLzQWvK\nKBWngTUcnrVUJMMhDNI2CJAaDiH0p0oNR3gyq0vFjAyH0kkNhxSNCj34ZTh0qOEwcsVlISKBoqDJ\nsNgwZNqw2OYPeCOHxXpHqUjRqDBIm3M7pPPN+BWkyu1TCKA5w9H1sNig7/pbt27lvffew2q1Mm/e\nPAYMGMDKlStxuVzY7XYWLlyI1YwpVsOdWWup+FbYm1I0Kou3CQMoOgb0eg65FSKSBRh8BxURVFdX\ns27dOh577DHq6up44403+PLLL5kzZw5Tpkxh7dq1bN68mVmzZgWz+Z7NtAyHCfuVxduE0XyD6VBn\nIPQccitEJAvwMyWoK3Lnzp2MGzeO2NhYevfuze23387evXvJyckBICcnh127dgWz6Z7P7AwHGF40\nqknRqDCKrhkOHYfcChHJAgy+g8pwlJaW0tDQwGOPPUZNTQ3XXXcdDQ0N3i6UlJQUysvLg9l0z2d2\nDYeR++0swyHdbUIHiqri7bwLcQbCrx5EajiEcAvwMyWou76maVRXV/Ob3/yG0tJSli9f7vfvgcrO\nzg7mECJSdnY2VXY755q/T0xOxm5Q+8uTkqhu/tpitRny/16ZkkIFgMuF1WLBt4Y5PTOLmCh576Pp\nHG/L6LbXHknjbPPXisUa8v0fUy3umiSgd2oqSZ1sX9736BSNbS+JicERwOuCCjh69+7NiBEjUFWV\nzMxM4uPjsVgsOBwObDYbZWVl2O32gLZVXFwczCFEnOzsbIqLi3FVVXt/VlNbR51B7XfV1Xm/dmou\nQ/7fXTU1gLtLpcnR+nQsLStDiev5773nfY9GZrRdO9eSWdXQ4f7ikzU5V1FBZQfbl/dd2h5NnAEs\n3AZB1nCMGzeOPXv2oGkaVVVV1NfXM3bsWLZt2wZAXl4eEyZMCGbTPZ9ZXSq+6WVTulTanJBSNCr0\noGcNR9ttSg2HEG56dqmkpqYyZcoU7r//fhRF4dZbb2XIkCGsXLmSTZs2kZ6eTm5ubjCb7vlMWi22\n1QlhVN+z7+ymMixWGKFVcbQOo0jMKL4WItzpWTQKMHPmTGbOnNnqZ0uXLg12c9HDrNVi9X7ya0+r\ntVRk4i9hAL0zEJLhEMKfnsNiRTeERYbD6Im/XJLhEMbQO6BXTLiOhAh3AV5rEnAYLSprOJztZDgk\n4BA60Ps8b7Xas9w+hQAkwxGuFLMCDjNqOHy7VDQXWG0+/yYBh9CB3gGHGYG7EOEuwGyfXDFGM22m\nURMCHaVNhsPmE3BIDYfQg+81pUeXhxmBuxDhTjIcYSqqulQ8U5s313D4ZjikS0XoQfcMhxSNCuFH\najjClFkZDrOLRv0yHBJwCB2oOg9bNeM6EiLcqdKlEp5My3CYuVqss3UNh6qiyM1a6EHv81xqOITw\nJxmOMBWNRaPONl0qUr8h9KJ3BkJqOITwJzUcYSoclqc3KNBRfDMcLlfLCrEyQkXoRUapCGE8yXCE\nqbDIcBjUneEdpdI8LNaT2ZD6DaEXvSfm0nsUjBCRSGo4wlQU1nB4pzZXVXfQIQGH0EurDIQO55lk\nOITwo0iGI0yFxSgVM4pGNfd+LaoEHEI/qs6Lt0kNhxD+pIYjTFl8pka2GJnhMHFq86Ymd8DhzXBI\n0ajQieIb0EsNhxCGkAxHmAqLGg6jR6k0Ne9XcWd15EYt9KIat5aK1HAI0SzAGg551DSa7xOYYtbU\n5sYWjWpNzQGHqkLvVEhINGb/IvooOnepyEyjQvgL8FqTgMNovt0oRnap+K5yaViGozmg8gQcior6\n20eMbbeILq0CAh0CeqnhEMJfgMG3BBxGi6q1VNp0qagqSmKSMfsW0UnvLg+p4RDCn9RwhKkoHKWi\nORzN+5U+b6EzvQMCqeEQwp+MUglTUTUPR3NA5ZPhEEJXek/8JTUcQvgL8FqTK8ZoJmU4FDOezDwZ\nDp8aDiF0pffEX1LDIYQ/I2o4Ghsb+fWvf821117LmDFjWLlyJS6XC7vdzsKFC7FapUTETxTWcNDU\n3KVi1OgYEb30nvhLajiE8GdEDcdbb71Fr169AHj99deZM2cOy5cvJzMzk82bN3dn0z1XOMzDYXTR\naHOGw7DRMSJ66X2eSw2HEP70ruEoLi7mxIkTXHTRRWiaxr59+8jJyQEgJyeHXbt2Bbvpns201WJN\nLBr1Zjgk4BA607vGQmo4hPCndw3HSy+9xPz589E0DYD6+npvF0pKSgrl5eXBbrpnC4sMh8GrxTql\nhkMYRO+Jv6SGQwh/AV4LQRVZbNmyhREjRpCent7uv3uCkEBkZ2cHcwgRKTs7G62xgePN32dk9cVm\nUPvrTh7lTPPXiUm9sBuw3ybFxUlAc7gDjvjEBNKi6P32iKZzvC2j2+6qSuJE89fxiYn0CfH+S+Pj\nqW/+OrNvX6x9Mjp8rbzv0Ska234uOZmqAF4XVMDx9ddfc/r0aXbs2EFZWRlWq5W4uDgcDgc2m42y\nsjLsdntA2youLg7mECJOdnY2xcXFLSM2gNNnzqBYYw3Zv+aTcaqpq6POgP937Uyp+4vmDEddfUPU\nvN8envc9GpnRdq2u1vt1vQ7nm7Ox0fv1qdOnURqb2n2dvO/S9mjiqqkJ6HVBBRx333239+t169aR\nnp5Ofn4+27ZtY/r06eTl5TFhwoRgNt3z+aZkjVymvVWq2awaDimyEzrTexSJ1HAI4c+oqc093Sfz\n5s1j5cqVbNq0ifT0dHJzc7u76R5JUVX3TdGzXLtRVJ2X7W53n20XbzMwwBLRSe+Jv6SGQwh/etZw\n+Lruuuu8Xy9durS7m4sOqgpOp7E3LL2L6drTdh4OGUYo9Kbz8vSKouCtUJMMhxBuMrV5GPM86RvZ\npWLG6BjF3b5Wy9MLoSe9h3/LPBxC+JOpzcOY56YVLTONeofFyg1a6EznDIfUcAjRDslwhDFPhsPQ\n1WJ99mVW0aj0eQu9SQ2HEMaT5enDmBkZDr2f/NrT3GWkeYYSyhOh0Jmi+ygVWUtFCD8BjkCUK8YM\n3oDDrGGxBnVtWG0AaI0Nxu5XRDdFx+tLajiE8CcZjjDm7VLp2Yu3KaoKFgtaQ4Oh+xVRznOe6d2l\nIuezEG6S4QhjphSNmtT3bLWBy2n8fkX08gQaOheNKhJwCOGmBJZNlCvGDKbUcJj0ZNbcrWL4fkX0\n8jxt6ZLh8GxbzmUhvCTDEcZUFRS1dYGb3swqdvMNOKTPWxhB0TGg13PbQkQqqeEIYxYLWAz+rzer\n2M3qM5mt3KSFEbw1HDpO/CXBsxAtJMMRxhTV+A9fsyYssvlmOOR0EwYwooZDgmchWkiGI4ypasBF\nNiHdp4fRRaPtHYMQelF0zEJIDYcQ/oxaLVacP2XiNCg/a/BOTarhsMW0fwxC6EUyHEIYK8B7uwQc\nJlDnXm/CTqWGQ0QJRccshJ4jYISIVLKWimjFrBoOq9RwCIPpObGeYsKkfUKEO6nhEK2Ewzwc8lQo\njKBnl4pkOITwJxkO0UqrtVRMGqUiT4XCCHoGBXqu0yJEhAp0Tin5BIgWJmU4FOlSEUbTs7BTMhxC\n+JMMh2hFMatoVDIcwmB6Tvwlo1SE8Cc1HKIVnxukoYtOSQ2HMJquNRwy06gQfvSeh+Pll19m//79\nuFwurrrqKoYOHcrKlStxuVzY7XYWLlyI1SqjbsOG1HCIaKHrxF+S4RDCj57zcOzZs4fjx4/z0EMP\nUV1dzb333suYMWOYPXs2U6dOZe3atWzevJlZs2YFs3mhB9NGqficYvJUKIyg68RfMtOoEH707FIZ\nPXo099xzDwAJCQk0NDSwb98+Jk6cCEBOTg67du0KZtNCL+EwD4dU9gsjGLF4m2Q4hGihZ9GooijE\nxLinrP7444+58MILqa+v93ahpKSkUF5eHsymhV7MmmlUpjYXRjNianM5l4VoYcTU5tu3b2fz5s0s\nXbqURYsWeX+uaVrA28jOzu7OIUQUs9t6rPnv1D7pxBt0LJWpaVQ0f21PSyMxit5vD7PfdzOZ0faS\nmFgcgN2eGvLzrcpu5xxgi40lq4tty/senaKx7fWlxZQG8LqgA45vv/2Wd999l/vvv5/4+Hji4uJw\nOBzYbDbKysqw2+0Bbae4uDjYQ4go2dnZ5rdVVcHloqy8HMWgY3HV1nm/Lj93jgqz/w8MFhbvu0nM\narvT2QRAeWVFyM83V2UlAI4mZ6dtk/dd2h5NtLKygF4XVM6xtraWV155hSVLlpCQkADA2LFjycvL\nAyAvL48JEyYEs2mhJzPmELDJ4m3CYIrUcAhhKD2HxX7xxRdUVVXx1FNPeX/2q1/9iueee46PPvqI\n9PR0cnNzg9m00JOqghPTJv4ydP4PEb30DAqkhkMIf3rWcMycOZOZM2f6/Xzp0qXBbE4YRc9iuo7I\nxF/CaM3nmS4BrmQ4hPAnU5sLPybcLBWZ2lwYTdFz8TYTgnYhwp1MbS786Nm33RGbLN4mDKbr4m0m\nXENChLv1U4S7AAAYC0lEQVQAH2blqokmZqSDJcMhjGbI4m3SPSiEV4Az8MonQDTRM9XcEanhEEYz\nZPE2uXUK4aUGds3JVRNNzC4alQyHMIKOK7oqUjQqhD+ledmKLq45uWqiiWctE0NrOHwXb5PTTRhA\nFm8TAfj000/P+3cOHjzImjVrzut3NmzYwHPPPXfe+4ookuEQfkzJcPispSJPhcIIegYFqtRw9AQO\nh4M333zzvH9v2LBhzJ8/X4cjinABDkjo1loqIsKYkQ62SQ2HMJgnk6frxF8SPJ+vDRs2sH37dmpq\najhz5gzXXnst/fr14/nnn8dqtZKRkcFvfvMbdu3axRtvvEF9fT2//OUvGT58uN+2nE4njzzyCKdO\nnSI2Npbf/e532O12nnjiCU6ePInT6eSWW25hwoQJLF68mJycHL755hsqKyt5+OGHWbt2LUeOHOHp\np5/mrrvuavd4Fy9ezMiRIykoKKCxsZEHHniA4uJi3n33XX7+85/z8MMP8+yzz3LixAn++Mc/8swz\nz7Bx40ZWrVqF1Wpl5MiR3HHHHa2O+eGHH6asrAyHw8GCBQuYNGlSu/tes2YNpaWlnDp1irKyMu64\n4w4mTZrEG2+8wZYtW9A0jcmTJzN//nwOHjzIihUriImJwWaz8cADD3Dy5Em/nyUmJra7r40bN/L6\n66+TkZFBXFwcU6dOZfr06Tz00EPU19fT0NDAokWLGDlyZMdvboAZDgk4oonpRaNykxYGMCTDEdnn\nsuvNF9F2fB7SbSo5l6Bed0unrzly5AjPP/88lZWV3Hbbbdjtdp588kmSkpJYtWoVn3zyCWlpaRw+\nfJiXX34Zi8XS7nY2bNhAWloaS5cuZfPmzXz++efEx8eTlpbGb3/7WyoqKrjnnnt44YUXAEhMTOSJ\nJ55g9erVbN26leuvv579+/d3GGx4pKSk8OSTT/LOO+/w5ptvcskllwDQr18/pkyZwvr169m+fTuL\nFi2isbGR5557jhUrVmC1Wlm+fDl79uzxbquwsJCKigpWrFhBTU2NdymQjpw5c4bHH3+cw4cP88gj\njzBp0iQUReEvf/kLiqJw4403Mm/ePD744AN+/OMfM2vWLL799lvOnj3r97OysrIOA46//e1vrF69\nmoSEBG6//XamTp1KWVkZV1xxBZdccgnffPMNr776KsuXL+/4YAOcgVcCjmgiw2JFNPB2Heo48ZcE\nz0EZP348iqKQkpJCYmIix44d44EHHkDTNOrr6+nduzdpaWkMHTq0w2AD4MCBA+Tk5ABw2WWXAfDU\nU0+xe/dudu/ejaZpOBwOmprcC/mNGzcOgD59+lBVVRXw8Xr2MXr0aL766qtW/3bjjTdy5513MmzY\nMEaPHs2+ffsoLi7m3nvvRdM0ampqOHXqlPf1AwcOpK6ujkceeYRp06YxY8aMTvd90UUXATB48GDO\nnDkDQGxsLHfddRcWi4XKykoqKyu55JJLWLFiBcePHyc3N5cBAwb4/ax///7t7qOiooLExER69eoF\nwJgxYwCw2+289NJLvP766zgcDuLj4zv/jwrws0UCjmhiRjpYhsUKoxmyeFtkn8vqdbdAF9kIPWia\n5v1aURTS0tJ48sknW73m22+/xWrt/KNJVVVcLlern9lsNv793/+93Q9y3+DF9xjO93h9NTQ0oGka\n5eXl3v2PGTOGP/zhD61et2HDBgBiYmJ49tln2b17Nxs2bODLL7/k3nvvDWjfAKdOneLNN9/k+eef\nJzY2lp/97GeAOzB57rnn+OKLL3j00Ue544472v1ZIAuqev6f1q1bR3p6Ovfddx/5+fmsWrWq818M\n8JqTMD2amFLDIavFCoMZsHibIhmOoOzZswdN06ioqKCurg5VVTl69CgA77zzDocPHw5oO6NGjeKb\nb74B4Msvv+TVV19l9OjRfP65u5uovLyc559/vsPfV1XVm/3ozM6dO73HPXDgwFb/tnr1am655RYy\nMzPZvHkz/fv393abAPz973/n7Nmz3tcfPHiQjz76iDFjxrB48WKKioo63feuXbsAOHToEJmZmVRW\nVmK324mNjaWgoIDTp0/jcDh45513qKysZObMmfzbv/0bBw8ebPdn7UlJSaGmpobq6mqcTiffffcd\nAJWVlWRnZwPw2Wef4XA4Ov+PkhoO4ceEGg5FtbiL+FxOSUMLQyiKggb6TvwlwXNQsrKyePDBByku\nLua2224jKyuLRx99FJvNRp8+fbjyyiu9H9idmTFjBjt27ODuu+/GZrPxn//5n/Tu3Zuvv/6ahQsX\nomkaCxYsAPwzEwBpaWk4HA6WL1/Ogw8+2OF+Tp8+zZIlS6ipqWH58uUcO3YMgH379nHq1CmmTp3K\n6NGjWbx4MVOnTuW+++5jyZIlxMTEMGzYMNLS0lq1ffXq1fzjH//AYrFw/fXXd9rGhIQE7r//fkpK\nSrjzzjsZOnQocXFxLFq0iLFjxzJ37lyefvpp5s2bx7Jly0hMTCQmJoYlS5ZQUFDg97OOLFiwgLvu\nuov09HRv18sPf/hDHnnkET799FOuvvpqPv74YzZs2MCcOXPa30iANRyKdj75JR0UFxebuXvDZGdn\nm95W57I74cRR1MdfROmd1vUvhIhr4Ty0hnrUB55G6T/YsP2Gg3B4381iVttdf30cbftW1N8/hTJg\naEi3rRXsxvX4fSiTL0X9+a87fJ287/5t37BhA0eOHGk1ciOcLV68mLvuuotBgwYF/Duhet/XrFlD\nSkoKV111Vbe3dT6ee+45Bg8ezOzZs8/r97SqClz33AR9Mum/Zn2Hr5MMRzTRc1GrznZri0FrqJca\nDmEMI6Y2lwyHIVasWMHRo0e9WQpN01AUhT/96U/ExMR08dtdO336NI888ojf9seNG9duZiTUHnjg\nAaqrq1v9LDExkWHDhoV0P/v372fVqlV+7czNzeVf//Vfu7+DALPnEnBEE7PWgfDMxSE3aWEEIxZv\nk+D5vHWYju/E3XffrcORtMjIyOCpp57SdR+daVtgqpdRo0YF1M6gs0/eQLzjkUUgRaPRxYyZRnFn\nONxfyOkmDCAZDiGMFWAgLldNNNFxUavOKJ7Up9ykhRH0HBZrUtAuRFgL8LNFrppoYtLTWUuGQ9LQ\nwgCxca3/DiVZnl4IfwEG4iGv4VizZg0HDhxAURQWLFjA0KGhrRIX3WDSOhCKp4ZDAg5hAOVH16F8\n/0IUuw4jsbyF13IuC+EVYCAe0k+evXv3UlJSwkMPPcQdd9zBiy++GMrNi+4KcHKWkPNkOLooKBIi\nFJTeqSjjJ+uz8eTe7usnJVWf7QsRiQIcARnSDMfu3bu9q9/169ePmpoa6uvriYvTIbUpzp9ZGQ6r\ndKmInkFJsaM++jdITjH7UIQIHwEOiw3pJ8+5c+dITk72fp+cnMy5c+dCuQvRDcqw78HgEdDJoki6\n7FeGxYoeROmd6p5BVwgBgBIOi7eZPImpaEO96qdw1U8N32/LKBXJcAghRI+kWowNOOx2e6uMRnl5\nOb179+70dzwLxESDaGprK/c/bvYRmCpq33ek7dFK2h6F3s/r8iUhzXGPHz+evDz3TgsLC0lNTZX6\nDSGEEEKEfvG2V199lX379qGqKrfeeisDBgwI5eaFEEIIEYFMXy1WCCGEED2fDBsQQgghhO4k4BBC\nCCGE7iTgEEIIIYTuJOAQQgghhO4k4BAhIbXHQohoIPe64FmWLVu2zOyDiHTV1dW8/fbb1NfXk5iY\nSFxcHJqmofTwtUM8F94LL7yApmn07du3x7fZV1VVFe+88w4ul4ukpCRiPDOqRoGamhree+89mpqa\nSEhIIDY2NirOeXBf7+vXryc2NpbY2FhsNltUtV3udXKvC/ZeJxmObsrPz+eJJ55A0zT279/PX/7y\nF4CoOBk9N5r8/Hy+/vprSktLzT4kw5SWlvL0009TXV1NcXExRUVFZh+SYbZv385jjz1GfX09O3fu\n5KWXXgKi45zfu3cvf/7zn6moqOCLL77gr3/9KxAdbZd7ndzrunuv03UtlZ7M6XRisVgoKSmhf//+\n3HDDDQA88MADFBUV9egJz1wuF6qqoqoq1dXV9OrVi7q6Og4ePEhKSgqxsbFmH6JuPG0/e/YsALfd\ndpvfa3rqE5+n7aWlpVx66aXMmDGD48ePe2cXhp7bdo+qqiqGDBnCzTffDMA999zDl19+ycUXX9zj\n23769Omou9dBy3kfbfc6j/LyciA09zrpUjlPRUVFvPvuuxQXFzNo0CCqq6v53ve+R+/evSkrK+PQ\noUNMnz4dm2eF1B7E0/aTJ08ycOBALBYLiqJQVVXF0KFD2bNnDyNGjMBms6H2sJVh277viqJw7Ngx\nYmNjee2119i+fTv5+fmMHz++x33otH3fv/32W2pqaqitreWVV16hrq6O+vp6hgwZ0uPaXlJSwtdf\nf83AgQMBOHjwIE6nk/79+xMTE0NqaipvvvkmP/zhD3t828+ePcuoUaOw2+09/l7n23ZFUXC5XCiK\nQnV1dY+/17V93xsbGzl+/Djx8fHdvtf1rP8pnXj674qLi3nhhRcYOHAgR48eZe3ataSlpTFo0CAA\namtrqaioQNO0HlNY1F7bi4qKePnllzl58iSNjY3s3r2badOmERsby5NPPsk//vGPHtH+jtr+2muv\nceTIEWJiYti2bRvjxo1jwYIFHDx4kHXr1gHup6JI1l7bjxw5wttvv83w4cMZP348r776KhdffDE3\n3XQT27Zt45133gF6TtsBXnnlFT744AN27twJQEZGBoWFhVRXVwMwadIk7HZ7VLR9woQJDBkyBOjZ\n9zpoafvu3bsBUFWV2tpadu3a1aPvddDS9l27dgEt2fwvv/yy2/c6CTgC0NTUBMDx48dJTk4mNzeX\nBQsWEBMTwzfffONNORUUFJCVlUVCQgKKotDY2GjmYYdEe22/+eabiY+PZ/v27ZSVlTF27Fg2bNjA\n3r17qa2tZdiwYT3iaa+9ts+fPx+bzca5c+e8f19wwQUkJSXxi1/8gry8PBobGyP+qaejc17TNE6c\nOIHdbmfixIlMnz6drKwsbrjhBr777jscDkfEt93pdALuYMtisXDppZeyZcsWNE1j9OjR9OrVi88/\n/5yamhoArr76ao4ePYrT6ezRbVdV1fvvBw8e7HH3uvba/sknn3g/jBVFYeTIkWzcuLHH3evaa/un\nn36KpmlccMEFZGVlUVpayoABA7p1r5MulU7s3r2bl156iYKCAhITExkwYAA7duxg0KBBpKWloaoq\nhYWFxMTE0LdvX3bs2MHkyZOpqanhySefRFVVBg8ebHYzghJI248dO0ZNTQ0ff/wxALfffjtWq5UT\nJ04wYMCAiO3f7KrtiqJQVFRERkYG4E459u/fn6KiIjRN48ILL4zYm1Cg73t1dTUHDhwgOzubPn36\nkJ+fj9VqZfz48WY3IWi+bY+Pj2fw4MEMHDiQ/v37k5+fz7lz5xgyZAh9+/bliy++oKmpicGDB7N7\n927i4+MZPXq02U0IWldtr6ys9N7LFEXhn//8Z4+813XW9oqKCtauXQv0zHtdZ+d8WloaJSUlNDY2\nMmDAgKDvdRJwdKC8vJzVq1dzxRVXkJyczD//+U9Onz7NoEGDOHr0KKNGjSIjI4OCggIaGhoYMWIE\nn3/+Of/zP/9DUVERc+fO5Qc/+IHZzQhKoG3fu3cvdrudq6++mtzcXBISEsjMzCQ1NZWsrCyzmxGU\n82l7UlISU6dO5ejRo3z44Yfs2LGDGTNmREXb09LSSEtL47vvvmPjxo0UFhbyL//yL94gLNK0bftX\nX31FVVUVY8eO9dYqffXVV4wcOZLMzEySkpIoLCzkvffe48iRI0yfPp309HSzmxGUQNqel5fHqFGj\nSEhIAGDbtm28/fbbPe5e11HbR4wYQUZGBuPGjePyyy/vkfe6zs55z/V+4sQJPvjgg6DvdRJw+HC5\nXLz55pscO3aMEydOkJWVRW5uLllZWfTq1YuPPvqIwYMHU1ZWhsViISMjA6fTyYcffsiMGTM4evQo\nF154ITfffDN9+/Y1uznnJdi2v//++1x55ZWAOy2XkJCA3W43uTXnJ5i2NzU1sX79eq688kpGjhxJ\n//79ueqqqyLu5hNs2z/44ANuvfVWb8H09ddfH3HBRldtf//995k4cSKJiYnExMRw6tQpzpw5w4gR\nI9A0jYsvvpi+fftyzTXXRFywEUzbz549y/DhwykuLub06dPk5ORw00039bh7XXttLysrY/jw4dTW\n1pKUlITL5SI+Pr7H3es6e9/r6uq46KKLGDhwID/+8Y+DutdJwNGsrKyMZ599FpvNRmpqKs8//zwV\nFRVceumlxMbGYrfbOX36NCdOnOD73/8+77//PtOmTaOwsBBVVRk/fjwjR45k6NChZjflvAXb9sOH\nD2O1Whk9erR3mGyk6U7bLRYLo0aNwmKxkJycbHZTzlt32q4oCqNGjSIuLi7iPnCg67anpaVx7Ngx\nDhw4wLhx40hMTCQpKYnXX3+dDz/8kIyMDAYOHEhaWprZTTlvwbb9tddeY8OGDQwaNIjLLrusR97r\nOmv7hx9+SN++fbngggt65L2uq7ZnZmYyYMAAevXqFfQxSMDR7NSpU2zfvp27776bwYMHU1JSwr59\n+6ioqCAnJweApKQkCgoKmDNnDqWlpWzdupU9e/ZwzTXXkJKSErH99t1te+/evU1uQfC62/ZIe8Lx\nJW3vuO2appGSksKuXbsYNmwY9fX1rFq1irS0NBYsWMCECRPMbkLQutP2+fPnM2bMmIj8wIXutz2S\nh71395wPRX2WBBw++vXrR3p6Oi6Xi6KiIq655hree+89Ro8eTWpqKvX19Rw4cIApU6YwZswYxowZ\nw6xZs0hJSTH70Lst2LZH4pN9W9J2aXtHbT906BAXX3wxTqcTu93OvHnzIjrQ8gi27ampqWYferdJ\n28075yXgaBYXF0dmZiaKoqBpGuvWreOKK64gISGBjRs3Yrfb2bdvHydOnGDixInYbLYes3aGtF3a\nLm1vv+3Hjx/39mn369fP7MMOCWm7tN2stsvU5u3wzBWflJTEnDlziI2NZffu3Zw7d46f//znxMXF\nmXyE+pG2S9ul7dJ2abu0XQ8ScLSjrKyMSy65xDtsaNiwYfzkJz+J2L678yFtl7ZL26Xt0vaezay2\nS8DRjqqqKv7+97/z1VdfkZuby7Rp08w+JMNI26Xt0nZpezSQthvfdkXrCRPBh9jevXs5fPgws2fP\nxmqNrphM2i5tl7ZHD2m7tN3ItkvA0Y6evsx0Z6Tt0vZoI22Xtkcbs9ouAYcQQgghdBeZs7cIIYQQ\nIqJIwCGEEEII3UnAIYQQQgjdScAhhBBCCN1JwCGECIn9+/fzq1/9qtPXHDx40DvLoRAiukjAIYQI\nma6G2m3evJmjR48adDRCiHASXbOdCCFC6q233mLTpk0kJyd7l7RvbGzkmWee4ejRozidTiZPnsxN\nN93ERx99xJYtW9ixYweVlZVcccUVrFu3js8++wyHw8GkSZOYP39+1M6NIERPJwGHECIox48fZ/36\n9axYsYJevXrxxBNPALBx40YaGhpYsWIFtbW13HnnnUyePJlZs2bxxRdfcPnllzNt2jS2bNnCtm3b\n+NOf/kRMTAyPP/44GzduZPbs2Sa3TAihB+lSEUIEZd++fYwePZrk5GQURWH69OkAzJ07l9/+9rcA\nJCQk0L9/f06dOuX3+zt27OCyyy4jLi4OVVWZMWMGeXl5hrZBCGEcyXAIIYJSXV1NQkKC9/vExEQA\nSkpKWLNmDcXFxaiqytmzZ7nsssv8fr+2tpb333+fTZs2AeByuUhOTjbm4IUQhpOAQwgRlMTERGpr\na73fV1ZWomkaL7zwAkOGDGHJkiUA/P73v2/39+12OxMnTpQuFCGihHSpCCGCMmLECPLz86mqqsLl\ncrF161bAHXgMHjwYgJ07d1JSUkJ9fT0AFouFmpoaACZOnMiWLVtobGwEYNOmTWzZssWElgghjGBZ\ntmzZMrMPQggReXr37k19fT2rV6/ms88+46KLLqKwsJCf/OQnrFmzhk8++YSYmBhycnJ44403+N73\nvkdiYiKvvPIKVVVV/OhHP6KiooIXXniBDz/8kMrKSubOnUtcXJzZTRNC6EBWixVCCCGE7qRLRQgh\nhBC6k4BDCCGEELqTgEMIIYQQupOAQwghhBC6k4BDCCGEELqTgEMIIYQQupOAQwghhBC6k4BDCCGE\nELqTgEMIIYQQuvv/BZjWf7X7Jx8AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1d6eb0a790>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot the quality (QA) values, \"% pixels that pass QA tests\"\n",
"df.plot(x='date', y='per_cent_pixels_pass_qa', ylim=(0, 105), figsize=(9, 3));"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Use seaborn for nicer plots: panels, histograms, box plots, etc\n",
"#df.plot(kind='scatter', x='month', y='mean', xlim=(0, 13), figsize=(12, 5));"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"#sns.set(style=\"ticks\", palette=\"muted\", color_codes=True)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAFoCAYAAAC7Tuk8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9wFPd9//HXnSQQCB2SQAqVHBkhj4YEGwnbsknsqflS\nPG2Kx00HXBM5LkoV16ptPMWJQxuqmIDqpLTFUGGk2nWQjBPkYM946jadtDbcGM84lDiRsCJjy1Zr\nGzQHEtKhQ3AC6e77h6oLAiHdne7us7d6Pv7a097uvvXrXvvZ/ezn4wgGg0EBAABbcZouAAAAxB4B\nDwCADRHwAADYEAEPAIANEfAAANgQAQ8AgA2lmjx4U1OTOjo65HA4VFlZqeLiYklSb2+v6urqQu87\ndeqUHnjgAd1xxx2mSgUAIKk4TD0H397ertdff12bNm3SyZMnVV9fr9ra2qveFwgE9P3vf1/f/e53\nNXPmTAOVAgCQfIxdom9ra1N5ebkkqaCgQAMDA/L7/Ve9z+126/bbbyfcAQCIgLGA93q9crlcodcu\nl0ter/eq97355ptauXJlIksDACDpWaaT3Xh3Cj788EMVFBQoPT3dQEUAACQvYwGfnZ09psXe19en\nrKysMe/51a9+paVLlya6NAAAkp6xXvSlpaU6cOCAVq1apc7OTuXk5FzVUv/4448j7jnf1dUVyzIB\nALCs/Pz8a64zFvAlJSUqKipSTU2NnE6nqqqq5Ha7lZGREep85/V6NXfuXFMlAgCQtIw9JhcvtOAB\nANPFRC14y3SyAwAAsUPAAwBgQwQ8AAA2RMADAGBDBDwAADZEwAMAYEMEPAAANkTAAwBgQwQ8AAA2\nZGyoWgDTT0NDg9xu9zXX+3w+SVJmZua461esWKHq6up4lAbYDi14AJbh9/vl9/tNlwHYAmPRA7CM\ndevWSZKam5sNVwIkB8aiBwBgmuEePIBpb6K+AZP1C5DoGwBrogUPABOgXwCSFS14ANNedXX1NVvg\n9AtAsqIFDwCADRHwAADYEAEPAIANcQ8esClGjQOmN1rwwDRF73DA3mjBAzY1Uc9wid7hgN3RggcA\nwIYIeAAAbIhL9ABiasOGDeru7o5q29HtRm8fRCo3N1d1dXVRbQvYDQEPIKa6u7vlOe1RID0Q8bYO\np0OS1NUf+ayQTj8XJIHLEfAAYi6QHtCZ/3cmocecd2heQo8HWB2nvAAA2BABDwCADRHwAADYkNF7\n8E1NTero6JDD4VBlZaWKi4tD686cOaNdu3ZpeHhYRUVF+uY3v2mwUgAAkouxgG9vb5fH41Ftba1O\nnjyp+vp61dbWhta/+OKLuvfee3XrrbfqRz/6kc6cOaN58+hEA1idz+eT0+9MeKc3p98pn8OX0GMC\nVmbsEn1bW5vKy8slSQUFBRoYGAiNix0MBnX8+HHdcsstkqQ/+7M/I9wBAIiAsRa81+vVokWLQq9d\nLpe8Xq8WLFig/v5+paenq7GxUf/zP/+jxYsXq6KiwlSpACKQmZkpX9Bn5DG5a82MB0xHlnkOPhgM\njlnu7e3V6tWrNX/+fP3whz/Ur3/9ay1btmzS/eTn58ezTMA2UlNH/v1j/T8zul8TUlNT4/b98NmC\nZGPsPzE7O1terzf0uq+vT1lZWZJGWvN5eXnKy8uTJN1444367LPPwgr4rq7IR8ACpqOhoSFJsf+f\nGd2vCUNDQ3H7fvhsgRVNdOJp7B58aWmpjhw5Iknq7OxUTk6O0tPTR4pyOpWXlyePxxNaz9kzAADh\nM9aCLykpUVFRkWpqauR0OlVVVSW3262MjAyVl5dr/fr12rNnj4LBoAoLC3XrrbeaKhUAgKRj9B78\nlR3nCgsLQ8sLFizQ1q1bE10SgBiI9jE5x6WRyWaCacFJ3jn+MeWKeDPAtizTyQ6APeTm5ka97eh0\nsbmuKPbhmtqxAbsh4IEkZsW516cyH/toLc3NzVHvA8AIAh5IYsy9DuBaCHggyTH3+uSseKUDiDcC\nHoDtcaUD0xEBD8RAQ0OD3G73uOt8vpEJUCYaRnXFihWqrq6OR2n4P1zpwHTD6SUQZ36/PzSREgAk\nCi14IAaqq6uv2QKnZzgAE2jBAwBgQwQ8AAA2RMADAGBD3IMHkpjP54t63PepcPqd8jl8CT0mgMjQ\nggcAwIZowQNJLDMzU76gz8jz3RM91w/APFrwAADYEAEPAIANEfAAANgQ9+ABJMxEY/ZLk8/cFu2Y\n/TxtgOmIgAdgGenp6aZLAGyDgAeQMBON2R9PPG2A6Yh78AAA2BABDwCADRHwAADYEPfggSQXbe9w\nxyWHJCmYFozqmHJFvNmkWlpaJEllZWWx3zkwzRDwQBLLzc2NetvRR9JyXVHswzW1Y1/L7t27JUn/\n8i//EvN9A9MNAQ8ksbq6uqi3HX3WvLm5OVblTElLS4s+/vjj0DKteGBquAcPwBJGW+9XLgOIDgEP\nwBI8Hs+4ywCiQ8ADsIQFCxaMuwwgOkbvwTc1Namjo0MOh0OVlZUqLi4OrXv00Uc1f/58OZ0j5yCP\nP/64srOzTZUKIM4ee+wxbdy4MbQMYGqMBXx7e7s8Ho9qa2t18uRJ1dfXq7a2NrTe4XBo8+bNmjFj\nhqkSgTE2bNgQ6nkeickmUJlMbm7ulDrTJYuysrLQST4d7ICpMxbwbW1tKi8vlyQVFBRoYGBAfr8/\nNNlEMBhUMBj587lAvHR3d8tz2qNAeiCi7RzOkefNu/q7Ij6m0z+97qLFs+Vup/ECgHAYC3iv16tF\nixaFXrtcLnm93jH33p5//nmdPn1aixcvVkVFhYkygTEC6YGETliS6OlN7cpu4wUA4bDMc/BXttbv\nv/9+lZWVac6cOdq+fbuOHDmi22+/3VB1ABKhsbFRkrRz586Y7jcZxwtoaGiQ2+0ed53PNzLH/EQz\n1a1YscLIzH2wDmMBn52dLa/XG3rd19enrKys0Ovf/d3fDS3ffPPN+vTTT8MK+Pz8/NgWCvyf1FQz\n/y6pqalx+bse/X6s8j9z5MgRtba2SpI+++wzy5zQm/o5ZWRkXPNvbnBwUJIm7HickZFhmd8tzDAW\n8KWlpTpw4IBWrVqlzs5O5eTkhO6/nz9/Xs8884w2bdqk1NRUtbe3a/ny5WHtt6sr8vucQDiGhoaM\nHTcef9ej349V/mf+8R//ccxyrFvx0TL1c3rwwQf14IMPjrtu9KrCSy+9NOE+rPK7RfxMdBJnLOBL\nSkpUVFSkmpoaOZ1OVVVVye12KyMjQ+Xl5br55pu1efNmzZw5UwsXLgw74AEAgOF78Fd2nCssLAwt\nf+UrX9FXvvKVRJcEwJDKysrQc/CVlZVmiwFswDKd7ABMb2VlZSotLQ0tA5gaAh6AZdByB2KHgAfC\n5PP5oh4sJVpOv1M+hy9hxzONljsQO9NrmCwAAKYJWvBAmDIzM+UL+hI+kt1Eg5lMZKKBUqTJx8hn\noBQguRHwwDQ1Ou4EAHsi4AGbqq6upgUOTGPcgwcAwIYIeAAAbIiABwDAhgh4AABsiIAHAMCG6EUP\nYNqbaMyAycYLkBgzANZEwAPABBgvAMmKgAcw7TFmAOyIe/AAANgQAQ8AgA1xiR6IQDTTxTouOSRJ\nwbRgVMeTK+LNkAQ2bNgQ6sAXqXA6/k0kNzdXdXV1UW2L5EHAA2HKzc2NarvRD+NcVxTbu6I/Lqyt\nu7tbntMeBdIDEW/rcI6cNHb1d0W8rdPPhdvpgoAHwhRti2e0ldXc3BzLcmADgfRAQqcflhTxFSgk\nL07lAACwIQIeAAAbIuABALAhAh4AABsi4AEAsCECHgAAGyLgAQCwIQIeAAAbYqAbIAaYTxyA1RgN\n+KamJnV0dMjhcKiyslLFxcVXvecnP/mJOjo69NRTTxmoEJg65hMHYIKxgG9vb5fH41Ftba1Onjyp\n+vp61dbWjnnPiRMn9P777ys1lQsNsDbmEwdgNcbuwbe1tam8vFySVFBQoIGBAfn9/jHv2bdvn772\nta+ZKA8AgKRmrGns9Xq1aNGi0GuXyyWv16sFCxZIktxut5YsWcJMWrjKRPe7fT6fJCkzM/Oa23O/\nG1bg8/mimn54qpx+p3wOX0KPCTMs04s+GPztXNnnzp2T2+3WPffcM+brwGT8fv9VV4IAYDoy1oLP\nzs6W1+sNve7r61NWVpakkcv3Pp9P3/ve93Tp0iWdOnVKL774ov70T/900v3m5+fHrWZYw9atW6+5\nbuXKlZKkgwcPJqocICrZ2dnyBX1GpovNzs7ms3IaMBbwpaWlOnDggFatWqXOzk7l5OSEehsvX75c\ny5cvlzTyiNGePXvCCndJ6urqilvNsL6hoSFJ/B3A+kb/Vk0dm/8Re5joRM1YwJeUlKioqEg1NTVy\nOp2qqqqS2+1WRkZGqPMdAACIjtHnzyoqKsa8LiwsvOo9ubm5PAMPAECELNPJDgAAxA4BDwCADRHw\nAADYEAEPAIANEfAAANgQs7gAAMLCMNHJhRY8AGDKGCbaemjBA4Ah0U4247jkkCQF0yKfq8Ppd0qu\niDeTNPG0yOvWrZMkNTc3R7dzxBwBDwAGTGWmzO7u7pF9uKLYh2tqx0byIOABwIC6urqot6W1jHBw\nDx4AABsi4AEAsCECHgAAGyLgAQCwITrZwXI2bNgQ6iUcqdHtRjshRSo3N3dKnZ8AwCoIeFhOd3e3\nPKc9CqQHIt7W4Rx5PrirvyvibZ1+LmgBsA8CHpYUSA/ozP87k9BjRjPgCABYFU0WAABsiIAHAMCG\nCHgAAGyIgAcAwIYIeAAAbCjsXvQffvihenp6FAiMfXTpzjvvjHlRAABgasIK+F27dqmtrU35+fly\nOsc2+gl4AACsJ6yAf//997V7927NnDkz3vUAABC2hoYGud3ua673+XySpMzMzHHXr1ixQtXV1fEo\nzbiw7sHn5eUpJSUl3rUAABBTfr9ffr/fdBlGhNWCv+222/T0009r+fLlmj179ph1XKIHAJhSXV09\nYQt8dF6K5ubmRJVkGWEF/LvvvitJeuedd65aR8ADgH1EO9kTEz1ZT1gB/9RTT4379Q8//DCmxQAA\nRkx0bzmcMI323nK0kz0x0ZP1hP2Y3AcffKBTp04pGAxKGrmv8dOf/lQvvPBC3IoDAFwtPT09rvtP\n9GRPTPQUH2EF/L59++R2u/X5z39enZ2duv766+XxeHT//fdP6eBNTU3q6OiQw+FQZWWliouLQ+ve\neOMNHTp0SCkpKbr++utVVVU1pWMBQDKZ7N4yMJmwrov893//t+rq6rRlyxbNmzdP27Zt04YNG9TX\n1xf1gdvb2+XxeFRbW6vq6mrt3bs3tO7ixYt65513tG3bNm3dulUnT57kdgAAABEIK+BTUlJCvedH\nR7JbunSpjh49GvWB29raVF5eLkkqKCjQwMBA6FGGGTNmqKamRk6nU4ODg7pw4YKysrKiPhYAANNN\nWJfor7/+ev3whz/Uk08+qfz8fO3fv19FRUUaGBiI+sBer1eLFi0KvXa5XPJ6vVqwYEHoa6+99pr+\n4z/+Q6tXr1ZeXl7Ux0Jy8fl8cvqdCb8v5/Q75XP4EnpMAIiXsAL+0Ucf1X/+538qJSVF69ev1wsv\nvKBf//rXWr9+fcwKGe28d7mvfvWrWr16tZ5++mktXrxYJSUlk+4nPz8/ZjXBjCuHQ070sfkbwnSW\nmhp23+uYHzce/3uj3890/L8O6zc5Y8YM3XPPPQoGg5o9e7Y2b9485QNnZ2fL6/WGXvf19YUuw587\nd06fffaZvvCFLygtLU3Lli3T8ePHwwr4rq7IH9GAtWRkZOjs8NmE9uKVRnryZmRk8DeEaW1oaMjY\ncePxvzf6/dj1/3qiE5ewmkrnzp3Tjh079MADD+hb3/qWJKmxsXFKHd9KS0t15MgRSVJnZ6dycnJC\nj34MDw9rz549GhwclCR99NFH0/LsCwCAaIUV8Lt27dKiRYv03HPPac6cOZJGRrBramqK+sAlJSUq\nKipSTU2NmpqaVFVVJbfbraNHj2ru3Llau3attmzZopqaGrlcLt16661RHwsAgOkmrEv0Ho/nqsvy\nN9xwgy5cuDClg1dUVIx5XVhYGFq+6667dNddd01p/4ivlpYWSVJZWZnhSgDEiolOrnRwjY+wWvAz\nZ87UiRMnxnzt9OnTzDA3zTU2NqqxsdF0GQCAcYTVgr///vu1efNmLVmyRF6vVzt27NDx48f18MMP\nx7s+WFRLS4taW1tDy7TiAXvIzMyUL+hL+FC115qvHdELqwVfXl6u7du3a9GiRfqjP/oj3XLLLVq/\nfr1mzZoV7/pgUZe33GnFA4D1hNWCb2ho0Ntvv62srKwxzyg7HA7t2rUrbsUBAIDohBXwLS0tamho\nCPWgByorK7Vx48bQMgDAWsIK+IULF8a5DCSbsrKy0Ox/3H8HAOsJK+DXrFmjTZs2qbi4+Kp5iB95\n5JG4FAYAAKIXVsA/++yzKi4uVmFhodFxwmEdLS0t+vjjj0PLtOIBwFrCnlXgiSeeiGcdSDJX9qLf\nuXOnuWIAAFcJK+BXrlypw4cP60tf+pKxmYYAAIkRzUh2jksOSVIw7eqZQcM5nlzXXr9hwwZ1d3dH\nvF9Joe3WrVsX1fa5ubmqq6uLaJuGhga53e5rrvf5Rkbtu9az/ytWrFB1dXVExxxPWGn97//+7+rv\n79fu3buvukS/f//+KReB5EMvesCecnNzo9puNEhzXVFs75r4uN3d3fKc9iiQHoh41w7nyIlHV3/k\ns8k5/fG5Je33+yVdO+BjJayAr62tjWsRSD5lZWUqLS0NLQOwh0hbq6NGW8jNzc2xLCckkB4wMoV0\nNKqrqydsgcf7ZzUqrICP9owO9kbLHQCsixvqiBotdwCwLp55AwDAhgh4AEgyLS0tamlpMV0GLI5L\n9LCkaB7TkeL7qA5gFaPjUDD+BCZCwMNyptKpM56P6gBW0NLSotbW1tAyfWFwLQQ8LCfax3SkxD1+\nApjCKJIIF/fgAQCwIVrwmNBEQy5ONtyiFLshFwGMYBRJhIuAR9QSNdwigN9iFEmEi4DHhCYacpH7\n3YAZ063l7vP5on6yZiqcfqd8Dl9CjxlLBDwAJBla7ggHAQ8AsLTMzEz5gj4jk80k8y1IAh4AEJaJ\nOt2GM+86nW4Ti4AHAExZenq66RJwBQIeABCWyeY5h7UQ8AAARGjDhg2h2xKRCud2xkRyc3PDGvHT\naMA3NTWpo6NDDodDlZWVKi4uDq1ra2vT/v37lZKSovz8/JieNU50H0mafAAX7iMBQGJZbQKq7u5u\neU57FEgPRF6Tc6Smrv6u6GoKk7GAb29vl8fjUW1trU6ePKn6+nrV1taG1j///PPasmWLsrOztWPH\njoROqsAALgBgHVadgCqQHjDSsz9cxgK+ra1N5eXlkqSCggINDAzI7/eHOmr83d/9XWjZ5XKFWtWx\nMNl9JAZwAQDrYAKq6BibbMbr9crl+u21D5fLJa/XG3o9Gu59fX167733tGzZsoTXCABAsrLMbHLB\n4NX3R86ePavt27frm9/8pubMmWOgKgAAkpOxS/TZ2dljWux9fX3KysoKvb5w4YJ+8IMfqKKiQjfd\ndFPY+83Pz59ybampqTHbl51Z8edkxZoAmBOvz4TR/ZqQmpoa1vdjrMLS0lIdOHBAq1atUmdnp3Jy\ncsYMlNDU1KR77rlHS5cujWi/XV2R90q80tDQUMz2ZWdW/DlZsSYA5sTrM2F0vyYMDQ2Fvp+Jgt5Y\nwJeUlKioqEg1NTVyOp2qqqqS2+1WRkaGSktLdfjwYZ06dUpvvvmmJOnOO+/U7/3e75kq17aS4VlO\nAEDkjD4HX1FRMeZ1YWFhaPnHP/5xosuZlpLhWU4AQOQYyQ6Wf5YTABA5At4iGF0PABBLXCdNEn6/\nPzTCHgAAk6EFbxGMrgcAiCXbBjy9wwHA/ia7vTnZ57mdb2/aNuDpHQ4AuHx8lenGtgEv0Ts8HD6f\nL+ppGKfC6XfK54jdBEIApqfJbm9OZ7YOeAAA4iEZGkcE/DSXmZkpX9Bn5ErHtR75AwBMHQEPAECE\nkqFxZNuAt+LlE3r2AwASxbYBb0VW7dkf7YmQ49JITcG0YHQ1uSLeTNLEj8WEcyJk58diAGCUbQPe\nqpdPrNazPzc3N+r9joZpriuKfbimduxrmc6PxADA5Wwb8AjPVC7bmxpdj8diAGByjMoCAIANEfAA\nANgQAQ8AgA1xDx4Tosc6ACQnAh5Ro8c6AFgXAY8J0WMdAJIT9+ABALAhAh4AABsi4AEAsCECHgAA\nG6KTXQJZcYY7AIA90YIHAMCGaMEnkFVnuAMA2A8teAAAbIiABwDAhoxeom9qalJHR4ccDocqKytV\nXFwcWnfp0iU999xzOnHihH7wgx8YrBIAgORjrAXf3t4uj8ej2tpaVVdXa+/evWPW79u3T0VFRYaq\nAwAguRkL+La2NpWXl0uSCgoKNDAwIL/fH1pfUVERWg9ramlpUUtLi+kyAADjMBbwXq9XLpcr9Nrl\ncsnr9YZeM1OZ9TU2NqqxsdF0GQCAcVimk10wGDRdAiLQ0tKi1tZWtba20ooHAAsy1skuOzt7TIu9\nr69PWVlZU95vfn6+JCk11Vz/wdTU1FAdV37dlGvVFK1NmzaFlvfv368//MM/jNm+AcDqkuHz3FiF\npaWlOnDggFatWqXOzk7l5ORcdVk+mlZ9V1eXJGloaCgmdUZjaGgoVMeVXzflWjVFa3BwcMxyLPcN\nAFZnlc/ziYLeWMCXlJSoqKhINTU1cjqdqqqqktvtVkZGhsrLy7Vjxw6dOXNGXV1d+v73v69Vq1bp\njjvuMFUurnDnnXeqtbU1tAwAsBajz8FXVFSMeV1YWBhafuKJJxJdDiLw9ttvj1leu3atwWoAAFey\nTCc7AAAQOwQ8onL5ZXku0QOA9RDwiMqVl+gBANZCwAMAYEMEPKJSWVk57jIAwBqM9qKPN6ffqXmH\n5kW8neOSQ5IUTIv8OXyn3ym5Jn9fsisrK1NpaWloGQBgLbYN+Nzc3Ki37e7uHtmHK4p9uKZ27GRC\n5zoAsC7bBnxdXV3U265bt06S1NzcHKtybGm0cx3PwAOA9XAPHlFhshkAsDYCHlG5fJpYpowFAOux\n7SV6AADiyeoduQl4RKWyslIbN24MLQPAdJIMHbkJeESFx+QATGfJ0JGbgEfUaLkDgHUR8IgaLXcA\nsC560QMAYEMEPAAANkTAAwBgQwQ8AAA2RMADAGBDBDwAADbEY3IJZvWhDQEA9kDAJ1AyDG0IALAH\nAj6BkmFoQwCAPXAPHgAAGyLgAQCwIQIeAAAbIuABALAhAh4AABsi4AEAsCGjj8k1NTWpo6NDDodD\nlZWVKi4uDq07duyYmpublZKSorKyMq1Zs8ZgpQAAJBdjLfj29nZ5PB7V1taqurpae/fuHbO+sbFR\n3/72t7V161YdO3ZMJ0+eNFQpAADJx1jAt7W1qby8XJJUUFCggYEB+f1+SdLp06eVmZmpnJwcORwO\nLVu2TO+9956pUgEASDrGAt7r9crl+u0A6S6XS16vN7QuMzNz3HUAAGBylhmqNhiMfBKV8eTn5095\nH6mpqTHbV6xYsSYAQOQS9XluLOCzs7PHtMr7+vqUlZU17rre3l5lZ2eHtd+urq4p1zY0NBSzfcWK\nFWsCAEQulp/nE50kGLtEX1paqiNHjkiSOjs7lZOTo/T0dEkjM59duHBBPT09Gh4e1rvvvqvS0lJT\npQIAkHSMteBLSkpUVFSkmpoaOZ1OVVVVye12KyMjQ+Xl5XrooYe0c+dOORwO3XHHHVqwYIGpUgEA\nSDpG78FXVFSMeV1YWBhaXrx4sWpraxNdkjENDQ1yu93XXD86H/zotLFXWrFihaqrq+NRGgAgCVmm\nkx0mNnr7AgCAcBDwFlFdXU0LHAAQM4xFDwCADdGCR9RaWlokSWVlZYYrAQDrsEqfKlrwiFpjY6Ma\nGxtNlwEASSU9PT0h/apowSMqLS0tam1tDS3TigeAEVbpUzUtA94ql0+S2eUt98bGRu3cudNcMQCA\nq0zLgJ8Mj6QBAJKdIxirWV4sgrHaE6OlpUUbN26UJD3zzDNcogcAAyYai54WPKJSVlYWmh+AcAcA\n6yHgEbXKykrTJQAAroGAR9RouQOAdfEcPAAANkTAAwBgQwQ8AAA2RMADAGBDBDwAADZEwAMAYEME\nPAAANkTAAwBgQwQ8AAA2RMADAGBDBDwAADZEwAMAYEMEPAAANkTAAwBgQwQ8AAA2RMADAGBDBDwA\nADaUaurAw8PDevbZZ9XT06OUlBT9xV/8hfLy8sa8Z2BgQLt27VJ6erqeeOIJQ5UCAJB8jLXg3377\nbc2ZM0dbt27VH//xH+snP/nJVe95/vnntXjxYgPVAQCQ3IwF/HvvvafbbrtNknTTTTfpgw8+uOo9\n1dXVBDwAAFEwFvBnz56Vy+WSJDkcDjkcDg0PD495T3p6uonSAABIegm5B3/w4EG9+eabcjgckqRg\nMKiPPvpozHuCwWAiSgEAYFpISMCvXLlSK1euHPO1PXv2yOv1qrCwMNRyT0lJmfKx8vPzp7wPAACS\nnbFL9EuXLtU777wjSfrlL3+pJUuWjPs+WvYAAETOETSUoIFAQA0NDfJ4PEpLS9Ojjz6qnJwcvfba\na1qyZImKi4u1bds2nT9/Xr29vbruuuu0du3aa54IAACA3zIW8AAAIH4YyQ4AABsi4AEAsCECHgAA\nGzI2Fr2Vffrpp/r7v/973XPPPfr93/990+VIkl566SUdP35cgUBAX/3qV0OjAJpy8eJFPfvsszp7\n9qwuXbqkNWvW6OabbzZa06iLFy/qW9/6ltauXau77rrLaC3t7e3asWOHPv/5z0uSCgsL9Y1vfMNo\nTZJ0+PBh/eu//qtSU1P1J3/yJ1q2bJnpknTw4EEdPnw49Lqzs1NNTU0GK5L8fr92796tgYEBDQ0N\nae3atSotLTVaUzAY1PPPP6/PPvtMqampeuihh4w+Hnzl5+WZM2e0e/duBQIBZWdn67HHHlNqamKj\nZrzP8J/97Gfat2+fGhsbNXPmzITWM15NPT09qq+v1/DwsFJTU7VhwwbNnTs3psck4K8wODiovXv3\n6qabbjIQa0IrAAAIDUlEQVRdSshvfvMbnThxQrW1tTp37py+853vGA/4X/7ylyouLta9996rnp4e\nbdu2zTIB/+qrryozM9N0GSFf/OIXLTVZ0rlz5/TKK69o+/btunDhgn76059aIuAvHy+jvb1dv/jF\nLwxXJLndbhUUFOhrX/ua+vr6tHXrVj3zzDNGazp69KjOnz+vbdu26dSpU9q7d6/+6q/+ykgt431e\nvvzyy/qDP/gD3X777dq/f78OHTqku+++22hNb731lvr7+5WTk5OwOiar6eWXX9bdd9+t5cuX6+c/\n/7lef/11ff3rX4/pcblEf4W0tDR997vfVXZ2tulSQi4PiNmzZ2twcND4+ABf/vKXde+990qSenp6\nNH/+fKP1jOrq6tLJkyctc7JhRceOHdPSpUs1c+ZMZWVl6c///M9Nl3SVV199VWvWrDFdhlwul3w+\nn6SRE6PR4bVN8ng8uuGGGyRJn/vc59TT02Ps82C8z8v29nbdcsstkqRbbrlF7733nvGabrvtNq1b\nty6hdUxW00MPPaTbb79d0sjf2blz52J+XAL+Ck6nU2lpaabLGMPhcGjGjBmSRi5jLlu2LDTsr2k1\nNTWqq6vT+vXrTZciSXrxxRe1fv164ydAlztx4oS2b9+up556SseOHTNdjrq7uzU4OBiqqa2tzXRJ\nY3z88ceaN29ezC9XRuPLX/6yenp69Pjjj2vLli168MEHTZekwsJCtba2KhAIqKurS6dPnw6dhCTa\neJ+Xg4ODoUvyc+fOVV9fn/GaTM9rMl5NM2bMkMPhUCAQ0M9//nPdeeedsT9uzPeIuDl69KgOHTqk\nqqoq06WEbNu2TU8++aTq6upMl6K33npLJSUlys3NlWSNURAXLFig++67T9/5znf0yCOPqKGh4apJ\nlRItGAzq3LlzevLJJ/XII49oz549Ruu50ptvvqkVK1aYLkPSSF+F+fPn65/+6Z/0ve99Ty+88ILp\nklRWVqYbbrhBW7Zs0c9+9jMVFBRY4m99PFatyyoCgYB2796tG2+8UTfeeGPM9889+CTR0tKi1157\nTZs3b9asWbNMl6POzk7NnTtX8+bN08KFCzU8PKz+/n6jlzB/9atf6fTp03r33XfV29urtLQ0zZ8/\nPy7/OOHKycnRl770JUkjl1OzsrLU29sbOgkxISsrSyUlJXI4HPrc5z6nWbNmGf/dXa69vd0yJ7Ef\nfPCBysrKJEnXX3+9ent7FQwGjV9Bu//++0PL8eicNRXp6em6dOmS0tLS1Nvba6nbnaZ/b1fas2eP\n8vPztXbt2rjsnxb8BKxy9nn+/Hn9+Mc/1qZNmzR79mzT5UiS3n//fb3++uuSJK/Xq8HBQeMB8Zd/\n+Zd6+umn9bd/+7dauXKl1qxZYzTcJentt98e83M6e/assY4+o5YuXarf/OY3CgaD8vl88vv9xn93\no/r6+jRr1qyYTDwVCwsWLNCHH34oaeTWxqxZs4yHxCeffKL6+npJIyf+ixYtMlrPlW666SYdOXJE\nknTkyJHQCZIJV36GW+UzXRq5OpSWlha3cJcYqvYqnZ2d2rdvn7q7u5WSkqKcnBx9+9vfVkZGhrGa\n3njjDb3yyiv6nd/5ndDXHnvsMc2bN89YTRcvXlRDQ4POnDmjixcv6r777rNUx7YDBw4oLy/P+GNy\nfr9fu3bt0vnz5zU0NKT77rvP6AfeqDfeeEMHDx6Uw+Gw1COOnZ2devnll/XXf/3XpkuRNPL7q6+v\n19mzZxUIBLRu3Tp98YtfNFpTMBhUfX29Tpw4oRkzZujxxx83dtI43ufl448/rmeffVaXLl1Sbm6u\nHnnkETmdiWtLjlfT0qVLdezYMXV0dKi4uFglJSV64IEHjNbU39+vtLS00BXZ6667LuZXrgh4AABs\niEv0AADYEAEPAIANEfAAANgQAQ8AgA0R8AAA2BABDwCADRHwAOLqo48+0qeffippZHa2bdu2Ga4I\nmB4IeABxdejQIX3yySeh16ZHggOmC8aiB6Du7m79zd/8jVavXq2DBw9Kkh599FG9+uqr+t///V+V\nlZWpurpa77zzjl555RUFAgHl5OTo4YcfVl5eng4cOCCfz6fe3l598skncrlcevLJJ3X06FG99dZb\nevfdd9Xf36+MjAwFg0H96Ec/Umtrq1JTU7Vx40Zdd911hn8CgP3QggcgServ71d2drZ27typwsJC\n7dy5U4899pj+4R/+QYcPH1Z7e7uee+45bdq0Sc8884yWLVumf/7nfw5t/4tf/ELf+MY3VFdXp8zM\nTB06dEh33323brjhBn3961/X6tWrJY1csl+5cqV27dqlJUuW6N/+7d9MfcuArRHwACSNTF05OvNd\nYWGhiouLNWfOHM2ZM0fZ2dlqb2/XkiVLlJeXJ0lauXKl2tvbFQgEJElf+MIXQvMjFBUVqaenZ9zj\nXHfddVq4cKEkaeHChert7Y3zdwZMTwQ8AEmS0+lUampqaDk9PX3MurS0NM2ZMyf0tdmzZ4dmpBt9\nffn7R4P/SpdPdzzR+wBMDQEPICxz585Vf39/6PW5c+fkcDiUmZlpsCoA10LAAwhLSkqKjh8/rtOn\nT0uS/uu//kulpaWTTgWakpKigYGBRJQI4DL0ogcwKYfDoXnz5qm6ulrbt2/X8PCw8vLy9PDDD0+6\n7W233aaXXnpJp06dUmFhYQKqBSAxHzwAALbEJXoAAGyIgAcAwIYIeAAAbIiABwDAhgh4AABsiIAH\nAMCGCHgAAGyIgAcAwIYIeAAAbOj/AzeUcEngeWXIAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1d6e9e7610>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# couldn't get pandas df.plot.box to work properly ...\n",
"sns.boxplot(x='month', y='mean', data=df, color='g');"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f1d6e4c9f50>"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAFoCAYAAAC7Tuk8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0VOW9//HPJAMEMuYqCImCITalgNxKFMTadZSzuqwu\nl8ULp3CK2GhFUeqlVlsuRsHrWcWikWhZioBiD3hvvR4vOYUjpQoizAkimh4R8gshlwEmmADJ/v1B\nMiZhMrPnlj2z5/36ayZ75pkn88zs7zyX/X0chmEYAgAAtpJidQUAAED0EeABALAhAjwAADZEgAcA\nwIYI8AAA2BABHgAAG3Ja+eKrVq3S7t275XA4NHv2bBUWFkqSGhoa9Pjjj/set3//fs2cOVNTpkyx\nqqoAACQUh1XXwVdWVuovf/mL7rrrLu3bt0/l5eVasmTJSY9ra2vTvffeq9///vfq16+fBTUFACDx\nWDZE73a7VVxcLEnKz89XU1OTmpubT3pcRUWFzj33XII7AAAhsCzAezweZWRk+O5nZGTI4/Gc9Lj3\n339fF154YW9WDQCAhBc3i+z8zRR88cUXys/PV1pamgU1AgAgcVkW4LOzs7v02BsbG5WVldXlMVu3\nbtWYMWN6u2oAACQ8y1bRjx07VuvXr9fUqVNVVVWlnJyck3rqX331Vcgr56urq6NZTQAA4lZeXl6P\nxywL8EVFRSooKNDChQuVkpKikpISVVRUKD093bf4zuPxKDMz06oqAgCQsCy7TC5W6MEDAJJFoB58\n3CyyAwAA0UOABwDAhgjwAADYEAEeAAAbIsADAGBDBHgAAGyIAA8AgA0R4AEAsCECPAAANmRZqloA\niLbVq1dr06ZNvvter1eS5HK5fH+bPHmyZs2a1et1A3obPXgAttXS0qKWlharqwFYglz0AGzrxhtv\nlCSVl5dbXBMgNshFDwBAkmEOHgB6EGxOn/l8xDN68ABgEnP6SCT04AGgB7NmzerSQ2dOH4mEAA/A\nUlzaBsQGQ/QA4grD4EB00IMHYCmGwYHYIMADCAlD6kBiYIgeQEQYUgfiEz14ACFhSB1IDPTgAQCw\nIQI8AAA2RIAHAMCGmIMH0KsWLFig+vr6Ho93HOuY2+8uNzdXS5YsiUpZ3csD7IQAD6BX1dfXq7au\nTsc7XVbXWUpqqiSpurn5pGPO9kvyolGWv/IAOyHAA+h1x10u7b322pCfd/rKlVErq6fyALtgDh4A\nABsiwAMAYEOWDtGvWrVKu3fvlsPh0OzZs1VYWOg7Vl9fr2XLlqm1tVUFBQW67rrrLKwpkNwCLWZj\nIRsQnywL8JWVlaqpqdGSJUu0b98+lZeXdzkBrF69WpdddpkmTpyoZ555RvX19crNzbWqukBSC7SY\nzcqFbF6vV87m5rDn0p1er7zHj0e5VkB8sCzAu91uFRcXS5Ly8/PV1NSk5uZmpaWlyTAMff7557r1\n1lslSb/85S+tqiaAdtFaGBdJUCYgA+ZZFuA9Ho+GDx/uu5+RkSGPx6PBgwfr0KFDSktL07PPPqt/\n/vOfGjFihGbMmGFVVQHEKZfLpUNOZ0Sr6F1paVGuFRAf4uYyOcMwutxuaGjQJZdcolNPPVUPPfSQ\nPv30U40fPz5oOXl5ebGsJpCUUtuH4SN5fsd3MzMzM+ygfPrKlcpMT/eVFWm9utfNzGMlzjNIDJYF\n+OzsbHk8Ht/9xsZGZWVlSTrRmx80aJAGDRokSRo9erS++eYbUwG+uro6NhUGklhra2vEz+/4bsZT\nWd3LM/NYifMM4kegH5uWXSY3duxYbd68WZJUVVWlnJwcpbUPlaWkpGjQoEGqqanxHecXMwAA5lnW\ngy8qKlJBQYEWLlyolJQUlZSUqKKiQunp6SouLtY111yj5cuXyzAMDR06VBMnTrSqqgCizOn19rjI\nLqV9NX6bn7lxp9crMWcOmGLpHHz3hXNDhw713R48eLDuu+++3q4SgBgLdrlrfVPTicf5C+RpaTG9\nXDaaG+F0t3r1am3atMl339t++aCr06WHkydP1qxZs0KuN+BP3CyyA5AcgiW86Qie5eXlvVGdLqK5\nEU4wLS0tkroGeCCaCPBAEqD3aF40N8LpbNasWV3eXyt/yCA5EOCBJBRq75HkNEDiIcADScDOvcdw\nF+x1PJdFe7ArAjyAoCLJGBfLbHERLdiTTlq0x0gF7IQAD8SpzvPmzJn7F88L9gCrEeCBBMCK694R\nryMVQDgI8ECc6jxvTk8UQKgsS1ULAABihx48YEORZmSTAmdli6bu1+j7qxvrDYDQEeABG4okI5sU\nela2aOrXr59lrw3YCQEesKlwM7JJwbOyRVP3a/QBRAdz8AAA2BA9eACm9JQxjmxxQHwiwAMIKlDG\nuFCzxQXjdrslSaNHjzZfQQAnIcADCCrQavpoX6O/bt06SQR4IFLMwQOIG263W5WVlaqsrPT15AGE\nhx48gLjR0XvvuG1FLz7c3elYa4B4Q4AHbCiSXdGk5N0ZLaLd6bqtNUikZEOwJwI8gLhx9dVXq7S0\n1He7t0Vzd7pETjYEeyDAAzYUya5oknU7o40ePVojR4703U50iZJsCPZEgAcQV6zouQN2RIAHEFfs\n0HMH4gGXyQEAYEP04IE4EWjVdTKtuCaTHRAdBHggTgRadZ1MK67JZAdEBwEeiCPhrrr2t+I63IQt\nHc+1ImlLRya7jtuhBvnVq1dr06ZNvvv+Rj4mT57M9rRICgR4wIYiStgihbxBTLREO5Ndv379Iq0S\nkLAI8IANRTNhS3fx3EueNWsWvXOgnaUBftWqVdq9e7ccDodmz56twsJC37G5c+fq1FNPVUrKiYX+\n8+bNU3Z2tlVVBdCDaPaSrc5kB9iJZQG+srJSNTU1WrJkifbt26fy8vIuvQ6Hw6H58+erb9++VlUR\nCEn3nq23feGbq9OiOTvM/8ayl2ynTHbsBwCrWRbg3W63iouLJUn5+flqampSc3Oz0trnBA3DkGEY\nVlUPiFhLS4ukrgEewcVTzz3YdIQdfrDBviwL8B6PR8OHD/fdz8jIkMfj0eDBg31/W7FihWprazVi\nxAjNmDHDimoCpnXv2UYyz53Motlzj/Y19aFMRyTqfgCwj7hZZNe9tz59+nSNGzdOLpdLjzzyiDZv\n3qxzzz3XotoBsRfJkC7Duf5Fek19vC7aS5bpIETGsgCfnZ0tj8fju9/Y2KisrCzf/QsuuMB3e8KE\nCdqzZ4+pAJ+XlxfdigJhSm1PTmP2M+lwOCJ6PYfDYfq1Qq1bItq6davvmvqamhpNmDChV1+/4z2O\ntAx/beRyubqU3zEdlJmZ2eUxdm5fBGdZgB87dqzWr1+vqVOnqqqqSjk5Ob759yNHjujRRx/VXXfd\nJafTqcrKSk2aNMlUudXV1bGsNmBaa2urJPOfyfT0dB1MTQ070U16Wprp1wq1bolo+fLlXW7fd999\nvfr6He9xpGX4a6Np06Zp2rRpvvsd00FlZWVdHmfn9sUJgX7EWRbgi4qKVFBQoIULFyolJUUlJSWq\nqKhQenq6iouLNWHCBM2fP1/9+vXTmWeeaTrAAwAAi+fguy+cGzp0qO/2xRdfrIsvvri3qwTAJuLh\nmvpETBcM+4ibRXYAeg4IBIPQWX1NfaKmC4Z9EOCBOBHoZE4wCI+V19THMl0wYAYBHogTgQICwSA8\niZ4ND4hEitUVAAAA0UcPHkgC8bwDHIDYIMADSYh90gH7I8ADSSBeU64CiB3m4AEAsCF68ECYFixY\n4JvL9sffPHd3ubm5QS+nAoBwEOCBMNXX16u2rk7He9jvPaV9M5Dq9iQ13TnbdwADgFggwAMROO5y\nRbTfNwDECgEeABJAoCkhpoPgDwEeiFOdr13nuvXEF2kugkBTQkwHwR8CPJAAuG7dfsJp03CnhJgO\nSk4EeCBOce26vdCe6G1cBw8AgA3RgweABOD1euVsbg5ruN3p9cp7/HgMaoV4RoAHwhTJCVfipAsg\ntgjwAJAAXC6XDjmdYS+yc6WlxaBWiGcEeCBMkZxwJU66AGKLRXYAANgQAR4AABsiwAMAYEMEeAAA\nbIhFdkAEnF5vj5fJpbTnBW/rYSGd0+uVWGQHIEYI8ECYcnNzAx6vb2o68biegnhaWtAyACBcBHgg\nTMG23uzYJay8vLw3qoMk0NOIEaNF8IcADwAJINBoT6SjRd23svW2by/r6rQ1LdsTJx4CPBAlke73\nDQQSaMQo2qNFLS0tkroGeCQeSwP8qlWrtHv3bjkcDs2ePVuFhYUnPWbt2rXavXu37rnnHgtqCISP\nPdyRKLpvZcv0kj1YFuArKytVU1OjJUuWaN++fSovLz/pF+revXu1c+dOOZ0MNCD+sd83gHhi2XXw\nbrdbxcXFkqT8/Hw1NTWpuX2hSIc1a9bo5z//uRXVAwAgoVnWNfZ4PBo+fLjvfkZGhjwejwYPHixJ\nqqio0KhRozRw4ECrqogkwOIiAHYVN5nsDMPw3fZ6vaqoqNCll17a5e9ArLW0tPgWGAFAIrOsB5+d\nnS2Px+O739jYqKysLEknhu8PHz6sRYsW6dixY9q/f79Wr15tqheVl5cXszrDfu6+++4u96dNmyZJ\nevnll62oDhCW1NRUSdE7/0W7PFjDsgA/duxYrV+/XlOnTlVVVZVycnKU1n4N56RJkzRp0iRJ0oED\nB7R8+XLTQ6TV1dUxqzPsr7W1VRKfIySWaH9u+R4kjkA/wiwL8EVFRSooKNDChQuVkpKikpISVVRU\nKD093bf4DgAAhMdh2GySm1+ciATX/yIR9JRUqXO2ukCLQxcsWOB7jj/+yussNzc3aKpm9I647MED\nAKIj1KRK9fX1qq2r0/EeMtWltM/BV3e7dFlqz2uPhECAB4AEE42kSsddLu299tqQn9fT9siIP3Fz\nmRwAAIgeevBIKmbnHjtvENMZc48AEgUBHkmFuUcAyYIAj6TD3CMQO6R/jh/MwQMAYob0z9ahBw8A\nScbr9crZ3BzWqJTT65X3+PEej7O3fPygBw8AgA3RgweAJONyuXTI6Qx7LYqrfd8QxDd68AAA2BAB\nHgAAGyLAAwBgQ8zBI6nEcvUwAMQTevAAANgQPXgkFVYPA0gWBHgkFNJgAoA5DNEjoZEGEwD8oweP\nhEIaTAAwhwAPAEnI6fX2eDVJSvt2yW1+1pw4vV6JtSgJgQAPAEkmNzc34PH6pqYTj/MXyNPSgj4f\n8YEADwBJZsmSJQGPM/VlD6YD/BdffKG6ujq1tbV1+fv5558f9UoBAIDImArwy5Ytk9vtVl5enlJS\nui68J8ADABB/TAX4nTt3qqysTP369Yt1fQAA8AmW+4K8Fz0zdR38oEGDlJqaGuu6AAAQELkvzDPV\ngz/nnHP0wAMPaNKkSRowYECXYwzRAwBihdwX4TMV4Lds2SJJXYZJOhDgASB5LViwQPX19T0e7zjW\nEZj9yc3NDbqyH6EzFeDvuecev3//4osvoloZAEDv6z7P7S8o9zTXXV9fr9q6Oh3vtB9EZynt07vV\n7clzunO2z6kj+kxfJrdr1y7t379fhmFIkpqbm7Vu3To9/fTTMascAKD3hbqg+rjLFdYOjZJ6zKaH\nyJkK8GvWrFFFRYXOOOMMVVVVadiwYaqpqdH06dMjevFVq1Zp9+7dcjgcmj17tgoLC33H3nvvPX34\n4YdKTU3VsGHDVFJSEtFrAQD86z7PDXswtYr+H//4hx5//HGVlpYqNzdXixcv1i233KLGxsawX7iy\nslI1NTVasmSJ5syZo5WdfsUdPXpUmzZt0uLFi3Xfffdp3759TAcAABACUwE+NTXVt3q+I5PdmDFj\n9PHHH4f9wm63W8XFxZKk/Px8NTU1qbl9jqZv375auHChUlJS1NLSom+//VZZWVlhvxYAAMnG1BD9\nsGHD9NBDD+nOO+9UXl6eXnjhBRUUFKipfUOCcHg8Hg0fPtx3PyMjQx6PR4MHD/b97dVXX9Vbb72l\nSy65RIMGDQr7tYDO2EULQDIwFeDnzp2rd999V6mpqbrmmmv09NNP69NPP9U111wTtYp0LN7r7PLL\nL9cll1yiBx54QCNGjFBRUVHQcvLy8qJWJ8S/jgRMZtt9yJAhAZM21bb/aB2Unn7ywfR0DRo0iM8Y\n0Ek0kqClpqaa/l6F+p1PZqYCfN++fXXppZfKMAwNGDBA8+fPj/iFs7Oz5fF4fPcbGxt9w/Ber1ff\nfPONfvCDH6hPnz4aP368Pv/8c1MBvrq6OuK6IXG0trZKMt/uixYtCni847KgsrKyHh/DZwz4zsGD\nB+Vsbg57NbzT69XB48dNf69C/c7bXaAfOqbm4L1er5YuXaqZM2fqjjvukCQ9++yzES18Gzt2rDZv\n3ixJqqqqUk5OjtLahz9bW1u1fPlyXzrCL7/8kl9rAACEwPRucqNGjdKvfvUrLVy4UNKJDHYrV67U\n/fffH9YLFxUVqaCgwLeYrqSkRBUVFUpPT1dxcbGuvPJKlZaWyul0atiwYZo4cWJYrwMAiB2Xy6VD\nTmdE18G7WNsSE6YCfE1NzUnD8meddZa+/fbbiF58xowZXe4PHTrUd/vHP/6xfvzjH0dUPuKT2+2W\nJI0ePdrimgCAfZkK8P369dPevXt1+umn+/5WW1vLDnMIy7p16yQR4AEglkwF+OnTp2v+/PkaNWqU\nPB6Pli5dqs8//1w33HBDrOsHm3G73aqsrPTdJsgD6CzSzWvYuOY7pgJ8cXGxHnnkEW3YsEFFRUXK\nzs7Wueeeq/79+8e6frCZjt57x20CPIDOItm8ho1rujIV4J988klt3LhRWVlZSkn5buG9w+HQsmXL\nYlY5gK0ogeQT7uY1wS7V675rnrf9B4Gr04+JnnbNS0SmAvy2bdv05JNPdnkTgHBcffXVKi0t9d0O\nhq0ogfgXbnbIjudalSGy41Jsu8Y2UwH+zDPPjHE1kCxGjx6tkSNH+m6bEcutKCPZBxvAiRGyQOrb\ns0Pm9hTE09KClhEt3XfN6/iel5eX98rr9zZTAf6KK67QXXfdpcLCQl8ymg433XRTTCoG+zLTc7dK\nqPtgA8ku2PSX3YNoPDMV4J944gkVFhZq6NChXebggXDE08I69sEGYFemArwk3X777bGsB2ws2Ra2\nAEA8MBXgL7zwQm3YsEGTJ0+W02n6NwHgl90XtgCwv0TouJiK1m+88YYOHTqksrKyk4boX3jhhZhU\nDPaRbAtbACSfeOy4mArwXEMMAMB3EqHjYirADxw4MNb1AAAAUcSEOgAgbni9Xjmbm4PmsPDH6fXK\ne/x4DGqVmLjmDQAAG6IHDwDowu12S7ImZ4XL5dIhpzPsXPQui9LexiMCPOJaJMN1EkN2QDg6dn2M\np6RUCB1D9AAAH7fbrcrKSlVWVvp68khM9OAR1yIZrpMYsgNC1dF777hNLz5xEeABALa0YMEC3w6R\n/vjbPbK73NzchM0FQ4AHAPhcffXVKi0t9d1OZPX19aqtq9PxHrLLpaSmSpKq2/es787Znn42URHg\nAQA+o0eP1siRI323E91xlyuiKb5ERoAHAHQRSc+9+yYs/obBrd6EJVkQ4AEAXUSz596vX7+Qn+P0\nenvsPae0D6e3+Vk86/R6JRbV+hDgAQBR030TllDl5uYGPF7f1HTicf4CeVpa0OcnEwI8ACBuBFux\nHo+7tsUrAjwAwJYSKRNm97UL3vYV/J33lw917QKZ7AAAiDMtLS1qaWmJqAx68AAAW4p2JsxAiXMi\nTZrTfe1CNKYiLA3wq1at0u7du+VwODR79mwVFhb6jrndbr3wwgtKTU1VXl6e5syZE9ZrxGLYA4El\ne/YoANET7LK73jx/B0qcE49JcywL8JWVlaqpqdGSJUu0b98+lZeXdzmhr1ixQqWlpcrOztbSpUu1\nbds2jRs3LuLX7RjycPWQ2QiRS/bsUQBiJ5zL7qIp3MQ5ViTNsSzAu91uFRcXS5Ly8/PV1NSk5uZm\npbUPhzz88MO+2xkZGTp8+HBYrxOLYQ8El8zZowBET6SX3SUzyxbZeTweZWRk+O5nZGTI4/H47ncE\n98bGRu3YsUPjx4/v9ToCAJCo4maRnWEYJ/3t4MGDeuSRR3TdddcxpN7LOs97sW4BQKIKNytex3Nj\nlRkvWmuVnnnmmR6PWxbgs7Ozu/TYGxsblZWV5bv/7bff6sEHH9SMGTN09tlnmy43Ly8v4PHU9vnf\nYI9Ldi6Xy/dedaxbyMzM7HK8p/ew43mR6FhcmZqaGvEXNDU9nfYGktCQIUMCno9q27PiDUpP9/+A\n9HQNGjTId/6I9NzWcV6TToxiR7pWKVh9LAvwY8eO1fr16zV16lRVVVUpJyfHNywvnVhhf+mll2rM\nmDEhlVtdXR3weGtrq6nHJbtp06Zp2rRpkr77BVlWVtblMT29hx3vcSRaW1tVXV2trKysgOUFTFsp\nSWlpysrKor2BJLRo0aKAx3s6t3XXcf6I9NzWcV7ruB3pWqVg9bEswBcVFamgoEALFy5USkqKSkpK\nVFFRofT0dI0dO1YbNmzQ/v379f7770uSzj//fF100UVWVRcWIW0lAITH0jn4GTNmdLk/dOhQ3+3n\nn3++t6sDAIBtxM0iu0RA0hwAQKIgwEcgnpLmxNOPj0Ta4AEA7Mp2AT6WaVKjnTQnWFCOJCDH048P\nAEDvs12AT+Q0qZEE5XjK2BftDR4AAKGzXYCXopcmNdabpsRTUAYAuwu2cY1kr3VUtgzw0ZLIowEA\ngMCs3rgm1gjwQSTLpimx3OcYAOJBpBvXRLKA2IrFwwR4SEq8fY4BIJH1xtVGBHhI+m4Fvz895XkP\n9Px43eABAMIVyQJiKxYPE+ATVKwXAEYiNzc34HEz+eODlQEAiaw3rjayXYBPliQr0V4AGM1fpuSP\nBwDr2S7AJ5NkWQDYWbJd5gIA4bJdgCfJSnKx+2UuABAu2wX4eBbpvHnnOfNkmYroLtLLXAAgWRDg\ne1Ek8+ZcigYACAUBvpeFO2/evafOVAQAIBACfADJOgwOAEh8BHjEHCvfAaD3EeADYBg8Nlj5DgCx\nR4BHzLHyHQB6X4rVFQAAANFHgAcAwIYYogcAwKSedsqMx10yCfAAAJgQaJfLeNwlkwAPAIAJgXbK\njMddMpmDBwDAhgjwAADYEAEeAAAbIsADAGBDli6yW7VqlXbv3i2Hw6HZs2ersLDQd+zYsWP605/+\npL179+rBBx+0sJYAACQey3rwlZWVqqmp0ZIlSzRnzhyt7HZd4Zo1a1RQUGBR7QAASGyWBXi3263i\n4mJJUn5+vpqamtTcnihAkmbMmOE7DgAAQmNZgPd4PMrIyPDdz8jIkMfj8d1PYxc2AADCFjeL7AzD\nsLoKAADYhmWL7LKzs7v02BsbG5WVlRVxuampqVEpIy8vL6plddyOl7JiWTcASDYd51Cz58FoncMD\nsSzAjx07VuvXr9fUqVNVVVWlnJyck4blw+nVt7a2Rly31tZWVVdXR7WsjtvxUlYs6wYAyabjHGr2\nPBitc3gglgX4oqIiFRQUaOHChUpJSVFJSYkqKiqUnp6u4uJiLV26VPX19aqurta9996rqVOnasqU\nKVZVNykk0i5JAIDALL0OfsaMGV3uDx061Hf79ttv7+3qJLVE2yUJABAYu8lBUuLtkgQACCxuVtED\nAIDoIcADAGBDDNEH0dPCMyn0xWder1fO5uYeywtWD+/x4yE/DwCQnAjwAQRbOMbiMwBAvLJlgI9W\nrzvQwjMp9MVnLpdLh5xO7b32WlOP7+z0lSvl4lI0AIBJtgvw9LoBALBhgI92rxsAgETEKnoAAGzI\ndj14RMfq1au1adMmSVJ9fb2k70Y/JGny5MmaNWuWJXUDAARHgE9g0byEL5B+/fqFV0EAgGUI8Akq\n1osJZ82aRQ8dABIYAT5BsZgQABAIi+wAALAhAjwAADZEgAcAwIaYgwcAwAKxvhKKAA8AQC/rjbTq\nBHgAAHpZb1wJxRw8AAA2RIAHAMCGGKIHAMBinff/kKKzBwgBvpeFu2oylNzxAIDEFo09QAjwIYj0\nF1ZEqyZNrJgEACSmWOz/QYCPQKi/sMgfDwDoLQT4ELDDGgAgUbCKHgAAG6IHDwBAiGKx6j3aCPAA\nAEQoGqveo40ADwBAiBJhTZalAX7VqlXavXu3HA6HZs+ercLCQt+x7du3689//rNSU1M1btw4XXHF\nFRbWFACAxGLZIrvKykrV1NRoyZIlmjNnjlZ2S/7y7LPP6je/+Y3uu+8+bd++Xfv27bOopgAAJB7L\nArzb7VZxcbEkKT8/X01NTWpuz+RWW1urU045RTk5OXI4HBo/frx27NhhVVUBAEg4lgV4j8ejjIwM\n3/2MjAx5PB7fsVNOOcXvMQAAEFzcLLIzDCMq5eTl5QU8npqaaupxVoikbmVlZfrggw989zsu2bj5\n5pt9f7vwwgu73AcA2JdlAT47O7tLr7yxsVFZWVl+jzU0NCg7O9tUudXV1QGPt7a2mnqcFSKpm9fr\n9T1f+u6Sjc5/83q9cfl/AwDCE6hDaFmAHzt2rNavX6+pU6eqqqpKOTk5SmvfZGXgwIH69ttvVVdX\np+zsbG3ZskW//vWvrapqQkiESzYAAL3HsgBfVFSkgoICLVy4UCkpKSopKVFFRYXS09NVXFys66+/\nXn/84x/lcDg0ZcoUDR482KqqAgCQcBxGtCa/40SwIeh42rGtp1SHHdvCWp3mEAAQ3+JyiB4ni8dU\nhwCA4NxutyRp9OjRFtfkOwR4CzFvDgD2sG7dOknxFeDZLhYAgAi43W5VVlaqsrLS15OPBwR4BOV2\nu+PqQwsA8aSj9979ttUYokdQ8Tj0BAAIjB48AorXoScAiBdXX32139tWs30PvqdL0Toul5O4HC2Q\n7kNP9OIBoKvRo0dr5MiRvtvxwvYBvjsuRQMARFs89dw7JF2iG4TG7XartLRUklRaWhpXv04BINmR\n6AZhi9ehJwBAYAR4BBWPQ08AgMAI8AiKnjsAJB4ukwMAwIYI8AAA2BABHgAAGyLAAwBgQwR4AABs\niAAPAIANEeABALAhAjwAADZEgAcAwIYI8AAA2BABHgAAGyLAAwBgQwR4AABsiAAPAIANEeABALAh\nAjwAADYeYuTBAAAScElEQVREgAcAwIacVr1wa2urnnjiCdXV1Sk1NVU33nijBg0a1OUxTU1NWrZs\nmdLS0nT77bdbVFMAABKPZT34jRs3yuVy6b777tPPfvYzrV279qTHrFixQiNGjLCgdgAAJDbLAvyO\nHTt0zjnnSJLOPvts7dq166THzJkzhwAPAEAYLAvwBw8eVEZGhiTJ4XDI4XCotbW1y2PS0tKsqBoA\nAAmvV+bgP/jgA73//vtyOBySJMMw9OWXX3Z5jGEYvVEVAACSQq8E+AsvvFAXXnhhl78tX75cHo9H\nQ4cO9fXcU1NTI36tvLy8iMsAACDRWTZEP2bMGG3atEmS9Mknn2jUqFF+H0fPHgCA0DkMiyJoW1ub\nnnzySdXU1KhPnz6aO3eucnJy9Oqrr2rUqFEqLCzU4sWLdeTIETU0NOj000/XlVde2eMPAQAA8B3L\nAjwAAIgdMtkBAGBDBHgAAGyIAA8AgA1ZloveKnv27NF//Md/6NJLL9VPfvKTiJ+/dOlSHT58WJLk\n9Xr1ve99T7/61a+ClnP06FE98cQTOnjwoI4dO6YrrrhCLpdLzz33nFJTU9W3b1/dfPPNOuWUU0Kq\n39GjR3XHHXfoyiuv1Pe+9z099dRTSklJ0ZAhQ3TdddcpJcXcb7oNGzbo9ddfl9Pp1FVXXaW///3v\nqqqq8tXnsssu0/jx402V1dzcrLKyMjU1Nen48eO66qqrNGbMGL355ptas2aNnn32WfXr189UWYZh\naMWKFfrmm2/kdDp1/fXX689//nPIbeDvc+CvPi+++KK2bdsmSZowYYKmTZsWtKy6ujqVl5ertbVV\nTqdTt9xyizIzM/Vf//Vf+uCDD9SnTx9dcsklOvfcc03XTZK2bdumBx98UP/5n/8pSfr5z3/eJdPj\nokWLfLkmeiqrYw+Impoa9e/fX3fccYcGDBhget8HM5//qVOnas2aNb7n7N27V3feeaeKiooCllVd\nXe3382qmDZ577jl9/vnnamtr0+WXX67CwkKVlZWpra1N2dnZuvnmm+V0Ok23gb/yli9fflKbmmmD\n7mV1ZPDs3p5m2qB7WZ988slJ38vMzExT77+/8jZu3Oj3uxROG5xyyil64YUXlJqaqrS0NN1yyy0a\nMGBA0Dbwd24cNmyY3/Y08/73VJ6/9gzWBmbP2wcOHDDVBv7K6+lca6YNTmIkkebmZqO0tNR46qmn\njLfffjvqz1++fLnx5Zdfmirrf/7nf4zXXnvNMAzDOHDggDFv3jxj6dKlRm1trWEYhrF+/XrjlVde\nCbmOa9euNX73u98ZFRUVxsMPP2xs27bNMAzDeOmll4yNGzeaKuPw4cPGvHnzjObmZqOxsdF46qmn\njCeeeMLYsmVLyPUxDMN46623jLVr1xqGYRgNDQ3Grbfeavz3f/+38cILLxg33XST0dzcbLqszZs3\nG48++qhhGIZRU1NjPPjgg12Om2kDf+3orz61tbXG0qVLDcMwjNbWVmPevHlGY2Nj0LLKysqMTZs2\nGYZhGG+//bbx3HPPGQcPHjTmzZtnHDt2zDh69KixYMEC4+jRo6bqZhiGcfToUaO0tNS44YYbfH8r\nKSkJ+f985513jJUrVxqGYRjvvfee8cknnxiGYRiPPvqo8dJLLxl/+MMfQiqvM3/vfVNTk1FaWmqq\nLH+fVzNt4Ha7fZ+Dw4cPGzfeeKPxxBNP+Npg7dq1xrvvvmu6DYKV19GmhhG8DfyVZRj+2zNYG/RU\nr0Dfy57e/0B169DRnuG2wd133238v//3/wzDMIyXX37ZePXVV021gb9zo7/2NIzg77+Z8jq3Z7A2\nCOe8HagNeqpb9zY10wb+JNUQfZ8+ffT73/9e2dnZUX9+dXW1jhw5osLCQlNlnXfeebrsssskSXV1\ndTr11FN12223aeDAgTIMQw0NDcrJyQmpftXV1dq3b58mTJggwzC0f/9+X33GjBmjzz77zFQ527dv\n15gxY9SvXz9lZWWZGpEIJCMjo0uvICMjQ+ecc47+7d/+LeSyampqdNZZZ0mSTjvtNNXV1flyJZht\nA3/t6K8+AwcO1G233eard0pKivr37x+0rOuvv97XK+n432tra5Wfny+n06k+ffpo2LBh2r17t6m6\nSdIrr7yin/zkJ3I6vxt0M4JcAOOvrC1btuhHP/qRJOmiiy7SD3/4Q0nm9n0I5/P/+uuv66c//amp\nsmpqak76vJppg5EjR/p6WwMGDFBLS4t27typiRMnSpJ++MMfavv27abbwF9511133UltKgVvA39l\nGYbhtz2DtYG/stra2gK+fk/vf6C6SV3bM9w2cLlcOnTokKQToxOnnHKKqTbwd27s3p47duyQZC5P\nir/yemrPYG0Qznk7UBv4K88fM23gT1IN0aekpJgeog71+W+++aYuvvjikMtcuHChGhoadNddd0k6\nMWy3cuVKnX766brgggtCKmv16tUqKSlRRUWFHA6HzjjjDG3dulUXXHCBPvvsMx08eNBUOQcOHFBL\nS4seeeQRNTU16aqrrpIkvfPOO/rrX/+qzMxMlZSUyOVymSrvvPPOU0VFhebNm6empib97ne/C3uf\ngaFDh+qNN97QT3/6U9XU1Ki2tlaHDx9WRkaG6Tbw146B6vPss8/qo48+0qxZs06aSvBXVt++fSWd\nyPXwzjvv6KqrrtLgwYO1Z88eeb1eOZ1OffHFF35zOvgrr7q6Wl9//bWuvvrqLsN+x44d02OPPaa6\nujqdc845uvTSS4OWVVtbq08//VTPPfecsrKydN111yk9Pd1Ue4T6+T969Ki2b9/u94ecv7KGDh3a\n4+c1UBs4HA7fe/7BBx9o/Pjx+uyzz3zBMzMzUx6PR0OGDDHVBv7K89emUvA28FdWTU2N3/YM1gb+\nykpJSdHbb7/t93sZ6P3vqbyO4W1/7RlqG/zsZz9TaWmpXC6X0tPTNWPGDB05csRUG0hdz42LFy/u\n0p6NjY2Sgr//PZXXvT2vvPJKSeb3PzF73g7WBv7K++tf/9rjuTZQG/iTVD34WDl+/Lh27dqlkSNH\nhvzcxYsX684779Tjjz8uSRo3bpyWLVumvLw8vfLKK6bL+dvf/qaioiINHDjQ97dZs2bpo48+0uLF\ni0PKCGgYhrxer+68807ddNNNWr58uS644ALNmDFDixYt0rBhw7Ru3TrT5W3YsEGnnnqqHnvsMS1a\ntEhPP/206ed2N27cOJ111lkqLS3Vm2++qfz8fBmGEVEbBDN79mz98Y9/1GuvvaYDBw6Yek5bW5vK\nyso0evRojRo1Si6XS//+7/+uhx9+WMuXL9cZZ5xhuk1Wr16ta6655qS/z5o1SzfccIPmz5+vjRs3\nqqqqylR5+fn5uueee3TGGWeE9BnrSU/v/ccff6wJEyaYLucXv/hFj59XM23w8ccf68MPP1RJSUmX\nv3eUlZ6eHlIbdC+ve5tK5tugc1mrVq3y255mdS7rggsu0MyZM/1+L82+/93/z57aM9Q2eOaZZ3Tn\nnXfq0Ucf1YgRI/Tuu++G9D1YvHixfvvb3+qxxx7r8vfOjw/lO9D9XNu5PUePHh30fQpUVk/nbbNt\n0PG/Pv744wHPtaGei5KqBx8rlZWVvmFjs6qqqpSZmanc3FydeeaZam1t1aZNmzR58mRJ0rnnnqsX\nX3zRdHlbt25VbW2ttmzZooaGBvXp00e5ubm6++67JUmfffaZPB6PqbKysrJUVFQkh8Oh0047Tf37\n99fQoUN9u/9NnDgxpCC9a9cujRs3TpI0bNgwNTQ0yDAM3y6CoZo+fbrv9rx585SZmant27eH3Ab+\ndK5PfX29Dh48qOHDh2vAgAH6/ve/r6+++qrLj6ieLF++XHl5eb6egSRNmjRJkyZNkiQtW7ZMgwYN\nClpOQ0ODqqur9dhjj8kwDHk8Ht1777265557NHXqVN/jRo8erT179mj48OEBy8vKytIPfvADSdLY\nsWO1fv36oHUIpqfP/5YtW0JayOrv89rQ0CCPxxO0DbZt26ZXX31V8+fPV//+/ZWWlqZjx46pT58+\namho8E0FmG2D7uVJ/tvUTBt0Luvbb7/tsT3N6F6vzoGp+/fSzPvv7//s3p5mvwfdy9qzZ49vUdnZ\nZ5+tjRs3SgreBp3PjcOGDVNbW1uP7Wnm/e9+rm1ra9OhQ4e0evXqk9ozmFDP28HaoPv/2tra6vdc\na/Z70F3S9uBD6dEGe/5XX32lYcOGhfT8nTt36i9/+YskyePxqLm5WS+//LL+7//+T5L05ZdfhrRx\nzq233qoHHnhA999/vy666CJdccUV2rlzp7Zu3SpJ+vDDD33zrcGMGTNG//u//yvDMHT48GE1Nzfr\nT3/6k2prayWdOAGcccYZpus2ePBgffHFF5JODP/379+/y86Cofj6669VXl4u6cQJpaCgQFJ4beDv\n9TvfP3TokFasWKG2tja1tbXpn//8p4YMGRK0zA0bNqhPnz5dThxtbW269957dezYMXk8Hn399ddB\ng7FhGMrJydFjjz2mJUuW6P7771dWVpbuueceX5CQpNbWVu3atctUm4wbN863EreqqqrLZyzUUZ4O\nPb33obbJunXrTvq8Hjx4MGgbHDlyRM8//7zuuusuDRgwQNKJgLJ582ZJ0ubNmzVu3DjTbeCvPH9t\naqYNupfVU3v6e1/N1OsPf/hDj9/LYO+/v/L8Pc/M98BfWVlZWdq3b5+vzCFDhphqA3/nxrPPPlt/\n//vfJX3Xnma/A/7K2759u5xOp9/gHqgNQj1vB2sDf+X5O9ea+R74k1SpaquqqrRmzRodOHBAqamp\nysnJ0W9+8xulp6dH9Px169ZpxIgRvl9xZhw9elRPPvmk6uvrdfToUV111VXKysrSypUru1xu0fFL\nLhTr16/XoEGDVFRU5BtCGjFihGbNmmW6jPfee08ffPCBHA6Hpk2bpv79+2vNmjVKS0tTv379dNNN\nN5muW3Nzs8rLy3Xw4EG1tbVp+vTp2rVrl3bs2KHdu3ersLBQRUVFmjlzZtCyDMNQeXm59u7dq759\n+2revHnKycnRypUrTbeBv3YcM2aMtm/fflJ9Xn31VX388ceSTlyacsUVVwQt69ChQ+rTp4+vR3T6\n6aerpKRE7777rm/b5F/84hd+5x6DfUZvvvlmlZWVSZLWrl2rHTt2KCUlRcXFxbr88suDlvXrX/9a\nzzzzjDwej/r376+5c+fK5XKZ2vch1M//9ddfrxUrVphug5kzZ+qZZ56R1PXzGqwN3nvvPb344otd\nTnhz587Vk08+qWPHjmngwIG66aablJKSYqoN/JVXV1en9PT0k9r0+eefl9vt7rEN/JV18803Kzc3\nt0t7trW1BW0Df2X9y7/8i9566y2/38tA73+gur3++usntWc4bTB9+nQ9//zzcjqdcrlcuvHGGzVg\nwICgbeDv3Dh8+HCVlZWd1J7BvgM9lffKK6/o2LFjXdrz2muvDdoGoZ63g7WBv/LS0tL8nmuDtYE/\nSRXgAQBIFkk7RA8AgJ0R4AEAsCECPAAANkSABwDAhgjwAADYEAEeAAAbIsADCMnnn3+uuXPnWl0N\nAEEQ4AGELJwUwwB6F7noAQT10ksv6b333lNGRoYv5fGxY8e0cuVKVVZWKiUlRePHj9fMmTO1du1a\nHT16VL/85S8lndgqdM6cOSovLze9AyGAyNGDBxDQ3r179cYbb+jhhx/WQw89pD179kiS3njjDTU0\nNOjRRx/VQw89pJ07d+qjjz7SlClTtGnTJt9e5Vu2bNHIkSMJ7kAvI8ADCGjnzp0aOXKkMjIy5HA4\n9KMf/UiGYejTTz/V1KlTfXuBn3/++frss89UUFCg9PR0ud1uSdI//vGPkPZpABAdBHgAAXm93i67\njXVsfHPo0KEuvXKXy6VDhw5JkqZMmaKNGzfq6NGjqqys1DnnnNO7lQZAgAcQWHp6uo4cOeK73xHE\ns7KydPjwYd/fDx8+rMzMTEknAvzHH3+sTz75RCNGjOjyAwFA7yDAAwioqKhIu3bt0uHDh9XW1qYN\nGzbI4XBowoQJev/999XW1qbm5mb97W9/04QJEyRJeXl5Ou200/T888/rvPPOs/g/AJITq+gBBHTm\nmWfqX//1X/Xb3/5WGRkZmjJlir755htdfPHF2r9/v+644w45HA5NnjxZkyZN8j1vypQpWrdunSZO\nnGhh7YHkxX7wAGJi06ZN2rx5s2699VarqwIkJYboAURdS0uLXnvtNV188cVWVwVIWgR4AFG1detW\n3XbbbZo4caK+//3vW10dIGkxRA8AgA3RgwcAwIYI8AAA2BABHgAAGyLAAwBgQwR4AABsiAAPAIAN\n/X/jpt6v3mHUywAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1d6e996050>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Try to change the x-axis tick labels to calendar labels \n",
"# (eg, month, or at least 1-12), and use vertical grids for months\n",
"# Also add 8 days, so the boxes are centered on the middle of the 16d period\n",
"# Except for the last 16d period, which is actually more like 12d??!\n",
"# Could be nice to color (hue?) the boxes by month\n",
"\n",
"sns.boxplot(x='doy', y='mean', data=df, color='c');\n",
"# Alternatively, can use x=df.date.dt.dayofyear"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"--------------------------------------------------------------\n",
"\n",
"### From Nanxi\n",
"With some minor cleanups from Emilio"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"peak_greenness = 0.596340\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAFzCAYAAAAnoZDUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPXiPvBnhsVhcRStVNQsRUQMA1xARVPA7RuaC1TX\nCiOXtDTTXC4uP78WKF0r66WI3lLM5ZYlSS5clwINr140FBcURMmVDGURBmQQ5vP7w5ivk+zLmZnj\n8/5LzvrMnHGeOefMnKMQQggQERGR2VMaOwARERE1DpY6ERGRTLDUiYiIZIKlTkREJBMsdSIiIplg\nqRMREckES53oIWvWrMGoUaOMHUOWbt68CRcXF6Smpho7CpFsWRo7AFFt+fr6Ijs7GxYWFgAACwsL\ndOrUCcHBwRg7dqyR01FtKBQKY0cgkjWWOpmVuXPn4s033wQAlJWV4dChQ5gzZw5sbW0xfPhw44aj\nGvFaV0RNi4ffyaw8XAqWlpbw9/eHv78/9u3bpx++Y8cOjB49Gh4eHvDz88PGjRsNlrF69Wr4+fnB\nw8MDI0aMQGxsbJXrO3z4MHr16oWUlJRKx8fGxmLQoEHo1asXQkNDsW7dOv3h+6SkJLi4uGDnzp3o\n27cv4uLiAADx8fEICgqCp6cnBg4ciE8++cTgcVU3fufOnRg+fDgOHjyI4cOHw8PDA8HBwbh9+3at\nxte0fK1Wi0WLFsHHxwceHh4YNWqUwXO7ceNG+Pv7w93dHUOGDMHq1aurfO5u3LiBN954Q7+cU6dO\nGeypZ2VlYfr06ejXrx/69OmDkJAQXL16FQAQGhqKKVOmGCwvLS0N3bt3x82bN3H16lVMnjwZffv2\nRe/evREcHIz09PRqt+P48ePh4eGBgQMH4uOPP0Z5eTkyMzPh4uKCjIwMg+mDg4Px4YcfAgAuX76M\nKVOmwNvbG3369MH777+P3NxcAP93SmH79u0YMGAAvvzyS4Pl3Lt3D56envj3v/9tMHzFihUIDg4G\nANy+fRuzZs2Cj48PPD09MWXKFFy7ds3gcb/55pvw8vKCl5cXZs6ciTt37ujHu7i4YNOmTfD19cWy\nZcuqfA7oMSGIzMSQIUPExo0bHxn+3nvviQ8++EAIIURCQoLo1auXOHHihNDpdOL06dOib9++4sCB\nA0IIIXbv3i369Okjrly5IoQQYt++faJ79+76v1evXi0CAgKEEEJcuHBB9OnTR8THx1ea59y5c6Jb\nt24iJiZGlJaWiu+//1707dtXP39SUpLo1q2bWLRokbh3754QQojz58+Lnj17iv379wshhLh06ZIY\nOnSoiI6OrtX4H374QXh4eIiFCxcKjUYjsrOzxZAhQ0REREStxte0/KioKDF69GiRl5cnhBDi4MGD\nwsPDQ+Tn54vk5GTh5uYm0tPT9fMOHjxYHDp0qNLnZ8KECWLatGmiqKhI3Lp1S7z++uvCxcVFnDt3\nTgghxFtvvSXee+89odVqRUlJiZg5c6Z47bXXhBBCnDhxQvTo0UPcuXNHv7zPP/9cvP7660IIIUJC\nQkRoaKgoLS0VWq1WfPLJJ+Lll1+uNEdGRobo3r272LVrlygrKxNpaWnihRdeEJGRkUIIIcaMGSPW\nrFmjnz4nJ0e4urqKU6dOCa1WKwYPHiw++eQTodVqRV5enpg2bZp4++23hRBC3LhxQ3Tr1k1MnTpV\n3L17t9L1h4aG6qevMHjwYLFz504hhBDjx48XCxYsEIWFhaKoqEgsWbJEjBo1Sj/tsGHDRHh4uCgv\nLxcFBQXi1VdfFfPnz9eP79atmwgMDBS3bt2qdP30eOGeOpmt0tJSHDx4EAkJCRg9ejQAYPv27Rg9\nejR69+4NhUKBnj17Yty4cYiJiQEAvPjii4iPj0enTp0AAMOGDYOFhcUjX97Kzs7GtGnTMG/ePAwZ\nMqTS9ScmJqJ9+/YYN24crKysEBgYCGdnZ4NpFAoFAgMDoVKpAAAxMTHw9vbGsGHDAABdunRBcHCw\nPl9N44EHe3/vv/8+7Ozs8OSTT8Lb2xuXL1+u1fiall9YWAhLS0s0a9YMAODv74+TJ0+iRYsWKCws\nhFKphK2trX7ehIQEvPDCC488Nzk5OUhOTsbUqVNha2uLNm3aYOLEiQbTREVF4R//+Aesra3RrFkz\nDB06FGfPngUA9O7dG+3bt8euXbv00+/btw/jxo3T52zWrBmsrKxgbW2NDz74ANu3b690O33//ff6\nowUWFhbo1q0bgoKC9EdO/ud//gcHDx7UT3/gwAG0a9cO7u7uOHToEAoLCzFnzhxYW1ujZcuWeP/9\n93H48GHk5eXp5xk9ejTUanWl6x8/fjyOHDmCnJwcAEBKSgry8/MxbNgwpKamIjU1FfPnz4e9vT1s\nbW0xb948XLp0Sf+ajI2Nxdy5c6FUKtG8eXMMHjxY/zxVGDp0KNq0aVPp+unxwnPqZFY+/fRTfP75\n5wAAKysrPPvss/jHP/6BQYMGAQCuXLmCxMREfUmJPw8rd+7cGQBQUlKCjz/+GIcOHUJBQQGEECgr\nK0Npaal+HSUlJZg2bRo6duyIoKCgKrPcvn0bHTt2NBj2/PPP4/DhwwbD2rdvr//3lStXcOzYMTz/\n/PP6YUIIfenXNB4AmjVrhieffFL/t42NDUpKSmo1vqblv/baazh8+DBeeOEFeHt7Y+DAgRg1ahRU\nKhX69euHgQMHYsSIEejduzf69++Pl156qdIyuXXrFhQKhcHz07VrV4PTDOfPn8enn36KtLQ0lJaW\nory8HOXl5frxY8eOxc6dOxESEoL09HTcunVL/72J9957D3PnzsXhw4cxYMAA+Pn5YfDgwY/kAIDr\n16+jS5cuBsM6deqkP8T94osvYtWqVbh+/To6duyIAwcO6E+hXLlyBUVFRXB3dzd4viwsLJCVlYWW\nLVsCMNzGf9WrVy+0b98eu3fvxptvvon9+/dj2LBhsLW1xdWrVyGEMPjgKISAUqnEzZs30aNHDyQl\nJSEyMhKZmZkoKytDeXn5I895deunxwtLnczKw1+Uq4xKpcK0adMwY8aMSscvW7YMKSkp2LRpk/6N\n/uE3bODBueCXXnoJ+/btw08//QR/f/9Kl6XT6WBlZWUwTKl89ODXw9OoVCqMHj0aK1asqDJ/deOr\nWkdtx9e0fEdHR+zZswe//vorDh06hKioKGzYsAExMTGws7PD6tWrcfnyZcTHx2P//v1Yt24dtmzZ\ngh49ehgsp+JD0sMlrdPp9P/WaDSYMmUKRo8ejcjISKjVasTFxeGDDz7QTzN27FisXr0aaWlpOHDg\nAPz9/fVHCQYOHIhffvkFv/zyCw4dOoS5c+fihRdewKeffvrIY3r4A9vDKs7vOzo6omfPnjhw4ADG\njx+P48ePY/Hixfrnq127doiPj690GTdv3gSAR14HfzV+/Hj8+OOP+lIPDw8H8OADmIWFBU6fPl3p\nfFeuXMHMmTMxY8YMvPHGG7C1tcWXX36Jb7/91mC6mtZPjw8efiezImr49nSnTp1w4cIFg2HZ2dm4\nf/8+AOD06dMICAjQF/qlS5cM9nKBB3v1ERERmD17NhYvXmzwpaSHtW7dGjdu3DAYdubMmTrny83N\nxb1792o1vqFqWv69e/eg1WrRu3dvzJ07F7t378Yff/yBY8eOoby8HIWFhejSpQumTJmCHTt2oEeP\nHpV+0bBNmzYQQuD333/XD0tPT9cX6eXLl6HRaPDWW2/pD1ufO3fukWUMGDAA//73v7F3716Dny3m\n5eXpD9mHh4djzZo12Lt3LwoKCh7J8vTTT+PixYsGwy5evKg/BQMAAQEBOHjwIA4ePAhnZ2f9kZ1O\nnTohOzvb4FB7aWlpla+JqowZMwYZGRn44YcfoNPp0K9fPwDAM888A51Oh7S0NIPpKz4snD9/HkII\nTJkyRf+B5q/PE9HDWOokKxWHj+Pi4lBWVoZLly7h9ddfxzfffAMA6NChA86ePYvS0lJkZGTgiy++\nwBNPPIE//vhDv4yKPd2JEyeiR48eWLBgQaXr8vb2xpUrV7B3717cv38fO3fuxKVLlwym+euHkFde\neQWXLl3Cpk2boNVq9d8ArzilUNP4hqpp+TNmzMCSJUv05Xj+/HmUlZWhU6dO2LBhA15//XVcv34d\nwIMjGtnZ2Xj22WcfWY+joyO6du2Kr776CkVFRbh58ya2bdumH9+uXTsolUokJyejtLQUe/fu1X8g\nenhbjB07Fv/617+g1WrRv39/AA++oT98+HBs27YNpaWluH//Ps6ePYvWrVtXel577NixOHv2LPbs\n2YPy8nKcO3cOO3bsQGBgoH6aESNGIDU1FT/++KPBxYd8fHzQvn17hIWFIT8/HxqNBmFhYZg6dWqd\nnvennnoK/fv3x4oVK/DSSy/ph3fp0gV9+vTB8uXLkZ2djdLSUqxZswavvvoqSktL0aFDB5SXl+Pk\nyZMoLi7G1q1bkZWVhYKCAmi12jploMcDS53MRm0uXNKnTx8sW7YMX3zxBXr16oVp06Zh3Lhx+p8P\nzZ07F9nZ2fDy8sKiRYswY8YMBAUFISoqClu3bn1keStWrMD58+fx9ddfPzKud+/eWLBgAT788EP4\n+Pjg/PnzGD9+vMHh779mfvrpp7F69Wr9z9wmTJgAd3d3zJ07t1bjG6qm5S9fvhyFhYXw8/ODp6cn\nPvzwQ4SHh6Nr165488030adPH/ztb3+Du7s7goODMWLECPztb3+rdF2rV69Gbm4ufHx8MG3aNLz1\n1lv6cU899RTmz5+PiIgI+Pj4ICkpCWvWrEHXrl0xatQo/U/w/Pz8oFQqDYqwWbNmiIyMxI8//ghv\nb28MGDAAv/zyC6KioirN4ebmhk8++QQbNmxA3759MW/ePLz99tv61wQAPPHEE+jduzdSUlLw4osv\n6odbWFhg7dq1yM/Px5AhQ+Dv74+8vDxERkbqp6ntBXXGjx8PjUZj8FgA4JNPPkHLli0xcuRI+Pj4\n4OTJk9i4cSOsra3Rs2dPhISE4J133oG/vz/u3LmDL774As2bN9efh+cFfehhClHT8cxGsnXrVqSl\npUGn02HMmDFo2bIltm7dCgsLC1hbW2PGjBlo3rw5EhMTERcXB6VSCT8/P/j6+koRj6heSktLYW1t\nrf978eLFuH37NtavX2/EVPKRk5MDf39/7Nq165EvJZqbzZs34+DBg9iyZYuxo5CMSbKnnpqaihs3\nbiAsLAwLFy7Epk2bsHfvXsycORNLly5F165d8fPPP0Or1SImJgZLly7F0qVLsXfvXhQVFUkRkajO\nbt26BU9PT8TGxkIIgXPnzmH//v38INpINBoN/t//+38YOnSo2Rf6+fPnsXbtWrzzzjvGjkIyJ0mp\nu7q6Ys6cOQAAW1tbaLVazJ49G08++SSEEMjNzUWrVq2QkZEBJycnqFQqWFtbw8XFpdqrRBEZU9u2\nbbFq1Sps2LABnp6emDVrFiZOnIiXX37Z2NHM3u7du+Hj4wOFQqH/Jrq5mjx5MqZMmaK/eh5RU5Lk\nJ20KhUJ/iDI+Ph4eHh4AHlyEITo6Gh06dMCgQYNw5MgRgy+6qNVqg2+dEpmaoUOHYujQocaOITuj\nRo2Szd3yvvrqK2NHoMeIpF+UO3HiBBISEjBp0iQAD34f/MUXX6B9+/bYuXPnI9NLdLqfiIhIFiQr\n9ZSUFMTGxmLRokWwsbHB8ePH9eP69u2L9PR0tGrVymDPPDc3Fw4ODlJFJCIiMmuSHH4vLi7Gtm3b\nsGTJEv0FFL7//nu0adMGnTp1wqVLl+Do6AgnJyesX78excXFUCqVuHjxIkJCQmpcflZWVlM/BCIi\nIpPg6OhY5ThJftL2008/YceOHWjXrp1+2CuvvIJt27YZ/KRNrVYjKSkJu3btgkKhwMiRIzFgwIAa\nl89SJyKix4XRS72psdSJiOhxUV2p84pyREREMsFSJyIikgmWOhERkUyw1ImIiGSCpU5ERCQTLHUi\nIiKZYKkTERHJBEudiIhIJljqREREMsFSJyIikgmWOhERkUyw1ImIiGSCpU5ERCQTLHUiIiKZsDR2\ngMa0efNm7Nmzp9JxOp2uwctXKqv+DBQQEIDg4OA6LW/z5s04duxYleM1Gg0AwN7evtLx/fr1q/M6\nqfFUt/1q2nYAtx8RNT7uqZswrVYLrVZr7BhUD9x2RGQMCiGEMHaIhsrKyjJ2hCYxffp0AEBUVJSR\nk1BdcdsRUVNxdHSschz31ImIiGSCpU5ERCQTLHUiIiKZYKkTERHJBEudiIhIJljqREREMsFSJyIi\nkgmWOhERkUyw1ImIiGSCpU5ERCQTLHUiIiKZYKkTERHJBEudiIhIJiS7n/rWrVuRlpYGnU6HMWPG\noEuXLli7di3Ky8thaWmJmTNnokWLFkhMTERcXByUSiX8/Pzg6+srVUQiIiKzJkmpp6am4saNGwgL\nC4NGo8H8+fPx3HPPYejQofD29sb+/fuxZ88eBAYGIiYmBhEREVAqlQgNDYWXlxfs7OykiElERGTW\nJCl1V1dXdO3aFQBga2sLrVaLyZMnw8rKCgCgVqvx22+/ISMjA05OTlCpVAAAFxcXpKenw9PTU4qY\nREREZk2Sc+oKhQLW1tYAgPj4eHh4eMDa2hoKhQI6nQ779++Hj48P8vPzoVar9fOp1Wrk5eVJEZGI\niMjsSXZOHQBOnDiBhIQELF68GACg0+mwZs0auLm54bnnnsORI0cMphdC1Gq5jo6OjZ7VFFhYWACQ\n7+OTM247IjIGyUo9JSUFsbGxWLRoEWxsbAAAa9euhaOjI8aPHw8AaNWqFZKTk/Xz5ObmwtnZucZl\nZ2VlNU1oIysvLwcg38cnZ9x2RNRUqttZkOTwe3FxMbZt24YFCxbA1tYWAJCYmAgrKysEBgbqp3Ny\nckJmZiaKi4tRUlKCixcvonv37lJEJCIiMnuS7KkfPXoUhYWFWLVqlX7YnTt3YGdnh2XLlgEAOnTo\ngEmTJmHChAkIDw+HQqFAUFCQfq+eiIiIqidJqfv7+8Pf379W03p5ecHLy6uJExEREckPryhHREQk\nEyx1IiIimWCpExERyQRLnYiISCZY6kRERDLBUiciIpIJSS8T+zhavHgxcnJy6jVvxXzTp0+v1/yt\nW7dGWFhYveYlIiLzw1JvYjk5Oci+cwdl9vZ1nlf55/XDs0pK6jyvpUZT53mIiMi8sdQlUGZvjxsh\nIZKus0N0tKTrIyIi4+M5dSIiIplgqRMREckES52IiEgmWOpEREQywVInIiKSCZY6ERGRTLDUiYiI\nZIKlTkREJBMsdSIiIplgqRMREckES52IiEgmWOpEREQywRu6EFWjvrfO5W1zicgYWOpE1ajvrXN5\n21wiMgaWOlENpL51Lm+bS0T1xXPqREREMsFSJyIikgmWOhERkUyw1ImIiGSCpU5ERCQTkn37fevW\nrUhLS4NOp8OYMWPQt29fxMXFYcuWLdi0aROaNWsGAEhMTERcXByUSiX8/Pzg6+srVUQiIiKzJkmp\np6am4saNGwgLC4NGo8H8+fNRUlKCgoICtGrVSj+dVqtFTEwMIiIioFQqERoaCi8vL9jZ2UkRk4iI\nyKxJUuqurq7o2rUrAMDW1hZarRZ9+/aFSqVCYmKifrqMjAw4OTlBpVIBAFxcXJCeng5PT08pYhIR\nEZk1Sc6pKxQKWFtbAwDi4+Ph4eGhL+6H5efnQ61W6/9Wq9XIy8uTIiIREZHZk/SLcidOnEBCQgIm\nTZpUq+mFEE2ciIiISD4k+6JcSkoKYmNjsWjRItjY2OiHKxQK/b9btWqF5ORk/d+5ublwdnaucdmO\njo6NG7YRWfx5DXBjrduUnxtzYKztx21HRPUhSakXFxdj27ZtWLJkCWxtbQ3GPbw37uTkhPXr16O4\nuBhKpRIXL15ESC2uuZ2VldXomRtLeXm5Uddtys+NOTDW9uO2I6KqVPeBX5JSP3r0KAoLC7Fq1Sr9\nsB49eiA1NRV3797F8uXL4ezsjNdeew0TJkxAeHg4FAoFgoKCDPbqzZFGo4FlSYnkN+mw1GigKSuT\ndJ0NsXnzZuzZs6fK8TqdrsHrUCorP9sUEBCA4ODgBi+fzMvmzZtx7NixSsdp/rxTnn01d+fr169f\no79umKnhmWqTS86ZJCl1f39/+Pv7PzI8MDDwkWFeXl7w8vKSIhYRUaW0Wi2A6stKasxUe6aYS6pM\nCiGDb6OZ8mHK6dOnI6ukRNJbdwIPbt/pqFIhKipK0vXKjTG2H7ed8U2fPh0ATGobMFPtmWKuxsxU\n3eF3XiaWiIhIJljqREREMsFSJyIikgmWOhERkUyw1ImIiGSCpU5ERCQTLHUiIiKZYKkTERHJBEud\niIhIJljqREREMsFSJyIikgmWOhERkUyw1ImIiGRCkluvEhER1cXixYuRk5NTr3kr5qu4M1pdtW7d\nGmFhYfWa19hY6kREZHJycnKQfecOyupx/3GlhQUAIKukpM7zWmo0dZ7HlLDUiYjIJJXZ2+NGSIik\n6+wQHS3p+hobz6kTERHJBEudiIhIJljqREREMsFSJyIikgmWOhERkUyw1ImIiGSCpU5ERCQTLHUi\nIiKZYKkTERHJBEudiIhIJljqREREMsFSJyIikgnJbuiydetWpKWlQafTYcyYMejSpQvWrFkDnU4H\nBwcHzJgxA5aWlkhMTERcXByUSiX8/Pzg6+srVcQmY6nR1OsmAco/7zCkU6nqtU7UYz4ypNFoYFlS\nIulNHiw1GmjKyiRbn1yZ4q07TTFTQ3I1ZSZj/N8Dqv//Z6rb72GSlHpqaipu3LiBsLAwaDQazJ8/\nH8899xyGDx8Ob29vfPPNN0hISMCgQYMQExODiIgIKJVKhIaGwsvLC3Z2dlLEbBKtW7eu97w5RUUP\nllGfclapGrRuInNnirfuNMVMDcn1uN3i1FS3n8G0dV56Pbi6uqJr164AAFtbW2i1Wly4cAFTp04F\nAPTq1Qu7d+9Gu3bt4OTkBNWfJebi4oL09HR4enpKEbNJ1OaTVVUqPtFFRUU1VhyqI3t7exRYWkp6\n+8cO0dGw51GWRmGKt+40xUyA9LlqymSM/3tAzf//THX7VZDknLpCoYC1tTUAID4+Hh4eHigpKYGl\n5YPPFC1atEB+fj7u3r0LtVqtn0+tViMvL0+KiERERGZP0i/KnThxAgkJCZg0aZLBcCFEpdNXNZyI\niIgeJdkX5VJSUhAbG4tFixbBxsYGKpUK9+/fh5WVFXJzc+Hg4AAHBweDPfPc3Fw4OzvXuGxHR8em\njG40Fn+eg5Hr4zMHFdvAGOvldm8YY227inVXtv1MMVPFOGMwxUwV6zan7fcwSUq9uLgY27Ztw5Il\nS2BrawsAcHNzQ1JSEnx8fJCUlAR3d3c4OTlh/fr1KC4uhlKpxMWLFxFSi3MXWVlZTf0QjKK8vByA\nfB+fOajYBsZYL7d7wxhr21Wsu7LtZ4qZKsYZgylmqli3KW+/6spdklI/evQoCgsLsWrVKv2wd999\nF+vWrcPBgwfx5JNPYvDgwVAqlZgwYQLCw8OhUCgQFBQEGxsbKSISERGZPUlK3d/fH/7+/o8MX7x4\n8SPDvLy84OXlJUUsIiIiWeEV5YiIiGSCpU5ERCQTLHUiIiKZYKkTERHJBEudiIhIJljqREREMiHZ\nFeWIiIjqgretrjuWOhERmRzetrp+WOpERGRyeNvq+uE5dSIiIplgqRMREckES52IiEgmWOpEREQy\nwVInIiKSCZY6ERGRTLDUiYiIZIKlTkREJBMsdSIiIplgqRMREckES52IiEgmWOpEREQywVInIiKS\nCd6lzYg2b96MY8eOVTk+JycHwP/dceiv+vXrh+Dg4Hqtd8+ePVWO1+l0dV7mXymVlX9eDAgIqFdm\nqp2aXlMajQYAYG9vX+n4pnhNNeXrCaj6NaXRaGBZUlKv+3E3hKVGA01ZWaXjTDETYJxcNWWqjrHe\nO011+xlM28RZqAGaNWtm7AgkM1qtFkDVpU4kB4/zeydL3YiCg4ONstdqrPVS06tp2zbVfaZN8TVl\nb2+PAktL3AgJkXS9HaKjYa9SmU0mwDi5aspUHWO93kx1+z2M59SJiIhkolalXnEejoiIiExXrQ6/\nT58+Ha6urujXrx/69u0LW1vbps5FREREdVSrUl+3bh2Sk5Nx/PhxbN68GS4uLujfvz969+4NVT3P\niRAREVHjqlWp29nZYdCgQRg0aBBKS0vx66+/Ytu2bVi/fj169eqFkSNHolu3bk2dlYiIiKpR62+/\n63Q6nDt3DkeOHMGJEyfQpk0bjBgxAk888QSio6PRu3dvBAYGVjn/tWvXsHLlSgQEBGD48OHIysrC\n+vXroVQq0a5dO0yePBlKpRKJiYmIi4uDUqmEn58ffH19G+WBEhERyV2tSn3jxo04duwY7OzsMGDA\nAISHh8PR0VE/3tPTE7Nnz66y1LVaLaKjo+Hm5qYftnXrVowbNw7PP/88fvjhBxw7dgy9e/dGTEwM\nIiIioFQqERoaCi8vL9jZ2TXwYRIREclfrUrd2toaCxcuxLPPPlvp+GbNmmHy5MlVzm9lZYWFCxci\nNjZWP+zWrVvo0qULAKBnz544cOAAWrRoAScnJ/15ehcXF6Snp8PT07PWD4iIiOhxVatSnzBhAo4e\nPYq4uDgUFBSgRYsW8PT0hLe3t36a6opXqVQ+cpnHp59+GidPnsSgQYNw+vRp3L17F/n5+VCr1fpp\n1Go18vLy6vqYiIiIHku1KvVt27bhwoUL8PHxgb29PQoLC7Fz505cv34dQUFB9VrxG2+8gS+//BKH\nDx9G9+7dAQAKhcJgGiFErZb18KkAosZkYWFhtPU2xeu64vE8Dv9njLXtKtZd2XNsipkqxhlDU73O\nm4qpbr+H1arUT506hYiICFhbW+uH+fn5YeHChfUu9datW+Pvf/87AOD06dPIz8+Hg4ODwZ55bm4u\nnJ2da1xWVlZWvTIQ1aS8vNxo622K13XF43kc/s8Ya9tVrLuy59gUM1WMM4amep03FVPZftWVe62u\nKKfT6WBlZWUwzNrautZ70pX57rvvcPLkSQBAQkICevXqBScnJ2RmZqK4uBglJSW4ePGifi+eiIiI\nqlerPXVvljsNAAAWu0lEQVRXV1d8/PHH8Pf31x9+//nnn9GjR49arSQzMxNbtmzB7du3YWFhgf/+\n97947bXXsHHjRuzYsQMuLi7w8PAA8OD8fXh4OBQKBYKCgmBjY1P/R0fUCCw1mjrfalFZUgIA0NXj\n4kyWGg1QzXyLFy/W31qyrmq6JWVNWrdujbCwsHrNS0RNr1alHhISgr1792L37t0oKChAy5Yt4enp\niZEjR9ZqJZ07d8bSpUsfGb58+fJHhnl5ecHLy6tWyyVqaq1bt67XfDlFRQ/mr88VF1Wqatebk5OD\n7Dt3UFaP26cq/zwnmPXnh466sOQ9IIhMXrWl/u677xp8ea3icHt2djb279+P/fv3Y82aNU2bkMiI\n6rtX2lS3OK1QZm9vlNs/EpFpq7bUZ86cCQA4c+YMrl27hoEDB8LOzg4FBQVITEzk+W4iIiITUm2p\nu7i4AACio6MRERFhsNfu7e2N0NBQjB49umkTEhERUa3U6tvvBQUFKCwsNBhWVFSEgoKCJglFRERE\ndVerL8r5+/vj/fffh6urK2xtbVFcXIz09HQMHTq0qfMRERFRLdWq1MePHw8vLy9cuHABGo0GdnZ2\nCAwMxDPPPNPE8YiIiKi2an3r1Q4dOqBDhw5NmYWIiIgaoFbn1ImIiMj0sdSJiIhkgqVOREQkEyx1\nIiIimWCpExERyQRLnYiISCZY6kRERDJR69+pE5Fp0Gg0sCwpkfyuaZYaDTRlZZKus6EsNZp6PU/K\nP29Nq6vHrXMtNRqgmvlMMVN9czV1JlNkqttPP22dl05EZAaquyd9TXKKih4soz6lo1JVuW5TzATU\nP1dTZjJFprr9HqYQFTdJN2NZWVnGjkBkoCnvpz59+nRklZQY5X7qjipVk90j3pQ05farL2Yyb435\nXDk6OlY5jufUiYiIZIKlTkREJBMsdSIiIplgqRMREckES52IiEgmWOpEREQywVInIiKSCZY6ERGR\nTLDUiYiIZIKlTkREJBMsdSIiIplgqRMREcmEZHdpu3btGlauXImAgAAMHz4c58+fx7fffgsLCwuo\nVCrMnDkTtra2SExMRFxcHJRKJfz8/ODr6ytVRCKzYeq3fyQi45Ck1LVaLaKjo+Hm5qYftmXLFsya\nNQtt27bFzp07cfDgQYwYMQIxMTGIiIiAUqlEaGgovLy8YGdnJ0VMIrNgDrd/JCLjkKTUrayssHDh\nQsTGxuqHqdVqFBQUoG3btigqKoKjoyMyMjLg5OQE1Z9vOC4uLkhPT4enp6cUMYnMQlhYWL3n5a0y\nieRNklJXKpVQKg1P3wcHB+N///d/YW9vDzs7O0yYMAFHjx6FWq3WT6NWq5GXlydFRCIiIrMn2Tn1\nv9q4cSPmzZsHZ2dnbN26Ffv370fz5s0NphFCGCkdERGR+TFaqV+7dg3Ozs4AADc3Nxw5cgRDhgxB\ncnKyfprc3Fz9NNVxdHRsspxE9WFhYQHA9F6bpprL1Jji88RM5k2q58popd6yZUvcvHkT7du3x+XL\nl9GuXTs4OTlh/fr1KC4uhlKpxMWLFxESElLjsrKysiRITFR75eXlAEzvtWmquUyNKT5PzGTeGvO5\nqu6DgSSlnpmZiS1btuD27duwsLDAf//7X0yZMgXr1q2DpaUl7O3tMX36dFhbW2PChAkIDw+HQqFA\nUFAQbGxspIhIRERk9iQp9c6dO2Pp0qWPDP/oo48eGebl5QUvLy8pYhEREckKryhHREQkEyx1IiIi\nmWCpExERyQRLnYiISCZY6kRERDLBUiciIpIJhZDBtVh54QMyhs2bN+PYsWOVjsvJyQFQ/R3V+vXr\nh+DgYMky1SZXU2QyVea2/ZjJtEn5f8/oF58hetw0a9bM2BEqZaq5TI0pPk/MZN6keq64p05ERGRG\nqttT5zl1IiIimWCpExERyQRLnYiISCZY6kRERDLBUiciIpIJljoREZFMsNSJiIhkgqVOREQkEyx1\nIiIimWCpExERyQRLnYiISCZY6kRERDLBUiciIpIJljoREZFMsNSJiIhkgqVOREQkEyx1IiIimWCp\nExERyQRLnYiISCZY6kRERDJhKdWKrl27hpUrVyIgIADDhw/HZ599hsLCQgCARqNB165dMXXqVCQm\nJiIuLg5KpRJ+fn7w9fWVKiIREZFZk6TUtVotoqOj4ebmph82Z84c/b+joqLg7+8PrVaLmJgYRERE\nQKlUIjQ0FF5eXrCzs5MiJhERkVmT5PC7lZUVFi5cCAcHh0fGZWVlobi4GJ07d0ZGRgacnJygUqlg\nbW0NFxcXpKenSxGRiIjI7Emyp65UKqFUVv75IS4uDiNHjgQA5OfnQ61W68ep1Wrk5eVJEZGIiMjs\nGfWLcmVlZUhPT4erq2ul44UQEiciIiIyX5J9Ua4y58+fh5OTk/7vVq1aITk5Wf93bm4unJ2da1yO\no6Njk+QjIiIyJ5KX+sN735cvX0anTp30fzs5OWH9+vUoLi6GUqnExYsXERISUuMys7KymiQrERGR\nqaluR1aSUs/MzMSWLVtw+/ZtWFhYICkpCXPnzkV+fj7atm2rn87a2hoTJkxAeHg4FAoFgoKCYGNj\nI0VEIiIis6cQMjhxzT11IiJ6XFS3p84ryhEREckES52IiEgmWOpEREQywVInIiKSCZY6ERGRTLDU\niYiIZIKlTkREJBMsdSIiIplgqRMREckES52IiEgmWOpEREQywVInIiKSCZY6ERGRTLDUiYiIZIKl\nTkREJBMsdSIiIplgqRMREckES52IiEgmWOpEREQywVInIiKSCZY6ERGRTLDUiYiIZIKlTkREJBMs\ndSIiIplgqRMREckES52IiEgmWOpEREQywVInIiKSCZY6ERGRTLDUiYiIZMJSqhVdu3YNK1euREBA\nAIYPH47y8nJERkbi1q1bsLGxwQcffABbW1skJiYiLi4OSqUSfn5+8PX1lSoiERGRWZNkT12r1SI6\nOhpubm76YT///DPUajWWL1+O/v3748KFC9BqtYiJicHSpUuxdOlS7N27F0VFRVJEJCIiMnuSlLqV\nlRUWLlwIBwcH/bDk5GQMHDgQAODn54devXohIyMDTk5OUKlUsLa2houLC9LT06WISEREZPYkOfyu\nVCqhVBp+fsjOzsapU6ewdetWtGzZEpMmTUJ+fj7UarV+GrVajby8PCkiEhERmT3JzqlXpn379ggM\nDMQPP/yA2NhYPPPMMwbjhRC1Wo6jo2MTpCMiIjIvRiv1li1bonv37gCA559/Ht9//z08PT2RnJys\nnyY3NxfOzs41LisrK6vJchIREZmS6nZkjfaTNnd3d6SkpAAAMjMz4ejoCCcnJ2RmZqK4uBglJSW4\nePGivviJiIioegpR22PcDZCZmYktW7bg9u3bsLCwQKtWrTBr1ixs3LgR+fn5sLGxwbvvvgu1Wo2k\npCTs2rULCoUCI0eOxIABA2pcPvfUiYjocVHdnrokpd7UWOpERPS4MMnD70RERNS4WOpEREQywVIn\nIiKSCZY6ERGRTLDUiYiIZIKlTkREJBMsdSIiIplgqRMREckES52IiEgmWOpEREQywVInIiKSCZY6\nERGRTLDUiYiIZIKlTkREJBMsdSIiIplgqRMREckES52IiEgmWOpEREQywVInIiKSCZY6ERGRTLDU\niYiIZIKlTkREJBMsdSIiIplgqRMREckES52IiEgmWOpEREQywVInIiKSCZY6ERGRTLDUiYiIZMJS\nqhVdu3YNK1euREBAAIYPH461a9ciMzMTzZs3BwCMHj0aHh4eSExMRFxcHJRKJfz8/ODr6ytVRCIi\nIrMmSalrtVpER0fDzc3NYPiECRPg6elpMF1MTAwiIiKgVCoRGhoKLy8v2NnZSRGTiIjIrEly+N3K\nygoLFy6Eg4NDtdNlZGTAyckJKpUK1tbWcHFxQXp6uhQRiYiIzJ4ke+pKpRJK5aOfH/bv3489e/ag\nRYsWeOutt5Cfnw+1Wq0fr1arkZeXJ0VEIiIisyfZOfW/GjRoEJo3b45OnTrhxx9/xPfffw9nZ2eD\naYQQRkpHRERkfoxW6s8995z+37169cKGDRvg7e2N5ORk/fDc3NxHir4yjo6OTZKRiIjInBjtJ22f\nfvopsrOzAQDnz59Hx44d4eTkhMzMTBQXF6OkpAQXL15E9+7djRWRiIjIrCiEBMe4MzMzsWXLFty+\nfRsWFhZo1aoVRo4ciZ07d0KlUqFZs2Z45513oFarkZSUhF27dkGhUGDkyJEYMGBAU8cjIiKSBUlK\nnYiIiJoeryhHREQkEyx1IiIimWCpExERyYTRftImpa1btyItLQ06nQ5jxoxBly5dsGbNGuh0Ojg4\nOGDGjBmwtLSs9Lrz5eXliIyMxJ07d2BhYYHp06fjqaeeMmomnU6HqKgo/PHHH9DpdHjjjTfQrVs3\no2YqKChAZGQkSktLUV5ejuDgYDg5OTU4U0NzVcjPz8fs2bMxb948uLq6Gj3Trl27cOTIEVhaWmLy\n5Mno3LmzUTL5+/tjyJAh+OGHH3D27FkAgE6nw927d/H5558bJVPF85SXl4eoqCjcv38fQghMnDgR\nzz77rFEzabVaREZG4u7du1CpVHjnnXfQokWLBmeqS66ioiJ88cUXUKlUmDNnDgAY/X2qskzAg182\nrVq1CtOnTze4JLgxMwHGez+oLNOhQ4ewfft2tG3bFgDQs2dPjB07tv5hhMydO3dOrFixQgghRGFh\noZg+fbqIjIwUx44dE0II8a9//UscOHBAlJSUiFmzZol79+4JrVYr5syZIzQajTh06JDYsGGDEEKI\n06dPi1WrVhk9U0JCgvjqq6+EEEJcv35dhIaGGj3T7t27xZEjR4QQQqSmpoqwsLAGZ2qMXBVWr14t\n/v73v4vU1FSjZ7p+/br4+9//LnQ6nfjtt9/Ed999Z/RMDzt06JDYtWuX0TNt3rxZHDx4UAghRHp6\nuggPDzd6pj179oht27YJIYS4cOGCWL9+fYMz1SWXEEKsWrVKxMTEiE8//VQ/vzHfp6rKdOvWLfHx\nxx+LlStXiuTk5AbnaYxMFYzxflBVpoSEBLFly5YG56gg+8Pvrq6u+k9Etra20Gq1uHDhAnr37g3g\nwYVvzpw5U+l159PS0nD27Fn07dsXAODm5tYo16JvSKb09HQMGjQIEydOBPDgUroajcbomQICAvQ/\nP7xz5w5at27d4EyNkQsAzp07B1tbW3Ts2NHomdLS0pCcnIx+/fpBoVDgmWeeQVBQkFEzPfya1ul0\nOHDgAEaMGGHUTGlpaQavbY1GY3AJaWNl+v333/VHoCqGNYba5Ko4kjJt2jS4uLgYzG+s96nqMjk4\nOGDevHmwtbVtcJbGygQY5/2gpkyNSfalrlAoYG1tDQCIj4+Hh4cHSkpKYGn54MxDixYtkJ+fj7t3\n71Z63fmHhysUCigUCpSXlxs1k1Kp1E+7d+9e+Pj4NChPY2QCHhzSCg0Nxc6dO/Hqq682OFNj5Cor\nK0NMTEyj5WmMTLdv38adO3ewfPlyfPTRR7h69arRM1VISkqCu7s7rKysjJopPz8fL774Iv7zn/9g\n9uzZ+Oc//4mXX37Z6Jk6deqEkydPAnhwaPnOnTsNzlTbXBXbSaVSPTK/sd6nqstkbW0NhULRoAyN\nnclY7wfVZQKA1NRUrFixAh999BGuXLnSoDyyL/UKJ06cQEJCAiZNmmQwXFTxM/26DjdGpn379uHK\nlSsIDAw0iUwtW7bEihUrMHHiRERGRjZapobkio2NhZ+fX6PuLTQkk0KhgBACOp0OCxcuRFBQENat\nW2fUTA+Lj4/HkCFDGi1PQzLt2rUL/fv3x6pVqzB16lRs3rzZ6Jl8fX1haWmJpUuX4syZM412Pr2+\nuapizPcpKdQ3kym9H1RwdnbGyy+/jNDQULzyyitYs2ZNg3I8FqWekpKC2NhYLFq0CDY2NlCpVLh/\n/z6AB9eXd3BwgIODg8EeS25uLlq1agUHBwfk5+cDgP6Tr4WFhdEyVdy+Nj4+HqdOncK8efMqvQOe\n1JnOnz+PoqIiAIC7uzsyMzMbJVNDc505cwb79u3DokWLcPLkSWzYsAE3btwwaqaWLVvqv5zj4uLS\naHt7DX1NabVa5Obm4oknnmiUPA3NlJ6eDnd3dwAPvjzUWK+phmSysLDA5MmTsWzZMowZMwbNmjVr\nlEy1zVUVY75PSa0hmU6fPm2094OqODo6wsPDA8CDgi8sLGzQBybZl3pxcTG2bduGBQsW6D+dubm5\nISkpCcD/HW6s6rrzPXv2xLFjxwAAv/76K3r06GH0TH/88QcOHjyIDz74QH+Ix9iZjh8/jsOHDwMA\nrl271mjF0NBcH374IcLCwhAeHg5PT09MmjQJHTp0MGomd3d3pKSkAABu3rzZKN8/aGgmALh69Sra\nt2/f4CyNlalt27bIyMgAAFy6dAnt2rUzeqZTp05h+/btAIBffvlF/6FDqlwV/vqmb8z3qaoyNYWG\nZvroo4+M9n5QVaZdu3bhP//5D4AH751qtbpBpy1kf5nYn376CTt27DB4Q3j33Xexbt063L9/H08+\n+STeeecdKJXKSq87r9PpsG7dOty6dQtWVlZ499130apVK6Nm+uabb3D06FGD4ly8eHGDPpk3NFNh\nYSEiIyNx7949lJWVISQkpFF+0tbQXA9bu3YtBg8e3OCfsDRGpu+++w5nzpyBQqFAcHAwunbtavRM\nSUlJOHv2LCZPntygLI2VKT8/H1FRUSgtLQUAhISE4OmnnzZqptLSUnz22WcoLCxE8+bNMWvWLNjY\n2DQoU11yAQ+Kqbi4GLm5uejQoQMCAwPRvXt3o71PVZVJq9Vi9+7dyMrKglqtRsuWLbFo0SKjZnr4\nw47U7wdVZWrXrh1Wr16tPy03ceJEdOnSpd55ZF/qREREjwvZH34nIiJ6XLDUiYiIZIKlTkREJBMs\ndSIiIplgqRMREckES52IiEgmWOpEREQywVInIiKSica5xigRyUJoaCjGjBkDLy8vAMDJkyfx7bff\n4uWXX8a3334LrVaLtm3bYtasWbC3t0dpaSkiIyNx9epVlJeXo2/fvnjjjTcAAMuWLUO3bt1w/Phx\nTJs2Dc7OzsZ8aESPBe6pE5HegAEDkJiYqP/7+PHj6N+/P9asWYP3338fq1evRo8ePfDPf/4TAHDg\nwAFotVp8/vnn+Pjjj3Ho0CGDe3n/9ttv+Oyzz1joRBJhqRORXv/+/XH69Gncu3cPOp0OycnJsLW1\nhaurq/7GF/7+/vj1118hhEBAQADmzZsHALC1tUXHjh3xxx9/6JdXcfcpIpIGD78TkV6rVq3g5OSE\npKQktGnTBk899RSKiopw4cIFzJ49Wz+dnZ0dCgsLUVxcjK+//hpZWVlQKpXIyckxuB+7vb29MR4G\n0WOLpU5EBgYMGIBjx46hbdu26NevH+zt7eHm5oY5c+Y8Mu3q1avRuXNnLFiwAACwZMkSqeMS0UN4\n+J2IDHh7eyMtLQ1JSUno378/3N3dkZaWhuzsbAAP7m2+adMmAMDdu3fx7LPPAgDOnDmDW7duoaSk\nxFjRiR573FMnIgP29vbo3r07iouL9ffkfvvtt7Fy5UqUl5fDxsYGEydOBACMGzcOX3/9NXbs2IE+\nffogKCgI27dv1xc9EUmL91Mnokd89dVXePrppzFs2DBjRyGiOuDhdyIy8PvvvyMlJQUDBw40dhQi\nqiMeficive+++w6JiYmYNGkSbGxsjB2HiOqIh9+JiIhkgoffiYiIZIKlTkREJBMsdSIiIplgqRMR\nEckES52IiEgmWOpEREQy8f8B3FfvRu93lJgAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1d6e5ae7d0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# look at the distribution of peak greenness days over years\n",
"# Definition of peak greenness value: \n",
"# http://www.neonscience.org/updates-events/update/neons-2016-remote-sensing-flight-schedule-now-available\n",
"\n",
"site_max = max(df['mean'])\n",
"# definition of peak greenness from NEON: 90% of the site maximum, I used maximum of mean here\n",
"peak_greenness = 0.9 * site_max\n",
"print(\"peak_greenness = %f\" % peak_greenness)\n",
"peak_greenness_days = df[df['mean'] >= peak_greenness]\n",
"#peak_greenness_data = pd.Series(peak_greenness_days.doy)\n",
"\n",
"sns.boxplot(x=peak_greenness_days['year'], y=peak_greenness_days['doy'], \n",
" data=peak_greenness_days, color='c');\n",
"plt.title(\"Peak greenness days over year\")\n",
"sns.plt.ylim(150,);"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"197.740740741\n",
"2016-07-15\n"
]
}
],
"source": [
"# Translate \"date of year\" to year/month/day\n",
"# Use the median of all the peak greenness days over year\n",
"doy = peak_greenness_days['doy'].mean() # or .median()\n",
"print(doy)\n",
"peak_greenness_date = datetime.date(2016,1,1) + datetime.timedelta(days=(doy-1))\n",
"print(peak_greenness_date.strftime(\"%Y-%m-%d\"))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment